:: Homotheties and Shears in Affine Planes :: by Henryk Oryszczyszyn and Krzysztof Pra\.zmowski :: :: Received September 21, 1990 :: Copyright (c) 1990-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies DIRAF, SUBSET_1, FUNCT_2, STRUCT_0, AFF_2, ANALOAF, INCSP_1, AFF_1, TRANSGEO, FUNCT_1, RELAT_1, TARSKI, HOMOTHET; notations TARSKI, RELSET_1, PARTFUN1, FUNCT_2, STRUCT_0, ANALOAF, DIRAF, AFF_1, AFF_2, TRANSGEO; constructors PARTFUN1, AFF_1, AFF_2, TRANSGEO, RELSET_1; registrations STRUCT_0; requirements SUBSET, BOOLE; begin reserve AFP for AffinPlane; reserve a,a9,b,b9,c,c9,d,d9,o,p,p9,q,q9,r,s,t,x,y,z for Element of AFP; reserve A,A9,C,D,P,B9,M,N,K for Subset of AFP; reserve f for Permutation of the carrier of AFP; theorem :: HOMOTHET:1 not LIN o,a,p & LIN o,a,b & LIN o,a,x & LIN o,a,y & LIN o,p,p9 & LIN o,p,q & LIN o,p,q9 & p<>q & o<>q & o<>x & a,p // b,p9 & a,q // b,q9 & x,p // y,p9 & AFP is Desarguesian implies x,q // y,q9; theorem :: HOMOTHET:2 (for o,a,b st o<>a & o<>b & LIN o,a,b ex f st f is dilatation & f .o=o & f.a=b) implies AFP is Desarguesian; theorem :: HOMOTHET:3 AFP is Desarguesian implies for o,a,b st o<>a & o<>b & LIN o,a,b ex f st f is dilatation & f.o=o & f.a=b; theorem :: HOMOTHET:4 AFP is Desarguesian iff for o,a,b st o<>a & o<>b & LIN o,a,b ex f st f is dilatation & f.o=o & f.a=b; definition let AFP,f,K; pred f is_Sc K means :: HOMOTHET:def 1 f is collineation & K is being_line & (for x st x in K holds f.x = x) & for x holds x,f.x // K; end; theorem :: HOMOTHET:5 f is_Sc K & f.p=p & not p in K implies f=id the carrier of AFP; theorem :: HOMOTHET:6 (for a,b,K st a,b // K & not a in K ex f st f is_Sc K & f.a=b) implies AFP is Moufangian; theorem :: HOMOTHET:7 K // M & p in K & q in K & p9 in K & q9 in K & AFP is Moufangian & a in M & b in M & x in M & y in M & a<>b & q<>p & p,a // p9,x & p,b // p9,y & q,a // q9,x implies q,b // q9,y; theorem :: HOMOTHET:8 a,b // K & not a in K & AFP is Moufangian implies ex f st f is_Sc K & f.a=b; theorem :: HOMOTHET:9 AFP is Moufangian iff for a,b,K st a,b // K & not a in K ex f st f is_Sc K & f.a=b;