:: Left and Right Component of the Complement of a Special Closed Curve :: by Andrzej Trybulec :: :: Received October 29, 1995 :: Copyright (c) 1995-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, FUNCT_1, GOBOARD5, SUBSET_1, REAL_1, PRE_TOPC, EUCLID, GOBOARD1, CONNSP_1, XBOOLE_0, RELAT_1, STRUCT_0, TARSKI, RELAT_2, RLTOPSP1, CONVEX1, FINSEQ_1, FINSEQ_5, ARYTM_3, ARYTM_1, XXREAL_0, PARTFUN1, MCART_1, GOBOARD2, CARD_1, MATRIX_1, COMPLEX1, TREES_1, TOPS_1, TOPREAL1, GOBOARD9, NAT_1; notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, CARD_1, NUMBERS, XCMPLX_0, COMPLEX1, XREAL_0, REAL_1, NAT_1, NAT_D, FUNCT_1, PARTFUN1, FINSEQ_1, MATRIX_0, SEQ_4, STRUCT_0, PRE_TOPC, TOPS_1, CONNSP_1, RLVECT_1, RLTOPSP1, EUCLID, TOPREAL1, GOBOARD1, GOBOARD2, FINSEQ_5, GOBOARD5, XXREAL_0; constructors REAL_1, FINSEQ_5, TOPS_1, CONNSP_1, GOBOARD2, GOBOARD5, GOBOARD1, NAT_D, RELSET_1, CONVEX1, RVSUM_1, SEQ_4; registrations RELSET_1, NUMBERS, XXREAL_0, FINSEQ_1, FINSEQ_6, STRUCT_0, PRE_TOPC, EUCLID, GOBOARD2, GOBOARD5, ORDINAL1, RLTOPSP1, JORDAN1, XREAL_0, INT_1; requirements REAL, NUMERALS, BOOLE, SUBSET, ARITHM; begin reserve f for non constant standard special_circular_sequence, i,j,k,i1,i2,j1,j2 for Nat, r,s,r1,s1,r2,s2 for Real, p,q for Point of TOP-REAL 2, G for Go-board; theorem :: GOBOARD9:1 for GX being TopSpace, A1,A2,B being Subset of GX st A1 is_a_component_of B & A2 is_a_component_of B holds A1 = A2 or A1 misses A2; theorem :: GOBOARD9:2 for GX being TopSpace, A,B being Subset of GX, AA being Subset of GX|B st A = AA holds GX|A = GX|B|AA; theorem :: GOBOARD9:3 for GX being non empty TopSpace, A, B being non empty Subset of GX st A c= B & A is connected ex C being Subset of GX st C is_a_component_of B & A c= C; theorem :: GOBOARD9:4 for GX being non empty TopSpace, A,B,C,D being Subset of GX st B is connected & C is_a_component_of D & A c= C & A meets B & B c= D holds B c= C; registration cluster convex non empty for Subset of TOP-REAL 2; end; ::$CT theorem :: GOBOARD9:6 :: ouogolnic !!! for P,Q being convex Subset of TOP-REAL 2 holds P /\ Q is convex; theorem :: GOBOARD9:7 for f being FinSequence of TOP-REAL 2 holds Rev X_axis f = X_axis Rev f; theorem :: GOBOARD9:8 for f being FinSequence of TOP-REAL 2 holds Rev Y_axis f = Y_axis Rev f; registration cluster non constant for FinSequence; end; registration let f be non constant FinSequence; cluster Rev f -> non constant; end; definition let f be standard special_circular_sequence; redefine func Rev f -> standard special_circular_sequence; end; theorem :: GOBOARD9:9 i >= 1 & j >= 1 & i+j = len f implies left_cell(f,i) = right_cell(Rev f,j); theorem :: GOBOARD9:10 i >= 1 & j >= 1 & i+j = len f implies left_cell(Rev f,i) = right_cell(f,j); theorem :: GOBOARD9:11 1 <= k & k+1 <= len f implies ex i,j st i <= len GoB f & j <= width GoB f & cell(GoB f,i,j) = left_cell(f,k); theorem :: GOBOARD9:12 j <= width G implies Int h_strip(G,j) is convex; theorem :: GOBOARD9:13 i <= len G implies Int v_strip(G,i) is convex; theorem :: GOBOARD9:14 i <= len G & j <= width G implies Int cell(G,i,j) <> {}; theorem :: GOBOARD9:15 1 <= k & k+1 <= len f implies Int left_cell(f,k) <> {}; theorem :: GOBOARD9:16 1 <= k & k+1 <= len f implies Int right_cell(f,k) <> {}; theorem :: GOBOARD9:17 i <= len G & j <= width G implies Int cell(G,i,j) is convex; ::$CT theorem :: GOBOARD9:19 1 <= k & k+1 <= len f implies Int left_cell(f,k) is convex; theorem :: GOBOARD9:20 1 <= k & k+1 <= len f implies Int right_cell(f,k) is convex; definition let f; func LeftComp f -> Subset of TOP-REAL 2 means :: GOBOARD9:def 1 it is_a_component_of (L~f)` & Int left_cell(f,1) c= it; func RightComp f -> Subset of TOP-REAL 2 means :: GOBOARD9:def 2 it is_a_component_of (L~f)` & Int right_cell(f,1) c= it; end; theorem :: GOBOARD9:21 for k st 1 <= k & k+1 <= len f holds Int left_cell(f,k) c= LeftComp f; theorem :: GOBOARD9:22 GoB Rev f = GoB f; theorem :: GOBOARD9:23 RightComp f = LeftComp Rev f; theorem :: GOBOARD9:24 RightComp Rev f = LeftComp f; theorem :: GOBOARD9:25 for k st 1 <= k & k+1 <= len f holds Int right_cell(f,k) c= RightComp f;