:: Riemann-Stieltjes Integral :: by Keiko Narita , Kazuhisa Nakasho and Yasunari Shidama :: :: Received June 30, 2016 :: Copyright (c) 2016-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, INTEGRA1, SUBSET_1, FUNCT_1, FINSEQ_1, NAT_1, RELAT_1, MEASURE7, XBOOLE_0, XXREAL_2, XXREAL_0, SEQ_4, CARD_1, REAL_1, ARYTM_3, ARYTM_1, CARD_3, FINSEQ_2, INTEGRA2, SEQ_1, SEQ_2, ORDINAL2, COMPLEX1, XXREAL_1, FUNCT_3, PARTFUN1, VALUED_1, TARSKI, INTEGR15, MEASURE5, FUNCT_7, INTEGR22, VALUED_0, ZFMISC_1, ORDINAL4, FUNCOP_1; notations TARSKI, XBOOLE_0, SUBSET_1, ZFMISC_1, RELAT_1, FUNCT_1, ORDINAL1, RELSET_1, PARTFUN1, FUNCT_2, FUNCOP_1, BINOP_1, NUMBERS, XCMPLX_0, XXREAL_0, XREAL_0, NAT_1, VALUED_0, COMPLEX1, XXREAL_2, FINSEQ_1, FINSEQ_2, VALUED_1, SEQ_1, SEQ_2, RVSUM_1, SEQ_4, RCOMP_1, MEASURE5, INTEGRA1, INTEGRA2, INTEGRA3; constructors REAL_1, FINSEQOP, MONOID_0, SEQ_4, NAT_D, SUPINF_2, INTEGRA2, RELSET_1, SEQ_2, INTEGRA3, COMSEQ_2; registrations NUMBERS, XREAL_0, SEQ_2, INTEGRA1, FUNCT_2, NAT_1, MEMBERED, ORDINAL1, VALUED_0, VALUED_1, RELSET_1, CARD_1, MEASURE5, FINSEQ_1, SEQM_3, INT_1, XXREAL_2; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; begin :: Properties of Real Finite Sequences definition let A be Subset of REAL; let rho be real-valued Function; func vol(A,rho) -> Real equals :: INTEGR22:def 1 0 if A is empty otherwise rho.(upper_bound A) - rho.(lower_bound A); end; theorem :: INTEGR22:1 for A being non empty closed_interval Subset of REAL, D being Division of A, rho be Function of A,REAL, B be non empty closed_interval Subset of REAL, v be FinSequence of REAL st B c= A & len D = len v & for i be Nat st i in dom v holds v.i = vol (B /\ divset(D,i),rho) holds Sum v = vol (B,rho); theorem :: INTEGR22:2 for n,m be Nat, a be Function of [:Seg n,Seg m:],REAL for p,q be FinSequence of REAL st ( dom p = Seg n & for i be Nat st i in dom p holds ex r be FinSequence of REAL st (dom r = Seg m & p.i = Sum r & for j be Nat st j in dom r holds r.j=a.(i,j) ) ) & ( dom q = Seg m & for j be Nat st j in dom q holds ex s be FinSequence of REAL st (dom s = Seg n & q.j = Sum s & for i be Nat st i in dom s holds s.i=a.(i,j) ) ) holds Sum p = Sum q; begin :: The Definitions of Bounded Variation definition let A be non empty closed_interval Subset of REAL; let rho be real-valued Function; let t be Division of A; mode var_volume of rho,t -> FinSequence of REAL means :: INTEGR22:def 2 len it = len t & for k be Nat st k in dom t holds it.k = |. vol (divset(t,k),rho) .|; end; theorem :: INTEGR22:3 for A be non empty closed_interval Subset of REAL, rho be Function of A,REAL, t be Division of A, F be var_volume of rho,t holds for k be Nat st k in dom F holds 0 <= F.k; theorem :: INTEGR22:4 for A be non empty closed_interval Subset of REAL, rho be Function of A,REAL, t be Division of A, F be var_volume of rho,t holds 0 <= Sum(F); definition let A be non empty closed_interval Subset of REAL; let rho be Function of A,REAL; attr rho is bounded_variation means :: INTEGR22:def 3 ex d be Real st 0 < d & for t be Division of A, F be var_volume of rho,t holds Sum(F) <= d; end; definition let A be non empty closed_interval Subset of REAL; let rho be Function of A,REAL; assume rho is bounded_variation; func total_vd(rho) -> Real means :: INTEGR22:def 4 ex VD be non empty Subset of REAL st VD is bounded_above & VD = { r where r is Real: ex t be Division of A, F be var_volume of rho,t st r = Sum(F) } & it = upper_bound VD; end; theorem :: INTEGR22:5 for A be non empty closed_interval Subset of REAL, rho be Function of A,REAL, T be Division of A st rho is bounded_variation holds for F be var_volume of rho,T holds Sum(F) <= total_vd(rho); theorem :: INTEGR22:6 for A be non empty closed_interval Subset of REAL, rho be Function of A,REAL st rho is bounded_variation holds 0 <= total_vd(rho); begin :: The definitions of Riemann-Stieltjes Integral definition let A be non empty closed_interval Subset of REAL; let rho be Function of A,REAL; let u be PartFunc of REAL,REAL; assume rho is bounded_variation & dom u = A; let t be Division of A; mode middle_volume of rho,u,t -> FinSequence of REAL means :: INTEGR22:def 5 len it = len t & for k be Nat st k in dom t holds ex r be Real st r in rng (u|divset(t,k)) & it.k = r*(vol (divset(t,k),rho)); end; definition let A be non empty closed_interval Subset of REAL; let rho be Function of A,REAL; let u be PartFunc of REAL,REAL; ::: assume rho is bounded_variation & dom u = A; let T be DivSequence of A; mode middle_volume_Sequence of rho,u,T -> sequence of (REAL)* means :: INTEGR22:def 6 for k be Element of NAT holds it.k is middle_volume of rho,u,T.k; end; definition let A be non empty closed_interval Subset of REAL; let rho be Function of A,REAL; let u be PartFunc of REAL,REAL; ::: assume rho is bounded_variation & dom u = A; let T be DivSequence of A; let S be middle_volume_Sequence of rho,u,T; let k be Nat; redefine func S.k -> middle_volume of rho,u,T.k; end; reserve A for non empty closed_interval Subset of REAL; reserve rho for Function of A,REAL; reserve u for PartFunc of REAL,REAL; reserve T for DivSequence of A; reserve S for middle_volume_Sequence of rho,u,T; reserve k for Nat; definition let A be non empty closed_interval Subset of REAL; let rho be Function of A,REAL; let u be PartFunc of REAL,REAL; ::: assume rho is bounded_variation & dom u = A; let T be DivSequence of A; let S be middle_volume_Sequence of rho,u,T; func middle_sum(S) -> Real_Sequence means :: INTEGR22:def 7 for i be Nat holds it.i = Sum(S.i); end; definition let A be non empty closed_interval Subset of REAL; let rho be Function of A,REAL; let u be PartFunc of REAL,REAL; ::: assume rho is bounded_variation & dom u = A; pred u is_RiemannStieltjes_integrable_with rho means :: INTEGR22:def 8 ex I be Real st for T being DivSequence of A, S be middle_volume_Sequence of rho,u,T st delta(T) is convergent & lim delta(T) = 0 holds middle_sum(S) is convergent & lim (middle_sum(S)) = I; end; definition let A be non empty closed_interval Subset of REAL; let rho be Function of A,REAL; let u be PartFunc of REAL,REAL; assume rho is bounded_variation & dom u = A & u is_RiemannStieltjes_integrable_with rho; func integral(u,rho) -> Real means :: INTEGR22:def 9 for T being DivSequence of A, S be middle_volume_Sequence of rho,u,T st delta(T) is convergent & lim delta(T) = 0 holds middle_sum(S) is convergent & lim (middle_sum(S)) = it; end; begin :: Linearity of Riemann-Stieltjes Integral theorem :: INTEGR22:7 for A be non empty closed_interval Subset of REAL, r be Real, rho be Function of A,REAL, u,w be PartFunc of REAL,REAL st rho is bounded_variation & dom u = A & dom w = A & w = r(#)u & u is_RiemannStieltjes_integrable_with rho holds w is_RiemannStieltjes_integrable_with rho & integral(w,rho) = r * integral(u,rho); theorem :: INTEGR22:8 for A be non empty closed_interval Subset of REAL, rho be Function of A,REAL, u,w be PartFunc of REAL,REAL st rho is bounded_variation & dom u = A & dom w = A & w = -u & u is_RiemannStieltjes_integrable_with rho holds w is_RiemannStieltjes_integrable_with rho & integral(w,rho) = -integral(u,rho); theorem :: INTEGR22:9 for A be non empty closed_interval Subset of REAL, rho be Function of A,REAL, u,v,w be PartFunc of REAL,REAL st rho is bounded_variation & dom u = A & dom v = A & dom w = A & w = u + v & u is_RiemannStieltjes_integrable_with rho & v is_RiemannStieltjes_integrable_with rho holds w is_RiemannStieltjes_integrable_with rho & integral(w,rho) = integral(u,rho) + integral(v,rho); theorem :: INTEGR22:10 for A be non empty closed_interval Subset of REAL, rho be Function of A,REAL, u,v,w be PartFunc of REAL,REAL st rho is bounded_variation & dom u = A & dom v = A & dom w = A & w = u - v & u is_RiemannStieltjes_integrable_with rho & v is_RiemannStieltjes_integrable_with rho holds w is_RiemannStieltjes_integrable_with rho & integral(w,rho) = integral(u,rho) - integral(v,rho); theorem :: INTEGR22:11 for A,B be non empty closed_interval Subset of REAL, r be Real, rho,rho1 be Function of A,REAL st B c= A & rho = r(#)rho1 holds vol(B,rho) = r * vol(B,rho1); theorem :: INTEGR22:12 for A be non empty closed_interval Subset of REAL, r be Real, rho,rho1 be Function of A,REAL, u be PartFunc of REAL,REAL st rho is bounded_variation & rho1 is bounded_variation & dom u = A & rho = r(#)rho1 & u is_RiemannStieltjes_integrable_with rho1 holds u is_RiemannStieltjes_integrable_with rho & integral(u,rho) = r * integral(u,rho1); theorem :: INTEGR22:13 for A be non empty closed_interval Subset of REAL, rho,rho1 be Function of A,REAL, u be PartFunc of REAL,REAL st rho is bounded_variation & rho1 is bounded_variation & dom u = A & rho = -rho1 & u is_RiemannStieltjes_integrable_with rho1 holds u is_RiemannStieltjes_integrable_with rho & integral(u,rho) = -integral(u,rho1); theorem :: INTEGR22:14 for A,B be non empty closed_interval Subset of REAL, rho,rho1,rho2 be Function of A,REAL st B c= A & rho = rho1 + rho2 holds vol(B,rho) = vol(B,rho1) + vol(B,rho2); theorem :: INTEGR22:15 for A be non empty closed_interval Subset of REAL, rho,rho1,rho2 be Function of A,REAL, u be PartFunc of REAL,REAL st rho is bounded_variation & rho1 is bounded_variation & rho2 is bounded_variation & dom u = A & rho = rho1 + rho2 & u is_RiemannStieltjes_integrable_with rho1 & u is_RiemannStieltjes_integrable_with rho2 holds u is_RiemannStieltjes_integrable_with rho & integral(u,rho) = integral(u,rho1) + integral(u,rho2); theorem :: INTEGR22:16 for A,B be non empty closed_interval Subset of REAL, rho,rho1,rho2 be Function of A,REAL st B c= A & rho = rho1 - rho2 holds vol(B,rho) = vol(B,rho1) - vol(B,rho2); theorem :: INTEGR22:17 for A be non empty closed_interval Subset of REAL, rho,rho1,rho2 be Function of A,REAL, u be PartFunc of REAL,REAL st rho is bounded_variation & rho1 is bounded_variation & rho2 is bounded_variation & dom u = A & rho = rho1 - rho2 & u is_RiemannStieltjes_integrable_with rho1 & u is_RiemannStieltjes_integrable_with rho2 holds u is_RiemannStieltjes_integrable_with rho & integral(u,rho) = integral(u,rho1) - integral(u,rho2);