:: H\"older's Inequality and {M}inkowski's Inequality :: by Yasumasa Suzuki :: :: Received September 25, 2004 :: Copyright (c) 2004-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, REAL_1, LIMFUNC1, XBOOLE_0, XXREAL_0, CARD_1, ARYTM_3, POWER, RELAT_1, PREPOWER, ARYTM_1, PARTFUN1, FUNCT_1, FDIFF_1, VALUED_1, SUBSET_1, TARSKI, XXREAL_1, ORDINAL2, SEQ_1, SERIES_1, VALUED_0, COMPLEX1, SEQ_2, XXREAL_2, NAT_1, FUNCT_2, FCONT_1, CARD_3, FUNCT_7; notations TARSKI, XBOOLE_0, SUBSET_1, RELAT_1, PARTFUN1, FUNCT_1, FUNCT_2, LIMFUNC1, RCOMP_1, FCONT_1, XXREAL_0, XCMPLX_0, XREAL_0, COMPLEX1, ORDINAL1, NUMBERS, REAL_1, NAT_1, VALUED_0, VALUED_1, SEQ_1, COMSEQ_2, SEQ_2, SERIES_1, FDIFF_1, PREPOWER, POWER, TAYLOR_1, RECDEF_1; constructors PARTFUN1, REAL_1, NAT_1, INT_2, SEQ_2, SEQM_3, RCOMP_1, RFUNCT_2, FCONT_1, LIMFUNC1, FDIFF_1, PREPOWER, SERIES_1, TAYLOR_1, VALUED_1, RECDEF_1, RELSET_1, COMSEQ_2, NUMBERS; registrations XBOOLE_0, ORDINAL1, RELSET_1, NUMBERS, XXREAL_0, XREAL_0, MEMBERED, RCOMP_1, VALUED_0, VALUED_1, FUNCT_2, SEQ_2, SEQ_4, FCONT_3, NAT_1; requirements SUBSET, REAL, BOOLE, NUMERALS, ARITHM; begin :: H\"older 's inequality reserve a, b, p, q for Real; registration let x be Real; cluster right_closed_halfline(x) -> non empty; end; theorem :: HOLDER_1:1 for p, q be Real st 0 < p & 0 < q for a be Real st 0 <= a holds (a to_power p) * (a to_power q) = a to_power (p+q); theorem :: HOLDER_1:2 for p, q be Real st 0 < p & 0 < q for a be Real st 0 <= a holds (a to_power p) to_power q = a to_power (p*q); theorem :: HOLDER_1:3 for p be Real st 0 <= p for a,b be Real st 0 <= a & a <= b holds a to_power p <= b to_power p; theorem :: HOLDER_1:4 1 < p & 1/p + 1/q = 1 & 0 < a & 0 < b implies a * b <= a #R p / p + b #R q / q & (a * b = a #R p / p + b #R q / q iff a #R p= b #R q); theorem :: HOLDER_1:5 1 < p & 1/p + 1/q = 1 & 0 <= a & 0 <= b implies a * b <= a to_power p / p + b to_power q / q & (a * b = a to_power p / p + b to_power q / q iff a to_power p = b to_power q); begin :: Minkowski's inequality theorem :: HOLDER_1:6 for p, q be Real st 1 < p & 1/p + 1/q = 1 for a,b,ap,bq,ab be Real_Sequence st ( for n be Nat holds ap.n=|.a.n.| to_power p & bq. n=|.b.n.| to_power q & ab.n=|.a.n* b.n.|) holds for n be Nat holds Partial_Sums(ab).n <= ( (Partial_Sums(ap).n) to_power (1/p) ) * ( (Partial_Sums (bq).n) to_power (1/q) ); theorem :: HOLDER_1:7 for p be Real st 1 < p for a,b,ap,bp,ab be Real_Sequence st ( for n be Nat holds ap.n=|.a.n.| to_power p & bp.n=|.b.n.| to_power p & ab.n=|.a.n+b.n.| to_power p ) holds for n be Nat holds ( Partial_Sums(ab).n) to_power (1/p) <= ( Partial_Sums(ap).n) to_power (1/p) + ( Partial_Sums(bp).n) to_power (1/p); theorem :: HOLDER_1:8 for a,b be Real_Sequence st (for n be Nat holds a.n <= b.n ) & b is convergent & a is non-decreasing holds a is convergent & lim a <= lim b; theorem :: HOLDER_1:9 for a,b,c be Real_Sequence st (for n be Nat holds a.n <= b.n+c.n ) & b is convergent & c is convergent & a is non-decreasing holds a is convergent & lim a <= lim b + lim c; theorem :: HOLDER_1:10 for p be Real st 0 < p for a,ap be Real_Sequence st a is convergent & (for n be Nat holds 0 <=a.n ) & (for n be Nat holds ap.n=(a.n) to_power p) holds ap is convergent & lim ap = (lim a) to_power p; theorem :: HOLDER_1:11 for p be Real st 0 < p for a,ap be Real_Sequence st a is summable & ( for n be Nat holds 0 <=a.n ) & (for n be Nat holds ap.n=( Partial_Sums(a).n) to_power p) holds ap is convergent & lim ap = Sum(a) to_power p & ap is non-decreasing & for n be Nat holds ap.n <= Sum(a ) to_power p; theorem :: HOLDER_1:12 for p, q be Real st 1 < p & 1/p + 1/q = 1 for a,b,ap,bq,ab be Real_Sequence st ( for n be Nat holds ap.n=|.a.n.| to_power p & bq. n=|.b.n.| to_power q & ab.n=|.a.n* b.n.| ) & ap is summable & bq is summable holds ab is summable & Sum ab <= ( Sum(ap) to_power (1/p) ) * ( Sum(bq) to_power (1/q) ); theorem :: HOLDER_1:13 for p be Real st 1 < p for a,b,ap,bp,ab be Real_Sequence st ( for n be Nat holds ap.n=|.a.n.| to_power p & bp.n=|.b.n.| to_power p & ab.n =|.a.n+b.n.| to_power p ) & ap is summable & bp is summable holds ab is summable & Sum(ab) to_power (1/p) <= Sum(ap) to_power (1/p) + Sum(bp) to_power (1/p);