:: The Ordering of Points on a Curve, Part {III} :: by Artur Korni{\l}owicz :: :: Received September 16, 2002 :: Copyright (c) 2002-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, TOPREAL2, PRE_TOPC, EUCLID, SUBSET_1, TOPREAL1, FUNCT_1, BORSUK_1, RELAT_1, REAL_1, TOPS_2, CARD_1, XXREAL_0, STRUCT_0, XXREAL_1, JORDAN3, PSCOMP_1, JORDAN6, ARYTM_3, XBOOLE_0, JORDAN17; notations ORDINAL1, SUBSET_1, NUMBERS, XREAL_0, REAL_1, RCOMP_1, STRUCT_0, RELAT_1, FUNCT_1, TOPREAL1, TOPREAL2, PRE_TOPC, TOPS_2, BORSUK_1, EUCLID, JORDAN5C, PSCOMP_1, JORDAN6, XXREAL_0; constructors REAL_1, RCOMP_1, TOPS_2, COMPTS_1, TOPMETR, TOPREAL1, PSCOMP_1, JORDAN5C, JORDAN6, COMPLEX1; registrations RELSET_1, XREAL_0, MEMBERED, TOPREAL2, EUCLID; requirements NUMERALS, REAL, SUBSET; begin reserve C, P for Simple_closed_curve, a, b, c, d, e for Point of TOP-REAL 2; theorem :: JORDAN17:1 for n being Element of NAT, a, p1, p2 being Point of TOP-REAL n, P being Subset of TOP-REAL n st a in P & P is_an_arc_of p1,p2 ex f being Function of I[01], (TOP-REAL n)|P, r being Real st f is being_homeomorphism & f .0 = p1 & f.1 = p2 & 0 <= r & r <= 1 & f.r = a; theorem :: JORDAN17:2 LE W-min(P),E-max(P),P; theorem :: JORDAN17:3 LE a,E-max(P),P implies a in Upper_Arc(P); theorem :: JORDAN17:4 LE E-max(P),a,P implies a in Lower_Arc(P); theorem :: JORDAN17:5 LE a,W-min(P),P implies a in Lower_Arc(P); theorem :: JORDAN17:6 for P being Subset of TOP-REAL 2 st a <> b & P is_an_arc_of c,d & LE a,b,P,c,d holds ex e st a <> e & b <> e & LE a,e,P,c,d & LE e,b,P,c,d; theorem :: JORDAN17:7 a in P implies ex e st a <> e & LE a,e,P; theorem :: JORDAN17:8 a <> b & LE a,b,P implies ex c st c <> a & c <> b & LE a,c,P & LE c,b,P; definition let P be Subset of TOP-REAL 2, a, b, c, d be Point of TOP-REAL 2; pred a,b,c,d are_in_this_order_on P means :: JORDAN17:def 1 LE a,b,P & LE b,c,P & LE c, d,P or LE b,c,P & LE c,d,P & LE d,a,P or LE c,d,P & LE d,a,P & LE a,b,P or LE d ,a,P & LE a,b,P & LE b,c,P; end; theorem :: JORDAN17:9 a in P implies a,a,a,a are_in_this_order_on P; theorem :: JORDAN17:10 a,b,c,d are_in_this_order_on P implies b,c,d,a are_in_this_order_on P; theorem :: JORDAN17:11 a,b,c,d are_in_this_order_on P implies c,d,a,b are_in_this_order_on P; theorem :: JORDAN17:12 a,b,c,d are_in_this_order_on P implies d,a,b,c are_in_this_order_on P; theorem :: JORDAN17:13 a <> b & a,b,c,d are_in_this_order_on P implies ex e st e <> a & e <> b & a,e,b,c are_in_this_order_on P; theorem :: JORDAN17:14 a <> b & a,b,c,d are_in_this_order_on P implies ex e st e <> a & e <> b & a,e,b,d are_in_this_order_on P; theorem :: JORDAN17:15 b <> c & a,b,c,d are_in_this_order_on P implies ex e st e <> b & e <> c & a,b,e,c are_in_this_order_on P; theorem :: JORDAN17:16 b <> c & a,b,c,d are_in_this_order_on P implies ex e st e <> b & e <> c & b,e,c,d are_in_this_order_on P; theorem :: JORDAN17:17 c <> d & a,b,c,d are_in_this_order_on P implies ex e st e <> c & e <> d & a,c,e,d are_in_this_order_on P; theorem :: JORDAN17:18 c <> d & a,b,c,d are_in_this_order_on P implies ex e st e <> c & e <> d & b,c,e,d are_in_this_order_on P; theorem :: JORDAN17:19 d <> a & a,b,c,d are_in_this_order_on P implies ex e st e <> d & e <> a & a,b,d,e are_in_this_order_on P; theorem :: JORDAN17:20 d <> a & a,b,c,d are_in_this_order_on P implies ex e st e <> d & e <> a & a,c,d,e are_in_this_order_on P; theorem :: JORDAN17:21 a <> c & a <> d & b <> d & a,b,c,d are_in_this_order_on P & b,a,c,d are_in_this_order_on P implies a = b; theorem :: JORDAN17:22 a <> b & b <> c & c <> d & a,b,c,d are_in_this_order_on P & c,b,a,d are_in_this_order_on P implies a = c; theorem :: JORDAN17:23 a <> b & a <> c & b <> d & a,b,c,d are_in_this_order_on P & d,b,c,a are_in_this_order_on P implies a = d; theorem :: JORDAN17:24 a <> c & a <> d & b <> d & a,b,c,d are_in_this_order_on P & a,c,b,d are_in_this_order_on P implies b = c; theorem :: JORDAN17:25 a <> b & b <> c & c <> d & a,b,c,d are_in_this_order_on P & a,d,c,b are_in_this_order_on P implies b = d; theorem :: JORDAN17:26 a <> b & a <> c & b <> d & a,b,c,d are_in_this_order_on P & a,b,d,c are_in_this_order_on P implies c = d; theorem :: JORDAN17:27 a in C & b in C & c in C & d in C implies a,b,c,d are_in_this_order_on C or a,b,d,c are_in_this_order_on C or a,c,b,d are_in_this_order_on C or a,c,d, b are_in_this_order_on C or a,d,b,c are_in_this_order_on C or a,d,c,b are_in_this_order_on C;