:: Several Integrability Formulas of Special Functions -- Part {II} :: by Bo Li , Yanping Zhuang , Yanhong Men and Xiquan Liang :: :: Received October 14, 2008 :: Copyright (c) 2008-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies REAL_1, SUBSET_1, NUMBERS, INTEGRA1, RCOMP_1, RELAT_1, JGRAPH_2, ARYTM_3, CARD_1, SIN_COS, VALUED_1, ARYTM_1, FDIFF_1, FUNCT_1, SQUARE_1, PREPOWER, SIN_COS2, ORDINAL2, XXREAL_2, XXREAL_1, INTEGRA5, XBOOLE_0, PARTFUN1, TARSKI, ORDINAL4, SIN_COS4, SIN_COS9, XXREAL_0, TAYLOR_1, SIN_COS6, SEQ_4, MEASURE5; notations TARSKI, XBOOLE_0, FUNCT_1, SIN_COS, SUBSET_1, ORDINAL1, NUMBERS, RELAT_1, VALUED_1, XXREAL_0, XCMPLX_0, REAL_1, XREAL_0, PARTFUN1, PARTFUN2, RCOMP_1, RFUNCT_1, MEASURE5, FCONT_1, SQUARE_1, INTEGRA5, PREPOWER, TAYLOR_1, FDIFF_1, SEQ_2, SIN_COS2, FDIFF_9, SIN_COS4, SIN_COS6, SIN_COS9, SEQ_4; constructors SIN_COS, TAYLOR_1, REAL_1, FDIFF_1, FCONT_1, SQUARE_1, PREPOWER, INTEGRA5, SIN_COS2, SEQ_4, SIN_COS9, PARTFUN2, SIN_COS6, RFUNCT_1, FDIFF_9, SIN_COS4, RELSET_1, INTEGRA1, COMSEQ_2, COMPLEX1, SERIES_1, BINOP_2; registrations VALUED_1, NAT_1, NUMBERS, MEMBERED, VALUED_0, INT_1, RELAT_1, ORDINAL1, FUNCT_2, RCOMP_1, FCONT_1, TOPREALB, FCONT_3, MEASURE5, XREAL_0, SIN_COS, PREPOWER, SQUARE_1; requirements NUMERALS, BOOLE, SUBSET, ARITHM; begin :: Differentiation Formulas reserve r,x,x0,a,b for Real; reserve n,m for Element of NAT; reserve A for non empty closed_interval Subset of REAL; reserve Z for open Subset of REAL; :: f.x = (1/2)*x-(1/4)*sin(2*x) theorem :: INTEGR11:1 AffineMap(1/2,0)-(1/4)(#)(sin*AffineMap(2,0)) is_differentiable_on REAL & for x holds ((AffineMap(1/2,0)-(1/4)(#)(sin* AffineMap(2,0)))`|REAL).x = (sin.x)^2; :: f.x = (1/2)*x+(1/4)*sin(2*x) theorem :: INTEGR11:2 AffineMap(1/2,0)+(1/4)(#)(sin*AffineMap(2,0)) is_differentiable_on REAL & for x holds ((AffineMap(1/2,0)+(1/4)(#)(sin* AffineMap(2,0)))`|REAL).x = (cos.x)^2; :: f.x = (1/(n+1))*(sin.x)^(n+1) theorem :: INTEGR11:3 (1/(n+1))(#)( #Z (n+1)*sin) is_differentiable_on REAL & for x holds (((1/(n+1))(#)( #Z (n+1)*sin))`|REAL).x = ((sin.x) #Z n)*cos.x; :: f.x = (-1/(n+1))*(cos.x)^(n+1) theorem :: INTEGR11:4 (-1/(n+1))(#)( #Z (n+1)*cos) is_differentiable_on REAL & for x holds (((-1/(n+1))(#)( #Z (n+1)*cos))`|REAL).x = ((cos.x) #Z n)*sin.x; :: f.x=sin.((m+n)*x)/(2*(m+n))+sin.((m-n)*x)/(2*(m-n)) theorem :: INTEGR11:5 m+n<>0 & m-n<>0 implies ((1/(2*(m+n)))(#)(sin*AffineMap(m+n,0))+ (1/(2*(m-n)))(#)(sin*AffineMap(m-n,0))) is_differentiable_on REAL & for x holds (((1/(2*(m+n)))(#)(sin*AffineMap(m+n,0))+ (1/(2*(m-n)))(#)(sin*AffineMap(m-n,0) ))`|REAL).x = cos.(m*x) *cos.(n*x); :: f.x=sin.((m-n)*x)/(2*(m-n))-sin.((m+n)*x)/(2*(m+n)) theorem :: INTEGR11:6 m+n<>0 & m-n<>0 implies ((1/(2*(m-n)))(#)(sin*AffineMap(m-n,0))- (1/(2*(m+n)))(#)(sin*AffineMap(m+n,0))) is_differentiable_on REAL & for x holds (((1/(2*(m-n)))(#)(sin*AffineMap(m-n,0))- (1/(2*(m+n)))(#)(sin*AffineMap(m+n,0) ))`|REAL).x = sin.(m*x)*sin.(n*x); :: f.x=-cos.((m+n)*x)/(2*(m+n))-cos.((m-n)*x)/(2*(m-n)) theorem :: INTEGR11:7 m+n<>0 & m-n<>0 implies ((-(1/(2*(m+n)))(#)(cos*AffineMap(m+n,0)) ) - (1/(2*(m-n)))(#)(cos*AffineMap(m-n,0))) is_differentiable_on REAL & for x holds ((-((1/(2*(m+n)))(#)(cos*AffineMap(m+n,0)))- (1/(2*(m-n)))(#)(cos* AffineMap(m-n,0)))`|REAL).x = sin.(m*x) * cos.(n*x); :: f.x = (1/(n^2))*sin.(n*x)-(1/n)*x*cos.(n*x) theorem :: INTEGR11:8 n<>0 implies ((1/(n^2))(#)(sin*AffineMap(n,0))- (AffineMap(1/n,0) )(#)(cos*AffineMap(n,0))) is_differentiable_on REAL & for x holds (((1/(n^2)) (#)(sin*AffineMap(n,0))- (AffineMap(1/n,0))(#)(cos*AffineMap(n,0)))`|REAL).x=x* sin.(n*x); :: f.x = (1/(n^2))*cos.(n*x)+(1/n)*x*sin.(n*x) theorem :: INTEGR11:9 n<>0 implies ((1/(n^2))(#)(cos*AffineMap(n,0))+ (AffineMap(1/n,0) )(#)(sin*AffineMap(n,0))) is_differentiable_on REAL & for x holds (((1/(n^2)) (#)(cos*AffineMap(n,0))+ (AffineMap(1/n,0))(#)(sin*AffineMap(n,0)))`|REAL).x=x* cos.(n*x); :: f.x = x*cosh.x-sinh.x theorem :: INTEGR11:10 (AffineMap(1,0))(#)cosh-sinh is_differentiable_on REAL & for x holds (((AffineMap(1,0))(#)cosh-sinh)`|REAL).x=x*sinh.x; :: f.x = x*sinh.x-cosh.x theorem :: INTEGR11:11 (AffineMap(1,0))(#)sinh-cosh is_differentiable_on REAL & for x holds (((AffineMap(1,0))(#)sinh-cosh)`|REAL).x=x*cosh.x; :: f.x = (1/(a*(n+1)))*(a*x+b)^(n+1) theorem :: INTEGR11:12 a*(n+1) <> 0 implies (1/(a*(n+1)))(#)( #Z (n+1)*AffineMap(a,b)) is_differentiable_on REAL & for x holds (((1/(a*(n+1)))(#)( #Z (n+1)*AffineMap( a,b)))`|REAL).x = (a*x+b) #Z n; begin :: Integrability Formulas :: f.x = (sin.x)^2 theorem :: INTEGR11:13 integral(sin^2,A) = (AffineMap(1/2,0)-(1/4)(#)(sin*AffineMap(2,0 ))).(upper_bound A) -(AffineMap(1/2,0)-(1/4)(#)(sin*AffineMap(2,0))). (lower_bound A); theorem :: INTEGR11:14 A = [.0,PI.] implies integral(sin^2,A) = PI/2; theorem :: INTEGR11:15 A = [.0,2*PI.] implies integral(sin^2,A) = PI; :: f.x = (cos.x)^2 theorem :: INTEGR11:16 integral(cos^2,A) = (AffineMap(1/2,0)+(1/4)(#)(sin*AffineMap(2,0 ))).(upper_bound A) -(AffineMap(1/2,0)+(1/4)(#)(sin*AffineMap(2,0))). (lower_bound A); theorem :: INTEGR11:17 A = [.0,PI.] implies integral(cos^2,A) = PI/2; theorem :: INTEGR11:18 A = [.0,2*PI.] implies integral(cos^2,A) = PI; :: f.x = (sin.x)^n*(cos.x) theorem :: INTEGR11:19 integral(( #Z n*sin)(#)cos,A) = ((1/(n+1))(#)( #Z (n+1)*sin)).( upper_bound A) -((1/(n+1))(#)( #Z (n+1)*sin)).(lower_bound A); theorem :: INTEGR11:20 A = [.0,PI.] implies integral(( #Z n*sin)(#)cos,A) = 0; theorem :: INTEGR11:21 A = [.0,2*PI.] implies integral(( #Z n*sin)(#)cos,A) = 0; :: f.x = (cos.x)^n*(sin.x) theorem :: INTEGR11:22 integral(( #Z n*cos)(#)sin,A) = ((-1/(n+1))(#)( #Z (n+1)*cos)).( upper_bound A) -((-1/(n+1))(#)( #Z (n+1)*cos)).(lower_bound A); theorem :: INTEGR11:23 A = [.0,2*PI.] implies integral(( #Z n*cos)(#)sin,A) = 0; theorem :: INTEGR11:24 A = [.-PI/2,PI/2.] implies integral(( #Z n*cos)(#)sin,A) = 0; :: f.x = cos.(m*x)*cos.(n*x) theorem :: INTEGR11:25 m+n<>0 & m-n<>0 implies integral((cos*AffineMap(m,0))(#)(cos*AffineMap (n,0)),A) = ((1/(2*(m+n)))(#)(sin*AffineMap(m+n,0))+ (1/(2*(m-n)))(#)(sin* AffineMap(m-n,0))).(upper_bound A) -((1/(2*(m+n)))(#)(sin*AffineMap(m+n,0))+ (1/(2*(m-n )))(#)(sin*AffineMap(m-n,0))).(lower_bound A); :: f.x = sin.(m*x)*sin.(n*x) theorem :: INTEGR11:26 m+n<>0 & m-n<>0 implies integral((sin*AffineMap(m,0))(#)(sin*AffineMap (n,0)),A) = ((1/(2*(m-n)))(#)(sin*AffineMap(m-n,0))- (1/(2*(m+n)))(#)(sin* AffineMap(m+n,0))).(upper_bound A) -((1/(2*(m-n)))(#)(sin*AffineMap(m-n,0))- (1/(2*(m+n )))(#)(sin*AffineMap(m+n,0))).(lower_bound A); :: f.x = sin.(m*x)*cos.(n*x) theorem :: INTEGR11:27 m+n<>0 & m-n<>0 implies integral((sin*AffineMap(m,0))(#)(cos*AffineMap (n,0)),A) = ((-(1/(2*(m+n)))(#)(cos*AffineMap(m+n,0)))- (1/(2*(m-n)))(#)(cos* AffineMap(m-n,0))).(upper_bound A) -((-(1/(2*(m+n)))(#)(cos*AffineMap(m+n,0))) - (1/(2*( m-n)))(#)(cos*AffineMap(m-n,0))).(lower_bound A); :: f.x = x*sin.(n*x) theorem :: INTEGR11:28 n<>0 implies integral((AffineMap(1,0))(#)(sin*AffineMap(n,0)),A) = ((1 /(n^2))(#)(sin*AffineMap(n,0))- (AffineMap(1/n,0))(#)(cos*AffineMap(n,0))). (upper_bound A) -((1/(n^2))(#)(sin*AffineMap(n,0))- (AffineMap(1/n,0))(#)(cos*AffineMap(n,0) )).(lower_bound A); :: f.x = x*cos.(n*x) theorem :: INTEGR11:29 n<>0 implies integral((AffineMap(1,0))(#)(cos*AffineMap(n,0)),A) = ((1 /(n^2))(#)(cos*AffineMap(n,0))+ (AffineMap(1/n,0))(#)(sin*AffineMap(n,0))). (upper_bound A) -((1/(n^2))(#)(cos*AffineMap(n,0))+ (AffineMap(1/n,0))(#)(sin*AffineMap(n,0) )).(lower_bound A); theorem :: INTEGR11:30 integral((AffineMap(1,0))(#)sinh,A) = ((AffineMap(1,0))(#)cosh-sinh).( upper_bound A) -((AffineMap(1,0))(#)cosh-sinh).(lower_bound A); theorem :: INTEGR11:31 integral((AffineMap(1,0))(#)cosh,A) = ((AffineMap(1,0))(#)sinh-cosh).( upper_bound A) -((AffineMap(1,0))(#)sinh-cosh).(lower_bound A); :: f.x = (a*x+b)^n theorem :: INTEGR11:32 a*(n+1) <> 0 implies integral( #Z n*AffineMap(a,b),A) = ((1/(a*(n+1))) (#)( #Z (n+1)*AffineMap(a,b))).(upper_bound A) - ((1/(a*(n+1)))(#)( #Z (n+1)*AffineMap(a ,b))).(lower_bound A); begin :: Addenda reserve f, f1, f2, f3 for PartFunc of REAL, REAL; :: f.x = (1/2)*x^2 theorem :: INTEGR11:33 Z c= dom ((1/2)(#)f) & f=#Z 2 implies (1/2)(#)f is_differentiable_on Z & for x st x in Z holds (((1/2)(#)f)`|Z).x = x; :: f.x = x theorem :: INTEGR11:34 A c= Z & f=#Z 2 & Z = dom ((1/2)(#)f) implies integral(id Z,A) = ((1/2 )(#)f).(upper_bound A)-((1/2)(#)f).(lower_bound A); :: f.x = -1/x^2 :: INTEGRA9 theorem :: INTEGR11:35 not 0 in Z & A c= Z & (for x st x in Z holds x<>0 & f.x = -1/x^2) & dom f = Z & f|A is continuous implies integral(f,A) = ((id Z)^).(upper_bound A)-((id Z) ^).(lower_bound A); :: f.x = 2*x/(1+x^2)^2 theorem :: INTEGR11:36 A c= Z & f1=#Z 2 & (for x st x in Z holds f2.x=1 & x<>0 & f.x=2*x/(1+x ^2)^2) & dom (f1/(f2+f1))=Z & Z = dom f & f|A is continuous implies integral(f, A) = (f1/(f2+f1)).(upper_bound A)-(f1/(f2+f1)).(lower_bound A); theorem :: INTEGR11:37 (Z c= dom (tan+sec) & for x st x in Z holds (1+sin.x)<>0 & (1- sin.x)<>0) implies tan+sec is_differentiable_on Z & for x st x in Z holds ((tan +sec)`|Z).x = 1/(1-sin.x); :: f.x = 1/(1-sin.x) theorem :: INTEGR11:38 A c= Z & (for x st x in Z holds (1+sin.x)<>0 & (1-sin.x)<>0 & f.x = 1/ (1-sin.x)) & dom (tan+sec)=Z & Z = dom f & f|A is continuous implies integral(f ,A) = (tan+sec).(upper_bound A)-(tan+sec).(lower_bound A); theorem :: INTEGR11:39 (Z c= dom (tan-sec) & for x st x in Z holds (1+sin.x)<>0 & (1- sin.x)<>0) implies tan-sec is_differentiable_on Z & for x st x in Z holds ((tan -sec)`|Z).x = 1/(1+sin.x); :: f.x = 1/(1+sin.x) theorem :: INTEGR11:40 A c= Z & (for x st x in Z holds (1+sin.x)<>0 & (1-sin.x)<>0 & f.x = 1/ (1+sin.x)) & dom (tan-sec)=Z & Z = dom f & f|A is continuous implies integral(f ,A) = (tan-sec).(upper_bound A)-(tan-sec).(lower_bound A); theorem :: INTEGR11:41 (Z c= dom (-cot+cosec) & for x st x in Z holds (1+cos.x)<>0 & (1 -cos.x)<>0) implies -cot+cosec is_differentiable_on Z & for x st x in Z holds ( (-cot+cosec)`|Z).x = 1/(1+cos.x); :: f.x = 1/(1+cos.x) theorem :: INTEGR11:42 A c= Z & (for x st x in Z holds (1+cos.x)<>0 & (1-cos.x)<>0 & f.x = 1/ (1+cos.x)) & dom (-cot+cosec)=Z & Z = dom f & f|A is continuous implies integral(f,A) = (-cot+cosec).(upper_bound A)-(-cot+cosec).(lower_bound A); theorem :: INTEGR11:43 (Z c= dom (-cot-cosec) & for x st x in Z holds (1+cos.x)<>0 & (1 -cos.x)<>0) implies -cot-cosec is_differentiable_on Z & for x st x in Z holds ( (-cot-cosec)`|Z).x = 1/(1-cos.x); :: f.x = 1/(1-cos.x) theorem :: INTEGR11:44 A c= Z & (for x st x in Z holds (1+cos.x)<>0 & (1-cos.x)<>0 & f.x = 1/ (1-cos.x)) & dom (-cot-cosec)=Z & Z = dom f & f|A is continuous implies integral(f,A) = (-cot-cosec).(upper_bound A)-(-cot-cosec).(lower_bound A); :: f.x = 1/(1+x^2) theorem :: INTEGR11:45 A c= Z & Z c= ]. -1,1 .[ & (for x st x in Z holds f.x=1/(1+x^2)) & Z = dom f & f|A is continuous implies integral(f,A) = arctan.(upper_bound A) - arctan.(lower_bound A); :: f.x = r/(1+x^2) theorem :: INTEGR11:46 A c= Z & Z c= ]. -1,1 .[ & (for x st x in Z holds f.x=r/(1+x^2)) & Z = dom f & f|A is continuous implies integral(f,A) = (r(#)arctan).(upper_bound A) - (r(#) arctan).(lower_bound A); :: f.x = -1/(1+x^2) theorem :: INTEGR11:47 A c= Z & Z c= ]. -1,1 .[ & (for x st x in Z holds f.x=-1/(1+x^2)) & Z = dom f & f|A is continuous implies integral(f,A) = arccot.(upper_bound A) - arccot.( lower_bound A); :: f.x = -r/(1+x^2) theorem :: INTEGR11:48 A c= Z & Z c= ]. -1,1 .[ & (for x st x in Z holds f.x=-r/(1+x^2)) & Z = dom f & f|A is continuous implies integral(f,A) = (r(#)arccot).(upper_bound A) - (r (#)arccot).(lower_bound A); :: f.x = x+cot.x-cosec.x theorem :: INTEGR11:49 (Z c= dom ((id Z)+cot-cosec) & for x st x in Z holds (1+cos.x)<> 0 & (1-cos.x)<>0) implies (id Z)+cot-cosec is_differentiable_on Z & for x st x in Z holds ((id Z+cot-cosec)`|Z).x = cos.x/(1+cos.x); :: f.x = cos.x/(1+cos.x) theorem :: INTEGR11:50 A c= Z & (for x st x in Z holds (1+cos.x)<>0 & (1-cos.x)<>0 & f.x = cos.x/(1+cos.x)) & dom (id Z+cot-cosec)=Z & Z = dom f & f|A is continuous implies integral(f,A) = (id Z+cot-cosec).(upper_bound A)-(id Z+cot-cosec).(lower_bound A); :: f.x = x+cot.x+cosec.x theorem :: INTEGR11:51 (Z c= dom ((id Z)+cot+cosec) & for x st x in Z holds (1+cos.x)<> 0 & (1-cos.x)<>0) implies (id Z)+cot+cosec is_differentiable_on Z & for x st x in Z holds ((id Z+cot+cosec)`|Z).x = cos.x/(cos.x-1); :: f.x = cos.x/(cos.x-1) theorem :: INTEGR11:52 A c= Z & (for x st x in Z holds (1+cos.x)<>0 & (1-cos.x)<>0 & f.x = cos.x/(cos.x-1)) & dom (id Z+cot+cosec)=Z & Z = dom f & f|A is continuous implies integral(f,A) = (id Z+cot+cosec).(upper_bound A)-(id Z+cot+cosec).(lower_bound A); :: f.x = x-tan.x+sec.x theorem :: INTEGR11:53 (Z c= dom (id Z-tan+sec) & for x st x in Z holds (1+sin.x)<>0 & (1-sin.x)<>0) implies (id Z)-tan+sec is_differentiable_on Z & for x st x in Z holds ((id Z-tan+sec)`|Z).x = sin.x/(sin.x+1); :: f.x = sin.x/(1+sin.x) theorem :: INTEGR11:54 A c= Z & (for x st x in Z holds (1+sin.x)<>0 & (1-sin.x)<>0 & f.x = sin.x/(1+sin.x)) & Z c= dom (id Z-tan+sec) & Z = dom f & f|A is continuous implies integral(f,A) = (id Z-tan+sec).(upper_bound A)-(id Z-tan+sec).(lower_bound A); :: f.x = x-tan.x-sec.x theorem :: INTEGR11:55 (Z c= dom (id Z-tan-sec) & for x st x in Z holds (1+sin.x)<>0 & (1-sin.x)<>0) implies id Z-tan-sec is_differentiable_on Z & for x st x in Z holds ((id Z-tan-sec)`|Z).x = sin.x/(sin.x-1); :: f.x = sin.x/(sin.x-1) theorem :: INTEGR11:56 A c= Z & (for x st x in Z holds (1+sin.x)<>0 & (1-sin.x)<>0 & f.x = sin.x/(sin.x-1)) & Z c= dom (id Z-tan-sec) & Z = dom f & f|A is continuous implies integral(f,A) = (id Z-tan-sec).(upper_bound A)-(id Z-tan-sec).(lower_bound A); :: f.x = tan.x-x theorem :: INTEGR11:57 Z c= dom (tan-id Z) implies tan-id Z is_differentiable_on Z & for x st x in Z holds ((tan-id Z)`|Z).x=(tan.x)^2; :: f.x = (tan.x)^2 theorem :: INTEGR11:58 A c= Z & (for x st x in Z holds cos.x >0 & f.x = (tan.x)^2) & Z c= dom (tan-id Z) & Z = dom f & f|A is continuous implies integral(f,A) = (tan-id Z).( upper_bound A)-(tan-id Z).(lower_bound A); :: f.x = -cot.x-x theorem :: INTEGR11:59 Z c= dom (-cot-id Z) implies -cot-id Z is_differentiable_on Z & for x st x in Z holds ((-cot-id Z)`|Z).x = (cot.x)^2; :: f.x = (cot.x)^2 theorem :: INTEGR11:60 A c= Z & (for x st x in Z holds sin.x >0 & f.x = (cot.x)^2) & Z c= dom (-cot-id Z) & Z = dom f & f|A is continuous implies integral(f,A) = (-cot-id Z) .(upper_bound A)-(-cot-id Z).(lower_bound A); :: f.x = 1/(cos.x)^2 theorem :: INTEGR11:61 A c= Z & (for x st x in Z holds f.x = 1/(cos.x)^2 & cos.x <> 0) & dom tan=Z & Z = dom f & f|A is continuous implies integral(f,A) = tan.(upper_bound A)-tan.( lower_bound A); :: f.x = -1/(sin.x)^2 theorem :: INTEGR11:62 A c= Z & (for x st x in Z holds f.x = -1/(sin.x)^2 & sin.x <> 0) & dom cot=Z & Z = dom f & f|A is continuous implies integral(f,A) = cot.(upper_bound A)-cot.( lower_bound A); :: f.x = (sin.x-(cos.x)^2)/(cos.x)^2 theorem :: INTEGR11:63 A c= Z & (for x st x in Z holds f.x = (sin.x-(cos.x)^2)/(cos.x)^2) & Z c= dom (sec-id Z) & Z = dom f & f|A is continuous implies integral(f,A) = (sec- id Z).(upper_bound A)-(sec-id Z).(lower_bound A); :: f.x = (cos.x-(sin.x)^2)/(sin.x)^2 theorem :: INTEGR11:64 A c= Z & (for x st x in Z holds f.x = (cos.x-(sin.x)^2)/(sin.x)^2) & Z c= dom (-cosec-id Z) & Z = dom f & f|A is continuous implies integral(f,A) =(- cosec-id Z).(upper_bound A)-(-cosec-id Z).(lower_bound A); :: f.x = cot(x) theorem :: INTEGR11:65 A c= Z & (for x st x in Z holds sin.x >0) & Z c= dom (ln*sin) & Z = dom cot & cot|A is continuous implies integral(cot,A) = (ln*sin).(upper_bound A)-(ln* sin).(lower_bound A); :: f.x = arcsin.x / sqrt(1-x^2) theorem :: INTEGR11:66 A c= Z & Z c= ]. -1,1 .[ & (for x st x in Z holds f.x=arcsin.x/sqrt(1- x^2)) & Z c= dom ((1/2)(#)(( #Z 2)*(arcsin))) & Z = dom f & f|A is continuous implies integral(f,A) = ((1/2)(#)(( #Z 2)*(arcsin))).(upper_bound A) -((1/2)(#)(( #Z 2) *(arcsin))).(lower_bound A); :: f.x = -arccos.x / sqrt(1-x^2) theorem :: INTEGR11:67 A c= Z & Z c= ]. -1,1 .[ & (for x st x in Z holds f.x=-arccos.x / sqrt (1-x^2)) & Z c= dom ((1/2)(#)(( #Z 2)*(arccos))) & Z = dom f & f|A is continuous implies integral(f,A) = ((1/2)(#)(( #Z 2)*(arccos))).(upper_bound A) -((1/2) (#)(( #Z 2)*(arccos))).(lower_bound A); :: f.x = arcsin.x theorem :: INTEGR11:68 A c= Z & Z c= ]. -1,1 .[ & f=f1-f2 & f2=#Z 2 & (for x st x in Z holds f1.x=1 & f.x >0 & x<>0) & dom arcsin=Z & Z c= dom ((id Z)(#)(arcsin)+( #R (1/2) )*f) implies integral(arcsin,A) = ((id Z)(#)(arcsin)+( #R (1/2))*f).(upper_bound A) -(( id Z)(#)(arcsin) + ( #R (1/2))*f).(lower_bound A); :: f.x = arcsin.(x/a) theorem :: INTEGR11:69 A c= Z & f=f1-f2 & f2=#Z 2 & (for x st x in Z holds f1.x=a^2 & f.x >0 & f3.x=x/a & f3.x > -1 & f3.x < 1 & x<>0 & a>0) & dom ((arcsin)*f3)=Z & Z c= dom ((id Z)(#)((arcsin)*f3)+( #R (1/2))*f) & ((arcsin)*f3)|A is continuous implies integral((arcsin)*f3,A) = ((id Z)(#)((arcsin)*f3)+( #R (1/2))*f).(upper_bound A ) -((id Z)(#)((arcsin)*f3)+( #R (1/2))*f).(lower_bound A); :: f.x = arccos.x theorem :: INTEGR11:70 A c= Z & Z c= ]. -1,1 .[ & f=f1-f2 & f2=#Z 2 & (for x st x in Z holds f1.x=1 & f.x >0 & x<>0) & dom arccos=Z & Z c= dom ((id Z)(#)(arccos)-( #R (1/2) )*f) implies integral(arccos,A) = ((id Z)(#)(arccos)-( #R (1/2))*f).(upper_bound A) -(( id Z)(#)(arccos)-( #R (1/2))*f).(lower_bound A); :: f.x = arccos.(x/a) theorem :: INTEGR11:71 A c= Z & f=f1-f2 & f2=#Z 2 & (for x st x in Z holds f1.x=a^2 & f.x >0 & f3.x=x/a & f3.x > -1 & f3.x < 1 & x<>0 & a>0) & dom ((arccos)*f3)=Z & Z = dom ((id Z)(#)((arccos)*f3)-( #R (1/2))*f) & ((arccos)*f3)|A is continuous implies integral((arccos)*f3,A) = ((id Z)(#)((arccos)*f3)-( #R (1/2))*f).(upper_bound A) -((id Z)(#)((arccos)*f3)-( #R (1/2))*f).(lower_bound A); :: f.x = arctan.x theorem :: INTEGR11:72 A c= Z & Z c= ]. -1,1 .[ & f2=#Z 2 & (for x st x in Z holds f1.x=1 ) & Z = dom arctan & Z = dom ((id Z)(#)(arctan)-(1/2)(#)(ln*(f1+f2))) implies integral(arctan,A) = ((id Z)(#)(arctan)-(1/2)(#)(ln*(f1+f2))).(upper_bound A) -((id Z) (#)(arctan)-(1/2)(#)(ln*(f1+f2))).(lower_bound A); :: f.x = arccot.x theorem :: INTEGR11:73 A c= Z & Z c= ]. -1,1 .[ & f2=#Z 2 & (for x st x in Z holds f1.x=1) & dom arccot=Z & Z = dom ((id Z)(#)(arccot)+(1/2)(#)(ln*(f1+f2))) implies integral(arccot,A) = ((id Z)(#)(arccot)+(1/2)(#)(ln*(f1+f2))).(upper_bound A) -((id Z) (#)(arccot)+(1/2)(#)(ln*(f1+f2))).(lower_bound A);