:: Modelling Real World Using Stochastic Processes and Filtration :: by Peter Jaeger :: :: Received December 30, 2015 :: Copyright (c) 2015-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies FINANCE1, SERIES_1, SEQ_1, RANDOM_3, FINANCE2, NUMBERS, XBOOLE_0, PROB_1, SUBSET_1, REAL_1, TARSKI, RELAT_1, FUNCT_1, ARYTM_3, XXREAL_0, VALUED_1, ARYTM_1, NAT_1, CARD_1, ZFMISC_1, RPR_1, SETFAM_1, FINANCE3, EQREL_1, FUNCOP_1, KOLMOG01, FUNCT_7, MEMBERED, RANDOM_1; notations TARSKI, SUBSET_1, XBOOLE_0, ORDINAL1, SERIES_1, SEQ_1, SETFAM_1, ENUMSET1, RELAT_1, FINANCE1, RANDOM_3, NUMBERS, XREAL_0, XXREAL_0, XCMPLX_0, MEMBERED, FUNCT_1, VALUED_1, NAT_1, FUNCT_2, PROB_1, SEQ_4, FINANCE2, RELSET_1, FUNCOP_1, KOLMOG01, RANDOM_1; constructors SERIES_1, REAL_1, RELSET_1, SEQ_4, FINANCE2, ENUMSET1, RANDOM_2, KOLMOG01, RANDOM_1, RANDOM_3; registrations PROB_1, FINANCE1, SUBSET_1, NAT_1, XREAL_0, MEMBERED, ORDINAL1, FUNCT_2, NUMBERS, VALUED_0, VALUED_1, RELSET_1, INT_1, XBOOLE_0; requirements NUMERALS, REAL, BOOLE, SUBSET, ARITHM; begin theorem :: FINANCE3:1 for a, b being object st a <> b holds {a} c< {a,b}; registration let I be non empty Subset of NAT; cluster In(I,bool REAL) -> non empty; end; theorem :: FINANCE3:2 for T being Nat holds {w where w is Element of NAT: w>0 & w<=T} c= {w where w is Element of NAT: w<=T}; theorem :: FINANCE3:3 for T being Nat holds {w where w is Element of NAT: w <= T} is non empty Subset of NAT; theorem :: FINANCE3:4 for T being Nat st T>0 holds {w where w is Element of NAT: w>0 & w <= T} is non empty Subset of NAT; :: Special Random-Variables theorem :: FINANCE3:5 for d being Nat, phi being Real_Sequence, Omega being non empty set, F being SigmaField of Omega, X being non empty set, G being sequence of X, w being Element of Omega holds {PortfolioValueFutExt(d,phi,F,G,w)} is Event of Borel_Sets; definition let d be Nat; let phi be Real_Sequence; let Omega be non empty set; let F be SigmaField of Omega; let X be non empty set; let G be sequence of X; let w be Element of Omega; redefine func PortfolioValueFutExt(d,phi,F,G,w) -> Element of REAL; end; definition let Omega be non empty set; let F be SigmaField of Omega; let X be non empty set; let G be sequence of X; let phi be Real_Sequence; let d be Nat; func RVPortfolioValueFutExt(phi,F,G,d) -> Function of Omega,REAL means :: FINANCE3:def 1 for w being Element of Omega holds it.w = PortfolioValueFutExt(d,phi,F,G,w); end; theorem :: FINANCE3:6 for Omega be non empty set for F be SigmaField of Omega for G be sequence of set_of_random_variables_on(F,Borel_Sets) for phi be Real_Sequence for d be Nat holds RVPortfolioValueFutExt(phi,F,G,d) is random_variable of F,Borel_Sets; definition let d be Nat; let phi be Real_Sequence; let Omega be non empty set; let F be SigmaField of Omega; let X be non empty set; let G be sequence of X; let w be Element of Omega; redefine func PortfolioValueFut(d,phi,F,G,w) -> Real equals :: FINANCE3:def 2 Partial_Sums((RVPortfolioValueFutExt_El(phi,F,G,w))^\1).(d-1); end; definition let d be Nat; let phi be Real_Sequence; let Omega be non empty set; let F be SigmaField of Omega; let X be non empty set; let G be sequence of X; let w be Element of Omega; redefine func PortfolioValueFut(d,phi,F,G,w) -> Element of REAL; end; definition let Omega be non empty set; let F be SigmaField of Omega; let X be non empty set; let G be sequence of X; let phi be Real_Sequence; let d be Nat; func RVPortfolioValueFut(phi,F,G,d) -> Function of Omega,REAL means :: FINANCE3:def 3 for w being Element of Omega holds it.w = PortfolioValueFut(d+1,phi,F,G,w); end; theorem :: FINANCE3:7 for Omega be non empty set for F be SigmaField of Omega for G be sequence of set_of_random_variables_on(F,Borel_Sets) for phi be Real_Sequence for d be Nat holds RVPortfolioValueFut(phi,F,G,d) is random_variable of F,Borel_Sets; theorem :: FINANCE3:8 for d being Nat, phi be Real_Sequence, Omega be non empty set, F be SigmaField of Omega, X be non empty set, G be sequence of X, w be Element of Omega holds PortfolioValueFut(d+1,phi,F,G,w) = RVPortfolioValueFut(phi,F,G,d).w & {PortfolioValueFut(d+1,phi,F,G,w)} is Event of Borel_Sets; theorem :: FINANCE3:9 for Omega being non empty set, F being SigmaField of Omega, X being non empty set, G being sequence of X, phi being Real_Sequence, d being Nat holds RVPortfolioValueFutExt(phi,F,G,d+1) = RVPortfolioValueFut(phi,F,G,d) + RVElementsOfPortfolioValue_fut(phi,F,G,0); theorem :: FINANCE3:10 for Omega, Omega2 being non empty set, Sigma being SigmaField of Omega, Sigma2 being SigmaField of Omega2, s being Element of Omega2 holds Omega --> s is (Sigma,Sigma2)-random_variable-like; theorem :: FINANCE3:11 for Omega being non empty set, Sigma being SigmaField of Omega, RV being random_variable of Sigma,Borel_Sets, K being Real holds RV-(Omega-->K) is random_variable of Sigma,Borel_Sets; definition let Omega be non empty set; let RV be Function of Omega,REAL; let w be Element of Omega; func SetForCall-Option(RV,w) -> Element of REAL equals :: FINANCE3:def 4 RV.w if RV.w>=0 otherwise 0; end; definition let Omega be non empty set; let Sigma be SigmaField of Omega; let RV be random_variable of Sigma,Borel_Sets; let K be Real; func Call-Option(RV,K) -> Function of Omega,REAL means :: FINANCE3:def 5 for w being Element of Omega holds ((RV-(Omega-->K)).w>=0 implies it.w=(RV-(Omega-->K)).w) & ((RV-(Omega-->K)).w<0 implies it.w=0); end; :: Special sigma-Fields theorem :: FINANCE3:12 for A1 being SetSequence of {1,2,3,4}, w being Real st w = 1 or w = 3 holds (for n being Nat holds A1.n = {} or A1.n = {1,2} or A1.n = {3,4} or A1.n = {1,2,3,4}) implies {w}<>Intersection A1; theorem :: FINANCE3:13 for A1 being SetSequence of {1,2,3,4}, w being Real st w = 2 or w = 4 holds (for n being Nat holds A1.n = {} or A1.n = {1,2} or A1.n = {3,4} or A1.n = {1,2,3,4}) implies {w}<>Intersection A1; theorem :: FINANCE3:14 for MySigmaField, A1, A2 being set st MySigmaField={{},{1,2,3,4}} & A1 in MySigmaField & A2 in MySigmaField holds A1 /\ A2 in MySigmaField; theorem :: FINANCE3:15 for A1 being SetSequence of {1,2,3,4} st (for n being Nat,k being Nat holds not (A1.n /\ A1.k = {})) & rng A1 c= {{},{1,2},{3,4},{1,2,3,4}} holds (Intersection A1 = {} or Intersection A1 = {1,2} or Intersection A1 = {3,4} or Intersection A1 = {1,2,3,4}); theorem :: FINANCE3:16 for A1 being SetSequence of {1,2,3,4}, MyOmega being set st MyOmega = {{},{1,2},{3,4},{1,2,3,4}} & Intersection A1={1,2,3,4} holds Intersection A1 in MyOmega; theorem :: FINANCE3:17 for A1 being SetSequence of {1,2,3,4}, MyOmega being set st MyOmega = {{},{1,2},{3,4},{1,2,3,4}} & Intersection A1={3,4} holds Intersection A1 in MyOmega; theorem :: FINANCE3:18 for A1 being SetSequence of {1,2,3,4}, MyOmega being set st MyOmega = {{},{1,2},{3,4},{1,2,3,4}} & Intersection A1={1,2} holds Intersection A1 in MyOmega; theorem :: FINANCE3:19 for A1 being SetSequence of {1,2,3,4}, MyOmega being set st MyOmega = {{},{1,2},{3,4},{1,2,3,4}} & Intersection A1={} holds Intersection A1 in MyOmega; theorem :: FINANCE3:20 for MyOmega being set, A1 being SetSequence of {1,2,3,4} st rng A1 c= MyOmega & MyOmega = {{},{1,2},{3,4},{1,2,3,4}} holds Intersection A1 in MyOmega; theorem :: FINANCE3:21 for MySigmaField, MySet being set, A1 being SetSequence of MySet st MySet={1,2,3,4} & rng A1 c= MySigmaField & MySigmaField = {{},{1,2,3,4}} holds Intersection A1 <> {} implies Intersection A1 in MySigmaField; theorem :: FINANCE3:22 for MySigmaField, MySet being set, A1 being SetSequence of MySet st MySet={1,2,3,4} & rng A1 c= MySigmaField & MySigmaField = {{},{1,2,3,4}} holds for k1 being Nat, k2 being Nat holds A1.k1 /\ A1.k2 in MySigmaField; definition func Special_SigmaField1 -> SigmaField of {1,2,3,4} equals :: FINANCE3:def 6 {{},{1,2,3,4}}; end; definition func Special_SigmaField2 -> SigmaField of {1,2,3,4} equals :: FINANCE3:def 7 {{},{1,2},{3,4},{1,2,3,4}}; end; definition ::$CD end; theorem :: FINANCE3:23 for Omega being set st Omega = {1,2,3,4} holds {1} c= Omega & {2} c= Omega & {3} c= Omega & {4} c= Omega & {1,2} c= Omega & {3,4} c= Omega & {} c= Omega & Omega c= Omega; theorem :: FINANCE3:24 for Omega being set st Omega={1,2,3,4} holds Omega in Special_SigmaField1 & {} in Special_SigmaField1 & {1,2} in Special_SigmaField2 & {3,4} in Special_SigmaField2 & Omega in Special_SigmaField2 & {} in Special_SigmaField2 & Omega in Trivial-SigmaField {1,2,3,4} & {} in Trivial-SigmaField {1,2,3,4} & {1} in Trivial-SigmaField {1,2,3,4} & {2} in Trivial-SigmaField {1,2,3,4} & {3} in Trivial-SigmaField {1,2,3,4} & {4} in Trivial-SigmaField {1,2,3,4}; theorem :: FINANCE3:25 Special_SigmaField1 c< Special_SigmaField2 & Special_SigmaField2 c< Trivial-SigmaField {1,2,3,4}; :: Construction of Filtration and Examples theorem :: FINANCE3:26 ex Omega being non empty set st ex F1,F2,F3 being SigmaField of Omega st F1 c< F2 & F2 c< F3; theorem :: FINANCE3:27 ex Omega1,Omega2,Omega3,Omega4 being non empty set st Omega1 c< Omega2 & Omega2 c< Omega3 & Omega3 c< Omega4 & (ex F1 being SigmaField of Omega1, F2 being SigmaField of Omega2, F3 being SigmaField of Omega3, F4 being SigmaField of Omega4 st F1 c= F2 & F2 c= F3 & F3 c= F4); definition let Omega be non empty set; let Sigma be SigmaField of Omega; let I be non empty real-membered set; mode Filtration of I,Sigma -> ManySortedSigmaField of I,Sigma means :: FINANCE3:def 9 for s,t being Element of I st s<=t holds it.s is Subset of it.t; end; definition let I, Omega be non empty set; let Sigma be SigmaField of Omega; let Filt be ManySortedSigmaField of I, Sigma; let i be Element of I; func El_Filtration(i,Filt) -> SigmaField of Omega equals :: FINANCE3:def 10 Filt.i; end; definition let k be Element of {1,2,3}; func Set1_of_SigmaField3(k) -> Subset of bool {1,2,3,4} equals :: FINANCE3:def 11 Special_SigmaField1 if k=1 otherwise Special_SigmaField2; end; definition let k be Element of {1,2,3}; func Set2_of_SigmaField3(k) -> Subset of bool {1,2,3,4} equals :: FINANCE3:def 12 Set1_of_SigmaField3(k) if k<=2 otherwise Trivial-SigmaField {1,2,3,4}; end; theorem :: FINANCE3:28 for Omega being non empty set, Sigma being SigmaField of Omega, I being non empty real-membered set st I={1,2,3} & Sigma=bool {1,2,3,4} & Omega = {1,2,3,4} holds ex MyFunc being Filtration of I,Sigma st MyFunc.1=Special_SigmaField1 & MyFunc.2=Special_SigmaField2 & MyFunc.3=Trivial-SigmaField {1,2,3,4}; theorem :: FINANCE3:29 for Omega being non empty set, Sigma being SigmaField of Omega, Sigma2 being SigmaField of {1} st Omega={1,2,3,4} holds ex X1 being Function of Omega,{1} st X1 is random_variable of Special_SigmaField1,Sigma2 & X1 is random_variable of Special_SigmaField2,Sigma2 & X1 is random_variable of Trivial-SigmaField {1,2,3,4},Sigma2; :: The first example of the existence of a random-variable depends :: on a special underlying sigma-field and given Filtration theorem :: FINANCE3:30 ex Omega, Omega2 be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega2, I be non empty real-membered set, Q be Filtration of I,Sigma st ex rv being Function of Omega,Omega2 st for i being Element of I holds rv is random_variable of El_Filtration(i,Q),Sigma2; :: Next theorem gives also the existence of random_variables :: depending on arbitrary sigma-fields and filtrations theorem :: FINANCE3:31 for Omega, Omega2 being non empty set, Sigma being SigmaField of Omega, Sigma2 being SigmaField of Omega2, I being non empty real-membered set, Q being ManySortedSigmaField of I,Sigma holds ex rv being Function of Omega,Omega2 st for i being Element of I holds rv is random_variable of El_Filtration(i,Q),Sigma2; :: Stochastic Process: adapted and predictable :: The next statement is important for the usage of a probability measure :: with Events depending on SigmaFields in a given filtration. theorem :: FINANCE3:32 for Omega being non empty set, Sigma being SigmaField of Omega, Sigma2 being SigmaField of Omega st Sigma2 c= Sigma holds for E2 being Event of Sigma2 holds E2 is Event of Sigma; :: Next we define the stochastic process definition let Omega,Omega2 be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega2, I be non empty real-membered set; mode Stochastic_Process of I,Sigma,Sigma2 -> Function of I,set_of_random_variables_on(Sigma,Sigma2) means :: FINANCE3:def 13 for k being Element of I holds ex RV being Function of Omega,Omega2 st it.k=RV & RV is (Sigma,Sigma2)-random_variable-like; end; :: Because adapted and predicted stochastic processes are very important for :: Stochastic finance, we implement them now: definition let Omega,Omega2 be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega2, I be non empty real-membered set, Stoch be Stochastic_Process of I,Sigma,Sigma2, k be Element of I; func RVProcess(Stoch,k) -> random_variable of Sigma,Sigma2 equals :: FINANCE3:def 14 Stoch.k; end; definition let Omega,Omega2 be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega2, I be non empty real-membered set, Stoch be Stochastic_Process of I,Sigma,Sigma2; mode Adapted_Stochastic_Process of Stoch -> Function of I,set_of_random_variables_on(Sigma,Sigma2) means :: FINANCE3:def 15 ex k being Filtration of I,Sigma st for i being Element of I holds RVProcess(Stoch,i) is (El_Filtration(i,k),Sigma2)-random_variable-like; end; definition let Omega,Omega2 be non empty set; let Sigma be SigmaField of Omega; let Sigma2 be SigmaField of Omega2; let I, J be non empty Subset of NAT; let Stoch be Stochastic_Process of In(J,bool REAL),Sigma,Sigma2; mode Predictable_Stochastic_Process of I,J,Sigma,Sigma2,Stoch -> Function of J,set_of_random_variables_on(Sigma,Sigma2) means :: FINANCE3:def 16 ex k being Filtration of In(I,bool REAL), Sigma st for j being Element of In(J,bool REAL), i being Element of In(I,bool REAL) st j-1=i holds RVProcess(Stoch,j) is (El_Filtration(i,k),Sigma2)-random_variable-like; end; definition let Omega,Omega2 be non empty set; let Sigma be SigmaField of Omega; let Sigma2 be SigmaField of Omega2; let I be non empty real-membered set; let MyFunc be ManySortedSigmaField of I,Sigma; let Stoch be Stochastic_Process of I,Sigma,Sigma2; attr Stoch is (MyFunc)-stoch_proc_wrt_to_Filtration means :: FINANCE3:def 17 for i being Element of I holds RVProcess(Stoch,i) is (El_Filtration(i,MyFunc),Sigma2)-random_variable-like; end; theorem :: FINANCE3:33 for Omega,Omega2 being non empty set, Sigma being SigmaField of Omega, Sigma2 being SigmaField of Omega2, I being non empty real-membered set, MyFunc being Filtration of I,Sigma, Stoch being Stochastic_Process of I,Sigma,Sigma2 st Stoch is (MyFunc)-stoch_proc_wrt_to_Filtration holds Stoch is Adapted_Stochastic_Process of Stoch; :: Example for a Stochastic Process definition let k1,k2 be Element of REAL; let Omega be non empty set; let k be Element of Omega; func Set1_for_RandomVariable(k1,k2,k) -> Element of REAL equals :: FINANCE3:def 18 k1 if (k=1 or k=2) otherwise k2; func Set4_for_RandomVariable(k1,k2,k) -> Element of REAL equals :: FINANCE3:def 19 k1 if k=3 otherwise k2; end; definition let k2,k3,k4 be Element of REAL; let Omega be non empty set; let k be Element of Omega; func Set3_for_RandomVariable(k2,k3,k4,k) -> Element of REAL equals :: FINANCE3:def 20 k2 if k=2 otherwise Set4_for_RandomVariable(k3,k4,k); end; definition let k1,k2,k3,k4 be Element of REAL; let Omega be non empty set; let k be Element of Omega; func Set2_for_RandomVariable(k1,k2,k3,k4,k) -> Element of REAL equals :: FINANCE3:def 21 k1 if k=1 otherwise Set3_for_RandomVariable(k2,k3,k4,k); end; theorem :: FINANCE3:34 for k1,k2,k3,k4 being Element of REAL holds for Omega being set st Omega={1,2,3,4} ex f being Function of Omega,REAL st f.1=k1 & f.2=k2 & f.3=k3 & f.4=k4; theorem :: FINANCE3:35 for k1,k2,k3,k4 be Element of REAL holds for Omega being non empty set st Omega={1,2,3,4} holds for Sigma being SigmaField of Omega, I being non empty real-membered set, MyFunc being ManySortedSigmaField of I,Sigma st MyFunc.1=Special_SigmaField1 & MyFunc.2=Special_SigmaField2 & MyFunc.3=Trivial-SigmaField {1,2,3,4} holds for eli being Element of I st eli=3 holds ex f being Function of Omega,REAL st f.1=k1 & f.2=k2 & f.3=k3 & f.4=k4 & f is (El_Filtration(eli,MyFunc),Borel_Sets)-random_variable-like; theorem :: FINANCE3:36 for k1,k2 being Element of REAL, Omega being non empty set st Omega={1,2,3,4} holds for Sigma being SigmaField of Omega, I being non empty real-membered set, MyFunc being ManySortedSigmaField of I,Sigma st MyFunc.1=Special_SigmaField1 & MyFunc.2=Special_SigmaField2 & MyFunc.3=Trivial-SigmaField {1,2,3,4} holds for eli being Element of I st eli=2 holds ex f being Function of Omega,REAL st f.1=k1 & f.2=k1 & f.3=k2 & f.4=k2 & f is (El_Filtration(eli,MyFunc),Borel_Sets)-random_variable-like; theorem :: FINANCE3:37 for k1 being Element of REAL, Omega being non empty set st Omega={1,2,3,4} holds for Sigma being SigmaField of Omega, I being non empty real-membered set, MyFunc being ManySortedSigmaField of I,Sigma st MyFunc.1=Special_SigmaField1 & MyFunc.2=Special_SigmaField2 & MyFunc.3=Trivial-SigmaField {1,2,3,4} holds for eli being Element of I st eli=1 holds ex f being Function of Omega,REAL st f.1=k1 & f.2=k1 & f.3=k1 & f.4=k1 & f is (El_Filtration(eli,MyFunc),Borel_Sets)-random_variable-like; theorem :: FINANCE3:38 for Omega being non empty set st Omega={1,2,3,4} holds for Sigma being SigmaField of Omega, I being non empty real-membered set st I={1,2,3} & Sigma = bool {1,2,3,4} holds for MyFunc being ManySortedSigmaField of I,Sigma st MyFunc.1=Special_SigmaField1 & MyFunc.2=Special_SigmaField2 & MyFunc.3=Trivial-SigmaField {1,2,3,4} holds for Prob being Function of Sigma, REAL holds for i being Element of I holds ex RV being Function of Omega,REAL st RV is (El_Filtration(i,MyFunc),Borel_Sets)-random_variable-like; definition let I be non empty real-membered set such that I={1,2,3}; let i be Element of I such that i=2 or i=3; let Omega be non empty set such that Omega={1,2,3,4}; let Sigma be SigmaField of Omega such that Sigma=bool Omega; let f1 be Function of Omega,REAL such that f1.1=60 & f1.2=80 & f1.3=100 & f1.4=120; let f2 be Function of Omega,REAL such that f2.1=80 & f2.2=80 & f2.3=120 & f2.4=120; let f3 be Function of Omega,REAL; func FunctionRV1(i,Sigma,f1,f2,f3) -> Element of set_of_random_variables_on(Sigma,Borel_Sets) equals :: FINANCE3:def 22 f2 if i=2 otherwise f1; end; definition let I be non empty real-membered set such that I={1,2,3}; let i be Element of I; let Omega be non empty set such that Omega={1,2,3,4}; let Sigma be SigmaField of Omega such that Sigma=bool Omega; let f1,f2 be Function of Omega,REAL; let f3 be Function of Omega,REAL such that f3.1=100 & f3.2=100 & f3.3=100 & f3.4=100; func FunctionRV2(i,Sigma,f1,f2,f3) -> Element of set_of_random_variables_on(Sigma,Borel_Sets) equals :: FINANCE3:def 23 FunctionRV1(i,Sigma,f1,f2,f3) if (i=2 or i=3) otherwise f3; end; theorem :: FINANCE3:39 for Omega, Omega2 being non empty set st Omega={1,2,3,4} holds for Sigma being SigmaField of Omega, I being non empty real-membered set st I={1,2,3} & Sigma=bool{1,2,3,4} holds for MyFunc being Filtration of I,Sigma st MyFunc.1=Special_SigmaField1 & MyFunc.2=Special_SigmaField2 & MyFunc.3=Trivial-SigmaField {1,2,3,4} ex Stoch being Stochastic_Process of I,Sigma,Borel_Sets st (for k being Element of I holds (ex RV being Function of Omega,REAL st (Stoch.k=RV & RV is (Sigma,Borel_Sets)-random_variable-like) & RV is (El_Filtration(k,MyFunc),Borel_Sets)-random_variable-like) & (ex f being Function of Omega,REAL st k=1 implies f.1=100 & f.2=100 & f.3=100 & f.4=100 & Stoch.k=f)& (ex f being Function of Omega,REAL st k=2 implies f.1=80 & f.2=80 & f.3=120 & f.4=120 & Stoch.k=f) & (ex f being Function of Omega,REAL st k=3 implies f.1=60 & f.2=80 & f.3=100 & f.4=120 & Stoch.k=f) & Stoch is (MyFunc)-stoch_proc_wrt_to_Filtration) & Stoch is Adapted_Stochastic_Process of Stoch;