:: Equivalences of Inconsistency and {H}enkin Models :: by Patrick Braselmann and Peter Koepke :: :: Received September 25, 2004 :: Copyright (c) 2004-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, SUBSET_1, CQC_LANG, QC_LANG1, FINSEQ_1, XBOOLE_0, FINSET_1, FUNCT_1, ORDINAL1, RELAT_1, ARYTM_3, TARSKI, WELLORD2, WELLORD1, CARD_1, NAT_1, CQC_THE1, ORDINAL4, XBOOLEAN, CALCUL_1, CALCUL_2, ARYTM_1, INT_1, XXREAL_0, FUNCT_2, ZFMISC_1, VALUAT_1, ZF_MODEL, MARGREL1, REALSET1, MCART_1, HENMODEL; notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, SETFAM_1, CALCUL_1, RELAT_1, FUNCT_1, ORDINAL1, XCMPLX_0, XXREAL_0, INT_1, NAT_1, FINSEQ_1, QC_LANG1, CQC_LANG, CQC_THE1, VALUAT_1, FINSET_1, RELSET_1, FUNCT_2, CARD_1, MARGREL1, CQC_SIM1, DOMAIN_1, XTUPLE_0, MCART_1, NUMBERS, FINSEQ_3, CALCUL_2, WELLORD1, WELLORD2; constructors SETFAM_1, WELLORD1, WELLORD2, DOMAIN_1, XXREAL_0, NAT_1, INT_1, FINSEQ_3, CQC_SIM1, SUBSTUT2, CALCUL_1, CALCUL_2, RELSET_1, XTUPLE_0, NUMBERS; registrations SUBSET_1, FUNCT_1, ORDINAL1, RELSET_1, FINSET_1, XXREAL_0, XREAL_0, INT_1, FINSEQ_1, QC_LANG1, CQC_LANG, FINSEQ_2, CARD_1, XTUPLE_0, FUNCT_2; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; begin :: Preliminaries and Equivalences of Inconsistency reserve Al for QC-alphabet; reserve a,a1,a2,b,c,d for set, X,Y,Z for Subset of CQC-WFF(Al), i,k,m,n for Nat, p,q for Element of CQC-WFF(Al), P for QC-pred_symbol of k,Al, ll for CQC-variable_list of k,Al, f,f1,f2,g for FinSequence of CQC-WFF(Al); reserve A for non empty finite Subset of NAT; theorem :: HENMODEL:1 for f being Function of n,A st ((ex m st succ m = n) & rng f = A & for n,m st m in dom f & n in dom f & n < m holds f.n in f.m) holds f.(union n ) = union rng f; theorem :: HENMODEL:2 union A in A & for a st a in A holds (a in union A or a = union A ); reserve C for non empty set; theorem :: HENMODEL:3 for f being sequence of C, X being finite set st (for n,m st m in dom f & n in dom f & n < m holds f.n c= f.m) & X c= union rng f holds ex k st X c= f.k; definition let Al; let X,p; pred X |- p means :: HENMODEL:def 1 ex f st rng f c= X & |- f^<*p*>; end; definition let Al; let X; attr X is Consistent means :: HENMODEL:def 2 for p holds not (X |- p & X |- 'not' p); end; notation let Al; let X; antonym X is Inconsistent for X is Consistent; end; definition let Al; let f be FinSequence of CQC-WFF(Al); attr f is Consistent means :: HENMODEL:def 3 for p holds not (|- f^<*p*> & |- f^<*'not' p*>); end; notation let Al; let f be FinSequence of CQC-WFF(Al); antonym f is Inconsistent for f is Consistent; end; theorem :: HENMODEL:4 X is Consistent & rng g c= X implies g is Consistent; theorem :: HENMODEL:5 |- f^<*p*> implies |- f^g^<*p*>; :: Ebb et al, Chapter IV, Lemma 7.2 theorem :: HENMODEL:6 X is Inconsistent iff for p holds X |- p; :: One direction of Ebb et al, Chapter IV, Lemma 7.4 theorem :: HENMODEL:7 X is Inconsistent implies ex Y st Y c= X & Y is finite & Y is Inconsistent; theorem :: HENMODEL:8 X \/ {p} |- q implies ex g st rng g c= X & |- g^<*p*>^<*q*>; :: Corresponds to Ebb et al, Chapter IV, Lemma 7.6 (a) theorem :: HENMODEL:9 X |- p iff X \/ {'not' p} is Inconsistent; :: Similar to Ebb et al, Chapter IV, Lemma 7.6 (a) theorem :: HENMODEL:10 X |- 'not' p iff X \/ {p} is Inconsistent; begin :: Unions of Consistent Sets :: Ebb et al, Chapter IV, Lemma 7.7 theorem :: HENMODEL:11 for f being sequence of bool CQC-WFF(Al) st (for n,m st m in dom f & n in dom f & n < m holds f.n is Consistent & f.n c= f.m) holds (union rng f) is Consistent; begin :: Construction of a Henkin Model reserve A for non empty set, v for Element of Valuations_in(Al,A), J for interpretation of Al,A; theorem :: HENMODEL:12 X is Inconsistent implies for J,v holds not J,v |= X; theorem :: HENMODEL:13 {VERUM(Al)} is Consistent; registration let Al; cluster Consistent for Subset of CQC-WFF(Al); end; reserve CX for Consistent Subset of CQC-WFF(Al), P9 for Element of QC-pred_symbols(Al); definition let Al; func HCar(Al) -> non empty set equals :: HENMODEL:def 4 bound_QC-variables(Al); end; definition let Al; let P be (Element of QC-pred_symbols(Al)), ll be CQC-variable_list of ( the_arity_of P), Al; redefine func P!ll -> Element of CQC-WFF(Al); end; :: The Henkin Model (Ebb et al, Chapter V, §1) definition let Al; let CX; mode Henkin_interpretation of CX -> interpretation of Al,HCar(Al) means :: HENMODEL:def 5 for P being (Element of QC-pred_symbols(Al)), r being Element of relations_on HCar(Al) st it.P = r holds for a holds a in r iff ex ll being CQC-variable_list of (the_arity_of P), Al st a = ll & CX |- P!ll; end; definition let Al; func valH(Al) -> Element of Valuations_in (Al,HCar(Al)) equals :: HENMODEL:def 6 id bound_QC-variables(Al); end; begin :: Some Properties of the Henkin Model reserve JH for Henkin_interpretation of CX; theorem :: HENMODEL:14 (valH(Al))*'ll = ll; theorem :: HENMODEL:15 |- f^<*VERUM(Al)*>; theorem :: HENMODEL:16 JH,valH(Al) |= VERUM(Al) iff CX |- VERUM(Al); theorem :: HENMODEL:17 JH,valH(Al) |= P!ll iff CX |- P!ll;