:: Integrability Formulas -- Part {III} :: by Bo Li and Na Ma :: :: Received February 4, 2010 :: Copyright (c) 2010-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies RELAT_1, FUNCT_1, ARYTM_1, SIN_COS, VALUED_1, NAT_1, INTEGRA1, FDIFF_1, SQUARE_1, ARYTM_3, ORDINAL2, PREPOWER, REAL_1, PARTFUN1, TAYLOR_1, CARD_1, ORDINAL4, RCOMP_1, INTEGRA5, XXREAL_0, SIN_COS4, SUBSET_1, XBOOLE_0, TARSKI, NUMBERS, XXREAL_2, SEQ_4, MEASURE5; notations TARSKI, XBOOLE_0, SIN_COS, SUBSET_1, ORDINAL1, NUMBERS, VALUED_1, XXREAL_0, XCMPLX_0, XREAL_0, REAL_1, FUNCT_1, RELSET_1, PARTFUN1, PARTFUN2, RCOMP_1, RFUNCT_1, MEASURE5, FCONT_1, SQUARE_1, INTEGRA5, PREPOWER, TAYLOR_1, FDIFF_1, SEQ_2, FDIFF_9, SIN_COS4, SEQ_4; constructors SIN_COS, TAYLOR_1, REAL_1, FDIFF_1, FCONT_1, SQUARE_1, PREPOWER, INTEGRA5, SEQ_4, PARTFUN2, RFUNCT_1, FDIFF_9, SIN_COS4, RELSET_1, INTEGRA1, COMSEQ_2, BINOP_2; registrations NUMBERS, MEMBERED, VALUED_0, INT_1, RELAT_1, RCOMP_1, RELSET_1, MEASURE5, XREAL_0, SQUARE_1, PREPOWER; requirements NUMERALS, SUBSET, ARITHM; begin :: Differentiation Formulas reserve a,x for Real; reserve n for Nat; reserve A for non empty closed_interval Subset of REAL; reserve f,f1 for PartFunc of REAL,REAL; reserve Z for open Subset of REAL; theorem :: INTEGR14:1 Z c= dom (sec*((id Z)^)) implies (-sec*((id Z)^)) is_differentiable_on Z & for x st x in Z holds ((-sec*((id Z)^))`|Z).x = sin.(1/x)/(x^2*(cos.(1/x))^2); ::f.x=-cosec.(exp_R.x) theorem :: INTEGR14:2 Z c= dom (cosec*exp_R) implies -cosec*exp_R is_differentiable_on Z & for x st x in Z holds ((-cosec*exp_R)`|Z).x = exp_R.x*cos.(exp_R.x)/(sin.(exp_R.x))^2; :: f.x = -cosec.(ln.x) theorem :: INTEGR14:3 Z c= dom (cosec*ln) implies -cosec*ln is_differentiable_on Z & for x st x in Z holds ((-cosec*ln)`|Z).x = cos.(ln.x)/(x*(sin.(ln.x))^2); :: f.x = -exp_R.(cosec.x) theorem :: INTEGR14:4 Z c= dom (exp_R*cosec) implies -exp_R*cosec is_differentiable_on Z & for x st x in Z holds ((-exp_R*cosec)`|Z).x = exp_R.(cosec.x)*cos.x/(sin.x)^2; :: f.x = -ln.(cosec.x) theorem :: INTEGR14:5 Z c= dom (ln*cosec) implies -ln*cosec is_differentiable_on Z & for x st x in Z holds ((-ln*cosec)`|Z).x = cot.x; ::f.x=-(cosec.x) #Z n theorem :: INTEGR14:6 Z c= dom (( #Z n)*cosec) & 1<=n implies -( #Z n)*cosec is_differentiable_on Z & for x st x in Z holds ((-( #Z n)*cosec)`|Z).x = n*cos.x/(sin.x) #Z (n+1); ::f.x= -1/x*sec.x theorem :: INTEGR14:7 Z c= dom ((id Z)^(#)sec) implies (-(id Z)^(#)sec) is_differentiable_on Z & for x st x in Z holds ((-(id Z)^(#)sec)`|Z).x = 1/cos.x/x^2-sin.x/x/(cos.x)^2; ::f.x=-1/x*cosec.x theorem :: INTEGR14:8 Z c= dom ((id Z)^(#)cosec) implies (-(id Z)^(#)cosec) is_differentiable_on Z & for x st x in Z holds ((-(id Z)^(#)cosec)`|Z).x = 1/sin.x/x^2+cos.x/x/(sin.x)^2; ::f.x = -cosec.(sin.x) theorem :: INTEGR14:9 Z c= dom (cosec*sin) implies -cosec*sin is_differentiable_on Z & for x st x in Z holds ((-cosec*sin)`|Z).x = cos.x*cos.(sin.x)/(sin.(sin.x))^2; ::f.x=-sec.(cot.x) theorem :: INTEGR14:10 Z c= dom (sec*cot) implies -sec*cot is_differentiable_on Z & for x st x in Z holds ((-sec*cot)`|Z).x = sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2; ::f.x=-cosec.(tan.x) theorem :: INTEGR14:11 Z c= dom (cosec*tan) implies -cosec*tan is_differentiable_on Z & for x st x in Z holds ((-cosec*tan)`|Z).x = cos.(tan.x)/(cos.x)^2/(sin.(tan.x))^2; ::f.x=-cot.x*sec.x theorem :: INTEGR14:12 Z c= dom (cot(#)sec) implies (-cot(#)sec) is_differentiable_on Z & for x st x in Z holds ((-cot(#)sec)`|Z).x = 1/(sin.x)^2/cos.x-cot.x*sin.x/(cos.x)^2; ::f.x=-cot.x*cosec.x theorem :: INTEGR14:13 Z c= dom (cot(#)cosec) implies (-cot(#)cosec) is_differentiable_on Z & for x st x in Z holds ((-cot(#)cosec)`|Z).x = 1/(sin.x)^2/sin.x+cot.x*cos.x/(sin.x)^2; ::f.x=-cos.x * cot.x theorem :: INTEGR14:14 Z c= dom (cos (#) cot) implies (-cos (#) cot) is_differentiable_on Z & for x st x in Z holds((-cos (#) cot)`|Z).x = cos.x+cos.x/(sin.x)^2; begin :: Integrability Formulas ::f.x=sin.(1/x)/(x^2*(cos.(1/x))^2) theorem :: INTEGR14:15 A c= Z & (for x st x in Z holds f.x=sin.(1/x)/(x^2*(cos.(1/x))^2)) & Z c= dom (sec*((id Z)^)) & Z = dom f & f|A is continuous implies integral(f,A)=(-sec*((id Z)^)).(upper_bound A)- (-sec*((id Z)^)).(lower_bound A); ::f.x=cos.(1/x)/(x^2*(sin.(1/x))^2) theorem :: INTEGR14:16 A c= Z & (for x st x in Z holds f.x=cos.(1/x)/(x^2*(sin.(1/x))^2)) & Z c= dom (cosec*((id Z)^)) & Z = dom f & f|A is continuous implies integral(f,A)=(cosec*((id Z)^)).(upper_bound A)- (cosec*((id Z)^)).(lower_bound A); ::f.x=exp_R.x*sin.(exp_R.x)/(cos.(exp_R.x))^2 theorem :: INTEGR14:17 A c= Z & (for x st x in Z holds f.x=exp_R.x*sin.(exp_R.x)/(cos.(exp_R.x))^2) & Z c= dom (sec*exp_R) & Z = dom f & f|A is continuous implies integral(f,A)=(sec*exp_R).(upper_bound A)-(sec*exp_R).(lower_bound A); ::f.x=exp_R.x*cos.(exp_R.x)/(sin.(exp_R.x))^2 theorem :: INTEGR14:18 A c= Z & (for x st x in Z holds f.x=exp_R.x*cos.(exp_R.x)/(sin.(exp_R.x))^2) & Z c= dom (cosec*exp_R) & Z = dom f & f|A is continuous implies integral(f,A)=(-cosec*exp_R).(upper_bound A)-(-cosec*exp_R).(lower_bound A); ::f.x=sin.(ln.x)/(x*(cos.(ln.x))^2) theorem :: INTEGR14:19 A c= Z & (for x st x in Z holds f.x=sin.(ln.x)/(x*(cos.(ln.x))^2)) & Z c= dom (sec*ln) & Z = dom f & f|A is continuous implies integral(f,A)=(sec*ln).(upper_bound A)-(sec*ln).(lower_bound A); ::f.x=cos.(ln.x)/(x*(sin.(ln.x))^2) theorem :: INTEGR14:20 A c= Z & (for x st x in Z holds f.x=cos.(ln.x)/(x*(sin.(ln.x))^2)) & Z c= dom (cosec*ln) & Z = dom f & f|A is continuous implies integral(f,A)=(-cosec*ln).(upper_bound A)-(-cosec*ln).(lower_bound A); ::f.x=exp_R.(sec.x)*sin.x/(cos.x)^2 theorem :: INTEGR14:21 A c= Z & f=(exp_R*sec)(#)(sin/cos^2) & Z = dom f & f|A is continuous implies integral(f,A)=(exp_R*sec).(upper_bound A)-(exp_R*sec).(lower_bound A); ::f.x=exp_R.(cosec.x)*cos.x/(sin.x)^2 theorem :: INTEGR14:22 A c= Z & f=(exp_R*cosec)(#)(cos/sin^2) & Z = dom f & f|A is continuous implies integral(f,A)=(-exp_R*cosec).(upper_bound A)- (-exp_R*cosec).(lower_bound A); ::f.x=tan.x theorem :: INTEGR14:23 A c= Z & Z c= dom (ln*sec) & Z = dom tan & tan|A is continuous implies integral(tan,A)=(ln*sec).(upper_bound A)-(ln*sec).(lower_bound A); ::f.x=-cot.x theorem :: INTEGR14:24 A c= Z & Z c= dom (ln*cosec) & Z = dom cot & (-cot)|A is continuous implies integral((-cot),A)=(ln*cosec).(upper_bound A)- (ln*cosec).(lower_bound A); ::f.x=cot.x theorem :: INTEGR14:25 A c= Z & Z c= dom (ln*cosec) & Z = dom cot & cot|A is continuous implies integral(cot,A)=(-ln*cosec).(upper_bound A)-(-ln*cosec).(lower_bound A) ; ::f.x=n*sin.x/(cos.x) #Z (n+1) theorem :: INTEGR14:26 A c= Z & (for x st x in Z holds f.x=n*sin.x/(cos.x) #Z (n+1)) & Z c= dom (( #Z n)*sec) & 1<=n & Z = dom f & f|A is continuous implies integral(f,A)=(( #Z n)*sec).(upper_bound A)- (( #Z n)*sec).(lower_bound A); ::f.x=n*cos.x/(sin.x) #Z (n+1) theorem :: INTEGR14:27 A c= Z & (for x st x in Z holds f.x=n*cos.x/(sin.x) #Z (n+1)) & Z c= dom (( #Z n)*cosec) & 1<=n & Z = dom f & f|A is continuous implies integral(f,A)=(-( #Z n)*cosec).(upper_bound A)- (-( #Z n)*cosec).(lower_bound A); ::f.x=exp_R.x/cos.x+exp_R.x*sin.x/(cos.x)^2 theorem :: INTEGR14:28 A c= Z & (for x st x in Z holds f.x=exp_R.x/cos.x+exp_R.x*sin.x/(cos.x)^2) & Z c= dom (exp_R(#)sec) & Z = dom f & f|A is continuous implies integral(f,A)=(exp_R(#)sec).(upper_bound A)- (exp_R(#)sec).(lower_bound A); ::f.x=exp_R.x/sin.x-exp_R.x*cos.x/(sin.x)^2 theorem :: INTEGR14:29 A c= Z & (for x st x in Z holds f.x=exp_R.x/sin.x-exp_R.x*cos.x/(sin.x)^2) & Z c= dom (exp_R(#)cosec) & Z = dom f & f|A is continuous implies integral(f,A)=(exp_R(#)cosec).(upper_bound A)- (exp_R(#)cosec).(lower_bound A); ::f.x=(sin.(a*x)-(cos.(a*x))^2)/(cos.(a*x))^2 theorem :: INTEGR14:30 A c= Z & (for x st x in Z holds f.x=(sin.(a*x)-(cos.(a*x))^2)/(cos.(a*x))^2) & (Z c= dom ((1/a)(#)(sec*f1)-id Z) & for x st x in Z holds f1.x=a*x & a<>0) & Z = dom f & f|A is continuous implies integral(f,A)=((1/a)(#)(sec*f1)-id Z).(upper_bound A)- ((1/a)(#)(sec*f1)-id Z).(lower_bound A); ::f.x=(cos.(a*x)-(sin.(a*x))^2)/(sin.(a*x))^2 theorem :: INTEGR14:31 A c= Z & (for x st x in Z holds f.x=(cos.(a*x)-(sin.(a*x))^2)/(sin.(a*x))^2) & (Z c= dom ((-1/a)(#)(cosec*f1)-id Z) & for x st x in Z holds f1.x=a*x & a<>0) & Z = dom f & f|A is continuous implies integral(f,A)=((-1/a)(#)(cosec*f1)-id Z).(upper_bound A) -((-1/a)(#)(cosec*f1)-id Z).(lower_bound A); ::f.x=1/cos.x/x+ln.x*sin.x/(cos.x)^2 theorem :: INTEGR14:32 A c= Z & (for x st x in Z holds f.x=1/cos.x/x+ln.x*sin.x/(cos.x)^2) & Z c= dom (ln(#)sec) & Z = dom f & f|A is continuous implies integral(f,A)=(ln(#)sec).(upper_bound A)-(ln(#)sec).(lower_bound A); ::f.x=1/sin.x/x-ln.x*cos.x/(sin.x)^2 theorem :: INTEGR14:33 A c= Z & (for x st x in Z holds f.x=1/sin.x/x-ln.x*cos.x/(sin.x)^2) & Z c= dom (ln(#)cosec) & Z = dom f & f|A is continuous implies integral(f,A)=(ln(#)cosec).(upper_bound A)-(ln(#)cosec).(lower_bound A); ::f.x=1/cos.x/x^2-sin.x/x/(cos.x)^2 theorem :: INTEGR14:34 A c= Z & (for x st x in Z holds f.x=1/cos.x/x^2-sin.x/x/(cos.x)^2) & Z c= dom ((id Z)^(#)sec) & Z = dom f & f|A is continuous implies integral(f,A)=(-(id Z)^(#)sec).(upper_bound A)-(-(id Z)^(#)sec).(lower_bound A) ; ::f.x=1/sin.x/x^2+cos.x/x/(sin.x)^2 theorem :: INTEGR14:35 A c= Z & (for x st x in Z holds f.x=1/sin.x/x^2+cos.x/x/(sin.x)^2) & Z c= dom ((id Z)^(#)cosec) & Z = dom f & f|A is continuous implies integral(f,A)=(-(id Z)^(#)cosec).(upper_bound A)- (-(id Z)^(#)cosec).(lower_bound A); ::f.x=cos.x*sin.(sin.x)/(cos.(sin.x))^2 theorem :: INTEGR14:36 A c= Z & (for x st x in Z holds f.x=cos.x*sin.(sin.x)/(cos.(sin.x))^2) & Z c= dom (sec*sin) & Z = dom f & f|A is continuous implies integral(f,A)=(sec*sin).(upper_bound A)-(sec*sin).(lower_bound A); ::f.x=sin.x*sin.(cos.x)/(cos.(cos.x))^2 theorem :: INTEGR14:37 A c= Z & (for x st x in Z holds f.x=sin.x*sin.(cos.x)/(cos.(cos.x))^2) & Z c= dom (sec*cos) & Z = dom f & f|A is continuous implies integral(f,A)=(-sec*cos).(upper_bound A)-(-sec*cos).(lower_bound A); ::f.x=cos.x*cos.(sin.x)/(sin.(sin.x))^2 theorem :: INTEGR14:38 A c= Z & (for x st x in Z holds f.x=cos.x*cos.(sin.x)/(sin.(sin.x))^2) & Z c= dom (cosec*sin) & Z = dom f & f|A is continuous implies integral(f,A)=(-cosec*sin).(upper_bound A)-(-cosec*sin).(lower_bound A) ; ::f.x=sin.x*cos.(cos.x)/(sin.(cos.x))^2 theorem :: INTEGR14:39 A c= Z & (for x st x in Z holds f.x=sin.x*cos.(cos.x)/(sin.(cos.x))^2) & Z c= dom (cosec*cos) & Z = dom f & f|A is continuous implies integral(f,A)=(cosec*cos).(upper_bound A)-(cosec*cos).(lower_bound A); ::f.x=sin.(tan.x)/(cos.x)^2/(cos.(tan.x))^2 theorem :: INTEGR14:40 A c= Z & (for x st x in Z holds f.x=sin.(tan.x)/(cos.x)^2/(cos.(tan.x))^2) & Z c= dom (sec*tan) & Z = dom f & f|A is continuous implies integral(f,A)=(sec*tan).(upper_bound A)-(sec*tan).(lower_bound A); ::f.x=sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2 theorem :: INTEGR14:41 A c= Z & (for x st x in Z holds f.x=sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2) & Z c= dom (sec*cot) & Z = dom f & f|A is continuous implies integral(f,A)=(-sec*cot).(upper_bound A)-(-sec*cot).(lower_bound A); ::f.x= cos.(tan.x)/(cos.x)^2/(sin.(tan.x))^2 theorem :: INTEGR14:42 A c= Z & (for x st x in Z holds f.x=cos.(tan.x)/(cos.x)^2/(sin.(tan.x))^2) & Z c= dom (cosec*tan) & Z = dom f & f|A is continuous implies integral(f,A)=(-cosec*tan).(upper_bound A)-(-cosec*tan).(lower_bound A) ; ::f.x=cos.(cot.x)/(sin.x)^2/(sin.(cot.x))^2 theorem :: INTEGR14:43 A c= Z & (for x st x in Z holds f.x=cos.(cot.x)/(sin.x)^2/(sin.(cot.x))^2) & Z c= dom (cosec*cot) & Z = dom f & f|A is continuous implies integral(f,A)=(cosec*cot).(upper_bound A)-(cosec*cot).(lower_bound A); ::f.x=1/(cos.x)^2/cos.x+tan.x*sin.x/(cos.x)^2 theorem :: INTEGR14:44 A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2/cos.x+tan.x*sin.x/(cos.x)^2) & Z c= dom (tan(#)sec) & Z = dom f & f|A is continuous implies integral(f,A)=(tan(#)sec).(upper_bound A)-(tan(#)sec).(lower_bound A); ::f.x=1/(sin.x)^2/cos.x-cot.x*sin.x/(cos.x)^2 theorem :: INTEGR14:45 A c= Z & (for x st x in Z holds f.x=1/(sin.x)^2/cos.x-cot.x*sin.x/(cos.x)^2) & Z c= dom (cot(#)sec) & Z = dom f & f|A is continuous implies integral(f,A)=(-cot(#)sec).(upper_bound A)-(-cot(#)sec).(lower_bound A) ; ::f.x=1/(cos.x)^2/sin.x-tan.x*cos.x/(sin.x)^2 theorem :: INTEGR14:46 A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2/sin.x-tan.x*cos.x/(sin.x)^2) & Z c= dom (tan(#)cosec) & Z = dom f & f|A is continuous implies integral(f,A)=(tan(#)cosec).(upper_bound A)- (tan(#)cosec).(lower_bound A); ::f.x=1/(sin.x)^2/sin.x+cot.x*cos.x/(sin.x)^2 theorem :: INTEGR14:47 A c= Z & (for x st x in Z holds f.x=1/(sin.x)^2/sin.x+cot.x*cos.x/(sin.x)^2) & Z c= dom (cot(#)cosec) & Z = dom f & f|A is continuous implies integral(f,A)=(-cot(#)cosec).(upper_bound A)- (-cot(#)cosec).(lower_bound A); ::f.x=1/(cos.(cot.x))^2*(1/(sin.x)^2) theorem :: INTEGR14:48 A c= Z & (for x st x in Z holds f.x=1/(cos.(cot.x))^2*(1/(sin.x)^2)) & Z c= dom (tan*cot) & Z = dom f & f|A is continuous implies integral(f,A)=(-tan*cot).(upper_bound A)-(-tan*cot).(lower_bound A); ::f.x=1/(cos.(tan.x))^2 *(1/(cos.x)^2) theorem :: INTEGR14:49 A c= Z & (for x st x in Z holds f.x=1/(cos.(tan.x))^2 *(1/(cos.x)^2)) & Z c= dom (tan*tan) & Z = dom f & f|A is continuous implies integral(f,A)=(tan*tan).(upper_bound A)-(tan*tan).(lower_bound A); ::f.x=(1/(sin.(cot.x))^2) *(1/(sin.x)^2) theorem :: INTEGR14:50 A c= Z & (for x st x in Z holds f.x=(1/(sin.(cot.x))^2) *(1/(sin.x)^2)) & Z c= dom (cot*cot) & Z = dom f & f|A is continuous implies integral(f,A)=(cot*cot).(upper_bound A)-(cot*cot).(lower_bound A); ::f.x=(1/(sin.(tan.x))^2)*(1/(cos.x)^2) theorem :: INTEGR14:51 A c= Z & (for x st x in Z holds f.x=(1/(sin.(tan.x))^2)*(1/(cos.x)^2)) & Z c= dom (cot*tan) & Z = dom f & f|A is continuous implies integral(f,A)=(-cot*tan).(upper_bound A)-(-cot*tan).(lower_bound A); ::f.x=1/(cos.x)^2+1/(sin.x)^2 theorem :: INTEGR14:52 A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2+1/(sin.x)^2) & Z c= dom (tan-cot) & Z = dom f & f|A is continuous implies integral(f,A)=(tan-cot).(upper_bound A)-(tan-cot).(lower_bound A); ::f.x=1/(cos.x)^2-1/(sin.x)^2 theorem :: INTEGR14:53 A c= Z & (for x st x in Z holds f.x=1/(cos.x)^2-1/(sin.x)^2) & Z c= dom (tan+cot) & Z = dom f & f|A is continuous implies integral(f,A)=(tan+cot).(upper_bound A)-(tan+cot).(lower_bound A); ::f.x=cos.(sin.x)*cos.x theorem :: INTEGR14:54 A c= Z & (for x st x in Z holds f.x=cos.(sin.x)*cos.x) & Z = dom f & f|A is continuous implies integral(f,A)=(sin*sin).(upper_bound A)-(sin*sin).(lower_bound A); ::f.x=cos.(cos.x)*sin.x theorem :: INTEGR14:55 A c= Z & (for x st x in Z holds f.x=cos.(cos.x)*sin.x) & Z = dom f & f|A is continuous implies integral(f,A)=(-sin*cos).(upper_bound A)-(-sin*cos).(lower_bound A); ::f.x=sin.(sin.x)*cos.x theorem :: INTEGR14:56 A c= Z & (for x st x in Z holds f.x=sin.(sin.x)*cos.x) & Z = dom f & f|A is continuous implies integral(f,A)=(-cos*sin).(upper_bound A)-(-cos*sin).(lower_bound A); ::f.x=sin.(cos.x)*sin.x theorem :: INTEGR14:57 A c= Z & (for x st x in Z holds f.x=sin.(cos.x)*sin.x) & Z = dom f & f|A is continuous implies integral(f,A)=(cos*cos).(upper_bound A)-(cos*cos).(lower_bound A); ::f.x=cos.x+cos.x/(sin.x)^2 theorem :: INTEGR14:58 A c= Z & (for x st x in Z holds f.x=cos.x+cos.x/(sin.x)^2) & Z c= dom (cos (#) cot) & Z = dom f & f|A is continuous implies integral(f,A)=(-cos (#) cot).(upper_bound A)- (-cos (#) cot).(lower_bound A); ::f.x=sin.x + sin.x/(cos.x)^2 theorem :: INTEGR14:59 A c= Z & (for x st x in Z holds f.x=sin.x + sin.x/(cos.x)^2) & Z c= dom (sin (#) tan) & Z = dom f & f|A is continuous implies integral(f,A)=(sin (#) tan).(upper_bound A)- (sin (#) tan).(lower_bound A);