:: Equivalent Expressions of Direct Sum Decomposition of Groups :: by Kazuhisa Nakasho , Hiroyuki Okazaki , Hiroshi Yamazaki and Yasunari Shidama :: :: Received February 26, 2015 :: Copyright (c) 2015-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies FINSEQ_1, FUNCT_1, RELAT_1, RLVECT_2, CARD_3, TARSKI, BINOP_1, GROUP_1, XXREAL_0, GROUP_2, CARD_1, NUMBERS, FUNCT_4, GROUP_6, FUNCOP_1, GROUP_12, PARTFUN1, FUNCT_2, SUBSET_1, XBOOLE_0, STRUCT_0, NAT_1, ORDINAL4, PRE_TOPC, ARYTM_1, ARYTM_3, FINSET_1, NEWTON, GROUP_4, PRE_POLY, UPROOTS, GROUP_19, SEMI_AF1, QC_LANG1, VECTMETR, GROUP_20; notations TARSKI, XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_1, ORDINAL1, RELSET_1, PARTFUN1, FUNCT_2, DOMAIN_1, FUNCT_3, FUNCOP_1, FUNCT_4, FINSET_1, CARD_1, CARD_3, NUMBERS, XCMPLX_0, XXREAL_0, FINSEQ_1, FUNCT_7, STRUCT_0, ALGSTR_0, GROUP_1, GROUP_2, GROUP_3, GROUP_4, GROUP_6, PRALG_1, GRSOLV_1, GROUP_7, GROUP_12, GROUP_19; constructors REALSET1, FUNCT_4, MONOID_0, PRALG_1, GROUP_4, FUNCT_7, RELSET_1, INT_7, FUNCT_3, GROUP_17, GRSOLV_1, GROUP_19; registrations XBOOLE_0, XREAL_0, STRUCT_0, GROUP_2, MONOID_0, ORDINAL1, NAT_1, FUNCT_2, FUNCOP_1, CARD_1, GROUP_7, GROUP_3, RELSET_1, SUBSET_1, INT_1, FINSET_1, RELAT_1, FUNCT_1, NUMBERS, GROUP_12, GROUP_6, GROUP_19; requirements NUMERALS, REAL, BOOLE, SUBSET, ARITHM; begin :: 1. Internal Direct Sum Decomposition into Normal Subgroups definition let I be set, G be Group; mode Subgroup-Family of I,G -> Group-Family of I means :: GROUP_20:def 1 for i being object st i in I holds it.i is Subgroup of G; end; definition let I be set, G be Group, F be Subgroup-Family of I,G; attr F is component-commutative means :: GROUP_20:def 2 for i,j be object, gi,gj be Element of G st i in I & j in I & i <> j ex Fi,Fj being Subgroup of G st Fi = F.i & Fj = F.j & (gi in Fi & gj in Fj implies gi * gj = gj * gi); end; definition let I be non empty set, G be Group, F be Subgroup-Family of I,G; redefine attr F is component-commutative means :: GROUP_20:def 3 for i,j be Element of I, gi,gj be Element of G st i <> j & gi in F.i & gj in F.j holds gi * gj = gj * gi; end; registration let I be non empty set, G be Group; cluster component-commutative for Subgroup-Family of I,G; end; theorem :: GROUP_20:1 for G be Group, H be normal Subgroup of G, x,y be Element of G st y in H holds x * y * x" in H & x * (y * x") in H; theorem :: GROUP_20:2 for I be non empty set, G be Group, F be Group-Family of I, x be Function of I,G st x in product F holds x is Function of I,Union(Carrier F); theorem :: GROUP_20:3 for I be non empty set, G be Group, H be Subgroup of G, x be Function of I,G, y be Function of I,H st x = y holds support x = support y; theorem :: GROUP_20:4 for I be non empty set, G be Group, H be Subgroup of G, y be finite-support Function of I,H holds y is finite-support Function of I,G; theorem :: GROUP_20:5 for I be non empty set, G be Group, H be Subgroup of G, x be finite-support Function of I,G st rng x c= [#]H holds x is finite-support Function of I,H; theorem :: GROUP_20:6 for I be non empty set, G be Group, H be Subgroup of G, x be finite-support Function of I,G, y be finite-support Function of I,H st x = y holds Product x = Product y; theorem :: GROUP_20:7 for f be Function, i,x be set holds f = f +* (i,x) +* (i,f.i); theorem :: GROUP_20:8 for I be non empty set, G be Group, F be component-commutative Subgroup-Family of I,G, x,y be finite-support Function of I,G, i be Element of I st y = x +* (i,1_F.i) & x in product F holds Product x = Product(y) * x.i = x.i * Product(y); theorem :: GROUP_20:9 for I be non empty set, G be Group, F be component-commutative Subgroup-Family of I,G, UF be Subset of G holds for i be Element of I, x,y be finite-support Function of I,gr UF st y = x +* (i,1_F.i) & x in product F holds Product x = Product(y) * x.i = x.i * Product(y); theorem :: GROUP_20:10 for I be non empty set, G be Group, F be component-commutative Subgroup-Family of I,G, UF be Subset of G holds for y be finite-support Function of I,gr UF, i be Element of I, g be Element of gr UF st y in product F & y.i = 1_F.i & g in F.i holds Product(y) * g = g * Product(y); theorem :: GROUP_20:11 for I be non empty set, G be Group, F be component-commutative Subgroup-Family of I,G, UF be Subset of G st UF = Union Carrier F holds for g be Element of G, H be FinSequence of G, K be FinSequence of INT st len H = len K & rng H c= UF & Product(H|^K) = g holds ex f be finite-support Function of I,G st f in product F & g = Product f; theorem :: GROUP_20:12 for I be non empty set, G be Group, F be Subgroup-Family of I,G, h,h0 be finite-support Function of I,G, i be Element of I, UFi be Subset of G st UFi = Union((Carrier F) | (I \ {i})) & h0 = h +* (i, 1_F.i) & h in product F holds Product h0 in gr UFi; theorem :: GROUP_20:13 for I be non empty set, G be Group, F be component-commutative Subgroup-Family of I,G, UF be Subset of G st UF = Union Carrier F holds for g be Element of G st g in gr UF holds ex f be finite-support Function of I,gr UF st f in sum F & g = Product f; theorem :: GROUP_20:14 for I be non empty set, G be Group, F be component-commutative Subgroup-Family of I,G, UF be Subset of G st UF = Union Carrier F holds for i be Element of I holds F.i is normal Subgroup of gr UF; theorem :: GROUP_20:15 for I be non empty set, G be Group, F be component-commutative Subgroup-Family of I,G st for i be Element of I holds ex UFi be Subset of G st UFi = Union((Carrier F) | (I \ {i})) & [#]gr(UFi) /\ [#](F.i) = {1_G} holds for x1,x2 be finite-support Function of I,G st x1 in sum F & x2 in sum F & Product x1 = Product x2 holds x1 = x2; theorem :: GROUP_20:16 for I be non empty set, G be strict Group, F be Group-Family of I holds F is internal DirectSumComponents of G,I iff (for i be Element of I holds F.i is normal Subgroup of G) & (ex UF be Subset of G st UF = Union Carrier F & gr(UF) = G) & for i be Element of I holds ex UFi be Subset of G st UFi = Union((Carrier F) | (I \ {i})) & [#](gr(UFi)) /\ [#](F.i) = {1_G}; begin :: 2. Internal Direct Sum Decomposition for Commutative Group theorem :: GROUP_20:17 for I be non empty set, G be commutative Group, F be Group-Family of I holds F is internal DirectSumComponents of G,I iff (for i be Element of I holds F.i is Subgroup of G) &(for i,j be Element of I st i <> j holds [#] (F.i) /\ [#] (F.j) = {1_G}) &(for y be Element of G ex x be finite-support Function of I,G st x in sum F & y = Product(x)) &(for x1,x2 be finite-support Function of I,G st x1 in sum F & x2 in sum F & Product(x1) = Product(x2) holds x1 = x2); begin :: 3. Equivalence between Internal and External Direct Sum theorem :: GROUP_20:18 for I be non empty set, G be Group, F be Subgroup-Family of I,G, h be Homomorphism of sum F,G, a be finite-support Function of I,G st a in sum F & for i be Element of I, x be Element of F.i holds h.(1ProdHom(F,i).x) = x holds h.a = Product a; theorem :: GROUP_20:19 for I be non empty set, G be Group, M be DirectSumComponents of G,I holds ex f be Homomorphism of sum M,G, N be internal DirectSumComponents of G,I st f is bijective & for i be Element of I holds ex qi be Homomorphism of M.i,N.i st qi = f * 1ProdHom(M,i) & qi is bijective;