:: On Some Points of a Simple Closed Curve. {P}art {II} :: by Artur Korni{\l}owicz and Adam Grabowski :: :: Received October 6, 2004 :: Copyright (c) 2004-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, TOPREAL2, SUBSET_1, EUCLID, RELAT_1, PRE_TOPC, FUNCT_1, STRUCT_0, JORDAN19, TARSKI, GOBOARD9, JORDAN9, CARD_1, JORDAN6, TOPREAL1, RELAT_2, PSCOMP_1, RCOMP_1, KURATO_2, XBOOLE_0, XXREAL_0, FINSEQ_1, JORDAN8, MATRIX_1, TREES_1, SPPOL_1, ARYTM_3, METRIC_1, ARYTM_1, NEWTON, ORDINAL2, RLTOPSP1, JORDAN1A, MCART_1, XXREAL_2, SEQ_4, GOBOARD2, JORDAN21, JORDAN2C, GOBOARD1, FINSEQ_6, GOBOARD5, PARTFUN1, PCOMPS_1, WEIERSTR, SEQ_1, SEQ_2, REAL_1, COMPLEX1, JORDAN10, JORDAN3, CONVEX1, NAT_1; notations TARSKI, XBOOLE_0, SUBSET_1, FUNCT_1, ORDINAL1, NUMBERS, XXREAL_0, XCMPLX_0, XREAL_0, REAL_1, COMPLEX1, NAT_1, NAT_D, RELSET_1, PARTFUN1, FUNCT_2, XXREAL_2, SEQ_4, NEWTON, FINSEQ_1, MATRIX_0, DOMAIN_1, STRUCT_0, PRE_TOPC, COMPTS_1, FINSEQ_6, CONNSP_1, METRIC_1, PCOMPS_1, PSCOMP_1, RLVECT_1, RLTOPSP1, EUCLID, TOPREAL1, TOPREAL2, GOBOARD1, GOBOARD2, WEIERSTR, SPPOL_1, GOBOARD5, TOPRNS_1, JORDAN2C, JORDAN6, GOBOARD9, JORDAN8, JORDAN9, GOBRD13, TOPREAL6, JORDAN10, JORDAN1K, JORDAN1A, KURATO_2, JORDAN19, JORDAN21; constructors REAL_1, RCOMP_1, NEWTON, BINARITH, CONNSP_1, MONOID_0, TOPRNS_1, TOPREAL4, GOBOARD2, PSCOMP_1, GOBOARD9, JORDAN5C, JORDAN6, JORDAN2C, TOPREAL6, JORDAN1K, JORDAN21, JORDAN8, GOBRD13, JORDAN9, JORDAN10, JORDAN1A, KURATO_2, JORDAN19, NAT_D, SEQ_4, FUNCSDOM, CONVEX1, JORDAN11; registrations XBOOLE_0, RELSET_1, NUMBERS, XXREAL_0, XREAL_0, NAT_1, INT_1, MEMBERED, FINSEQ_6, STRUCT_0, COMPTS_1, EUCLID, TOPREAL1, TOPREAL2, GOBOARD2, SPPOL_2, TOPREAL5, SPRECT_2, JORDAN6, SPRECT_3, JORDAN2C, REVROT_1, TOPREAL6, JORDAN21, JORDAN8, JORDAN10, VALUED_0, FUNCT_1, ORDINAL1, RLTOPSP1, JORDAN1, XCMPLX_0, NEWTON; requirements SUBSET, BOOLE, REAL, NUMERALS, ARITHM; begin :: Properties of the Approximations reserve C for Simple_closed_curve, i for Nat; theorem :: JORDAN22:1 (Upper_Appr C).i c= Cl RightComp Cage(C,0); theorem :: JORDAN22:2 (Lower_Appr C).i c= Cl RightComp Cage(C,0); registration let C be Simple_closed_curve; cluster Upper_Arc C -> connected; cluster Lower_Arc C -> connected; end; theorem :: JORDAN22:3 (Upper_Appr C).i is compact connected; theorem :: JORDAN22:4 (Lower_Appr C).i is compact connected; registration let C be Simple_closed_curve; cluster North_Arc C -> compact; cluster South_Arc C -> compact; end; :: Moved from JORDAN21, AK, 22.02.2006 reserve R for non empty Subset of TOP-REAL 2, j, k, m, n for Nat; theorem :: JORDAN22:5 [1,1] in Indices Gauge(R,n); theorem :: JORDAN22:6 [1,2] in Indices Gauge(R,n); theorem :: JORDAN22:7 [2,1] in Indices Gauge(R,n); theorem :: JORDAN22:8 for C being non vertical non horizontal compact Subset of TOP-REAL 2 holds m > k & [i,j] in Indices Gauge(C,k) & [i,j+1] in Indices Gauge (C,k) implies dist(Gauge(C,m)*(i,j),Gauge(C,m)*(i,j+1)) < dist(Gauge(C,k)*(i,j) ,Gauge(C,k)*(i,j+1)); theorem :: JORDAN22:9 for C being non vertical non horizontal compact Subset of TOP-REAL 2 holds m > k implies dist(Gauge(C,m)*(1,1),Gauge(C,m)*(1,2)) < dist( Gauge(C,k)*(1,1),Gauge(C,k)*(1,2)); theorem :: JORDAN22:10 for C being non vertical non horizontal compact Subset of TOP-REAL 2 holds m > k & [i,j] in Indices Gauge(C,k) & [i+1,j] in Indices Gauge (C,k) implies dist(Gauge(C,m)*(i,j),Gauge(C,m)*(i+1,j)) < dist(Gauge(C,k)*(i,j) ,Gauge(C,k)*(i+1,j)); theorem :: JORDAN22:11 for C being non vertical non horizontal compact Subset of TOP-REAL 2 holds m > k implies dist(Gauge(C,m)*(1,1),Gauge(C,m)*(2,1)) < dist( Gauge(C,k)*(1,1),Gauge(C,k)*(2,1)); theorem :: JORDAN22:12 for r, t being Real holds r > 0 & t > 0 implies ex n being Nat st i < n & dist(Gauge(C,n)*(1,1),Gauge(C,n)*(1,2)) < r & dist( Gauge(C,n)*(1,1),Gauge(C,n)*(2,1)) < t; theorem :: JORDAN22:13 0 < n implies upper_bound (proj2.:(L~Cage(C,n) /\ LSeg(Gauge(C,n)*( Center Gauge(C,n),1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))))) = upper_bound ( proj2.:(L~Cage(C,n) /\ Vertical_Line ((E-bound L~Cage(C,n) + W-bound L~Cage(C,n )) / 2))); theorem :: JORDAN22:14 0 < n implies lower_bound (proj2.:(L~Cage(C,n) /\ LSeg(Gauge(C,n)*( Center Gauge(C,n),1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))))) = lower_bound ( proj2.:(L~Cage(C,n) /\ Vertical_Line ((E-bound L~Cage(C,n) + W-bound L~Cage(C,n )) / 2))); theorem :: JORDAN22:15 0 < n implies UMP L~Cage(C,n) = |[ (E-bound L~Cage(C,n) + W-bound L~ Cage(C,n)) / 2, upper_bound (proj2.:(L~Cage(C,n) /\ LSeg(Gauge(C,n)*(Center Gauge(C,n), 1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))))) ]|; theorem :: JORDAN22:16 0 < n implies LMP L~Cage(C,n) = |[ (E-bound L~Cage(C,n) + W-bound L~ Cage(C,n)) / 2, lower_bound (proj2.:(L~Cage(C,n) /\ LSeg(Gauge(C,n)*(Center Gauge(C,n), 1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))))) ]|; theorem :: JORDAN22:17 (UMP C)`2 < (UMP L~Cage(C,n))`2; theorem :: JORDAN22:18 (LMP C)`2 > (LMP L~Cage(C,n))`2; theorem :: JORDAN22:19 0 < n implies ex i being Nat st 1 <= i & i <= len Gauge(C,n) & UMP L~Cage(C,n) = Gauge(C,n)*(Center Gauge(C,n),i); theorem :: JORDAN22:20 0 < n implies ex i being Nat st 1 <= i & i <= len Gauge(C,n) & LMP L~Cage(C,n) = Gauge(C,n)*(Center Gauge(C,n),i); theorem :: JORDAN22:21 0 < n implies UMP L~Cage(C,n) = UMP Upper_Arc L~Cage(C,n); theorem :: JORDAN22:22 0 < n implies LMP L~Cage(C,n) = LMP Lower_Arc L~Cage(C,n); theorem :: JORDAN22:23 0 < n implies (UMP C)`2 < (UMP Upper_Arc L~Cage(C,n))`2; theorem :: JORDAN22:24 0 < n implies (LMP Lower_Arc L~Cage(C,n))`2 < (LMP C)`2; theorem :: JORDAN22:25 i <= j implies (UMP L~Cage(C,j))`2 <= (UMP L~Cage(C,i))`2; theorem :: JORDAN22:26 i <= j implies (LMP L~Cage(C,i))`2 <= (LMP L~Cage(C,j))`2; theorem :: JORDAN22:27 0 < i & i <= j implies (UMP Upper_Arc L~Cage(C,j))`2 <= (UMP Upper_Arc L~Cage(C,i))`2; theorem :: JORDAN22:28 0 < i & i <= j implies (LMP Lower_Arc L~Cage(C,i))`2 <= (LMP Lower_Arc L~Cage(C,j))`2; begin :: On Special Points of Approximations theorem :: JORDAN22:29 W-min C in North_Arc C; theorem :: JORDAN22:30 E-max C in North_Arc C; theorem :: JORDAN22:31 W-min C in South_Arc C; theorem :: JORDAN22:32 E-max C in South_Arc C; theorem :: JORDAN22:33 UMP C in North_Arc C; theorem :: JORDAN22:34 LMP C in South_Arc C; theorem :: JORDAN22:35 North_Arc C c= C; theorem :: JORDAN22:36 South_Arc C c= C; theorem :: JORDAN22:37 LMP C in Lower_Arc C & UMP C in Upper_Arc C or UMP C in Lower_Arc C & LMP C in Upper_Arc C; :: Moved from JORDAN, AG 20.01.2006 theorem :: JORDAN22:38 W-bound C = W-bound North_Arc C; theorem :: JORDAN22:39 E-bound C = E-bound North_Arc C; theorem :: JORDAN22:40 W-bound C = W-bound South_Arc C; theorem :: JORDAN22:41 E-bound C = E-bound South_Arc C;