:: Heine--Borel's Covering Theorem :: by Agata Darmochwa{\l} and Yatsuka Nakamura :: :: Received November 21, 1991 :: Copyright (c) 1991-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, SUBSET_1, REAL_1, PRE_TOPC, METRIC_1, COMPLEX1, ARYTM_1, FUNCT_1, SEQ_1, ORDINAL2, RELAT_1, TARSKI, XXREAL_0, ARYTM_3, CARD_1, POWER, LIMFUNC1, NEWTON, TOPMETR, RCOMP_1, XXREAL_1, STRUCT_0, PCOMPS_1, SETFAM_1, FINSET_1, XBOOLE_0, VALUED_0, SEQ_2, NAT_1, ZFMISC_1, XXREAL_2, VALUED_1, FUNCT_7; notations TARSKI, XBOOLE_0, SUBSET_1, SETFAM_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, COMPLEX1, REAL_1, RELAT_1, FUNCT_1, FUNCT_2, NAT_1, METRIC_1, FINSET_1, BINOP_1, STRUCT_0, PRE_TOPC, COMPTS_1, PCOMPS_1, VALUED_0, VALUED_1, SEQ_1, SEQ_2, LIMFUNC1, POWER, RCOMP_1, NEWTON, TOPMETR, XXREAL_0, RECDEF_1; constructors SETFAM_1, REAL_1, NAT_1, SEQ_2, SEQM_3, SEQ_4, RCOMP_1, LIMFUNC1, NEWTON, POWER, COMPTS_1, TOPMETR, VALUED_1, RECDEF_1, PCOMPS_1, COMSEQ_2, BINOP_1, NUMBERS; registrations XBOOLE_0, SUBSET_1, ORDINAL1, RELSET_1, FINSET_1, NUMBERS, XREAL_0, MEMBERED, PRE_TOPC, METRIC_1, VALUED_1, FUNCT_2, VALUED_0, NAT_1, ZFMISC_1, NEWTON, POWER; requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM; begin reserve a,b,x,y for Real, i,k,n,m for Nat; reserve p,w for Real; theorem :: HEINE:1 for A being SubSpace of RealSpace, p,q being Point of A st x = p & y = q holds dist(p,q) = |.x-y.|; reserve seq for Real_Sequence; theorem :: HEINE:2 seq is increasing & rng seq c= NAT implies n <= seq.n; definition let seq,k; func k to_power seq -> Real_Sequence means :: HEINE:def 1 for n holds it.n = k to_power (seq.n); end; theorem :: HEINE:3 seq is divergent_to+infty implies 2 to_power seq is divergent_to+infty; ::$N Heine-Borel Theorem for intervals theorem :: HEINE:4 a <= b implies Closed-Interval-TSpace(a,b) is compact;