:: Some Properties of Cells and Arcs :: by Robert Milewski , Andrzej Trybulec , Artur Korni{\l}owicz :: and Adam Naumowicz :: :: Received October 6, 2000 :: Copyright (c) 2000-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, RCOMP_1, SPPOL_1, SUBSET_1, EUCLID, RELAT_2, GOBOARD1, PRE_TOPC, FINSEQ_1, XBOOLE_0, FINSEQ_5, XXREAL_0, JORDAN3, RELAT_1, TOPREAL1, FUNCT_1, GROUP_2, ORDINAL4, ARYTM_3, TOPREAL2, PSCOMP_1, ARYTM_1, PARTFUN1, CARD_1, NAT_1, RLTOPSP1, MCART_1, SPRECT_2, FINSEQ_6, FINSEQ_4, ZFMISC_1, JORDAN1A, INT_1, JORDAN8, NEWTON, TARSKI, GOBOARD5, TREES_1, REAL_1, JORDAN2C, JORDAN9, JORDAN6, COMPLEX1, CONNSP_1, SEQ_4, XXREAL_2; notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XXREAL_0, XREAL_0, REAL_1, COMPLEX1, INT_1, NAT_1, NAT_D, FUNCT_1, PARTFUN1, FINSEQ_1, FINSEQ_4, NEWTON, FINSEQ_5, MATRIX_0, ZFMISC_1, FINSEQ_6, STRUCT_0, PRE_TOPC, TOPREAL2, CONNSP_1, COMPTS_1, RLTOPSP1, EUCLID, PSCOMP_1, SPRECT_2, GOBOARD1, TOPREAL1, GOBOARD5, SPPOL_1, JORDAN3, JORDAN8, JORDAN2C, JORDAN6, JORDAN9, JORDAN1A; constructors REAL_1, SQUARE_1, NAT_D, FINSEQ_4, NEWTON, RFINSEQ, FINSEQ_5, CONNSP_1, MONOID_0, GOBOARD1, PSCOMP_1, JORDAN3, JORDAN6, JORDAN2C, JORDAN8, JORDAN9, JORDAN1A, CONVEX1, RELSET_1; registrations XBOOLE_0, XXREAL_0, XREAL_0, NAT_1, INT_1, FINSEQ_1, FINSEQ_5, STRUCT_0, MONOID_0, EUCLID, TOPREAL2, TOPREAL5, SPRECT_2, TOPREAL6, JORDAN8, FUNCT_1, RELAT_1, RLTOPSP1, SPPOL_2, JORDAN2C, ORDINAL1, NEWTON; requirements NUMERALS, BOOLE, SUBSET, REAL, ARITHM; begin reserve E for compact non vertical non horizontal Subset of TOP-REAL 2, C for compact connected non vertical non horizontal Subset of TOP-REAL 2, G for Go-board, i, j, m, n for Nat, p for Point of TOP-REAL 2; theorem :: JORDAN1B:1 for f being FinSequence holds f is empty iff Rev f is empty; theorem :: JORDAN1B:2 for D being non empty set, f being FinSequence of D for i,j st 1 <= i & i <= len f & 1 <= j & j <= len f holds mid(f,i,j) is non empty; theorem :: JORDAN1B:3 for f be FinSequence of TOP-REAL 2 for p be Point of TOP-REAL 2 st 1 <= len f & p in L~f holds R_Cut(f,p).1 = f.1; theorem :: JORDAN1B:4 for f be FinSequence of TOP-REAL 2 for p be Point of TOP-REAL 2 st f is being_S-Seq & p in L~f holds L_Cut(f,p).(len L_Cut(f,p)) = f.(len f); theorem :: JORDAN1B:5 for P be Simple_closed_curve holds W-max(P) <> E-max(P); theorem :: JORDAN1B:6 for D be non empty set for f be FinSequence of D st 1 <= i & i < len f holds mid(f,i,len f-'1)^<*f/.(len f)*> = mid(f,i,len f); theorem :: JORDAN1B:7 for p,q be Point of TOP-REAL 2 st p <> q & LSeg(p,q) is vertical holds <*p,q*> is being_S-Seq; theorem :: JORDAN1B:8 for p,q be Point of TOP-REAL 2 st p <> q & LSeg(p,q) is horizontal holds <*p,q*> is being_S-Seq; theorem :: JORDAN1B:9 for p,q be FinSequence of TOP-REAL 2 for v be Point of TOP-REAL 2 st p is_in_the_area_of q holds Rotate(p,v) is_in_the_area_of q; theorem :: JORDAN1B:10 for p be non trivial FinSequence of TOP-REAL 2 for v be Point of TOP-REAL 2 holds Rotate(p,v) is_in_the_area_of p; theorem :: JORDAN1B:11 for f be FinSequence holds Center f >= 1; theorem :: JORDAN1B:12 for f be FinSequence st len f >= 1 holds Center f <= len f; theorem :: JORDAN1B:13 Center G <= len G; theorem :: JORDAN1B:14 for f be FinSequence st len f >= 2 holds Center f > 1; theorem :: JORDAN1B:15 for f be FinSequence st len f >= 3 holds Center f < len f; theorem :: JORDAN1B:16 Center Gauge(E,n) = 2|^(n-'1) + 2; theorem :: JORDAN1B:17 E c= cell(Gauge(E,0),2,2); theorem :: JORDAN1B:18 not cell(Gauge(E,0),2,2) c= BDD E; theorem :: JORDAN1B:19 Gauge(C,1)*(Center Gauge(C,1),1) = |[(W-bound C + E-bound C)/2,S-bound L~Cage(C,1)]|; theorem :: JORDAN1B:20 Gauge(C,1)*(Center Gauge(C,1),len Gauge(C,1)) = |[(W-bound C + E-bound C)/2,N-bound L~Cage(C,1)]|; theorem :: JORDAN1B:21 1 <= j & j < width G & 1 <= m & m <= len G & 1 <= n & n <= width G & p in cell(G,len G,j) & p`1 = G*(m,n)`1 implies len G = m; theorem :: JORDAN1B:22 1 <= i & i <= len G & 1 <= j & j < width G & 1 <= m & m <= len G & 1 <= n & n <= width G & p in cell(G,i,j) & p`1 = G*(m,n)`1 implies i = m or i = m -' 1; theorem :: JORDAN1B:23 1 <= i & i < len G & 1 <= m & m <= len G & 1 <= n & n <= width G & p in cell(G,i,width G) & p`2 = G*(m,n)`2 implies width G = n; theorem :: JORDAN1B:24 1 <= i & i < len G & 1 <= j & j <= width G & 1 <= m & m <= len G & 1 <= n & n <= width G & p in cell(G,i,j) & p`2 = G*(m,n)`2 implies j = n or j = n -' 1; theorem :: JORDAN1B:25 for C be Simple_closed_curve for i be Nat st 1 < i & i < len Gauge(C,n) holds LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n))) meets Upper_Arc C; theorem :: JORDAN1B:26 for C be Simple_closed_curve for i be Nat st 1 < i & i < len Gauge(C,n) holds LSeg(Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n))) meets Lower_Arc C; theorem :: JORDAN1B:27 for C be Simple_closed_curve holds LSeg(Gauge(C,n)*(Center Gauge(C,n), 1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))) meets Upper_Arc C; theorem :: JORDAN1B:28 for C be Simple_closed_curve holds LSeg(Gauge(C,n)*(Center Gauge(C,n), 1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))) meets Lower_Arc C; theorem :: JORDAN1B:29 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i be Nat st 1 <= i & i <= len Gauge(C,n) holds LSeg( Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n))) meets Upper_Arc L~Cage(C,n); theorem :: JORDAN1B:30 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 for i be Nat st 1 <= i & i <= len Gauge(C,n) holds LSeg( Gauge(C,n)*(i,1),Gauge(C,n)*(i,len Gauge(C,n))) meets Lower_Arc L~Cage(C,n); theorem :: JORDAN1B:31 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 holds LSeg(Gauge(C,n)*(Center Gauge(C,n),1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))) meets Upper_Arc L~Cage(C,n); theorem :: JORDAN1B:32 for C be compact connected non vertical non horizontal Subset of TOP-REAL 2 holds LSeg(Gauge(C,n)*(Center Gauge(C,n),1), Gauge(C,n)*(Center Gauge(C,n),len Gauge(C,n))) meets Lower_Arc L~Cage(C,n); theorem :: JORDAN1B:33 j <= width G implies cell(G,0,j) is not bounded; theorem :: JORDAN1B:34 i <= width G implies cell(G,len G,i) is not bounded; theorem :: JORDAN1B:35 j <= width Gauge(C,n) implies cell(Gauge(C,n),0,j) c= UBD C; theorem :: JORDAN1B:36 j <= len Gauge(E,n) implies cell(Gauge(E,n),len Gauge(E,n),j) c= UBD E; theorem :: JORDAN1B:37 i <= len Gauge(C,n) & j <= width Gauge(C,n) & cell(Gauge(C,n),i, j) c= BDD C implies j > 1; theorem :: JORDAN1B:38 i <= len Gauge(C,n) & j <= width Gauge(C,n) & cell(Gauge(C,n),i, j) c= BDD C implies i > 1; theorem :: JORDAN1B:39 i <= len Gauge(C,n) & j <= width Gauge(C,n) & cell(Gauge(C,n),i, j) c= BDD C implies j+1 < width Gauge(C,n); theorem :: JORDAN1B:40 i <= len Gauge(C,n) & j <= width Gauge(C,n) & cell(Gauge(C,n),i, j) c= BDD C implies i+1 < len Gauge(C,n); theorem :: JORDAN1B:41 (ex i,j st i <= len Gauge(C,n) & j <= width Gauge(C,n) & cell(Gauge(C, n),i,j) c= BDD C) implies n >= 1;