:: Several Differentiation Formulas of Special Functions -- Part {V} :: by Peng Wang and Bo Li :: :: Received July 9, 2007 :: Copyright (c) 2007-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, SIN_COS4, PARTFUN1, SIN_COS, ORDINAL4, REAL_1, RCOMP_1, SUBSET_1, FUNCT_1, CARD_1, FDIFF_1, ARYTM_3, SQUARE_1, ARYTM_1, PREPOWER, NEWTON, TARSKI, RELAT_1, VALUED_1, XBOOLE_0, LIMFUNC1, TAYLOR_1, XXREAL_0, NAT_1; notations TARSKI, SUBSET_1, ORDINAL1, XXREAL_0, RELSET_1, FUNCT_1, PARTFUN1, PARTFUN2, RCOMP_1, TAYLOR_1, SIN_COS, RFUNCT_1, SQUARE_1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, NAT_1, NEWTON, VALUED_1, FDIFF_1, PREPOWER, LIMFUNC1; constructors REAL_1, PARTFUN1, PARTFUN2, NAT_1, LIMFUNC1, RCOMP_1, TAYLOR_1, SIN_COS, FDIFF_1, RFUNCT_1, SQUARE_1, PREPOWER, VALUED_1, RELSET_1, NEWTON; registrations RELSET_1, XREAL_0, MEMBERED, RCOMP_1, INT_1, XXREAL_0, NUMBERS, ORDINAL1, VALUED_0, SQUARE_1, PREPOWER, NEWTON; requirements SUBSET, REAL, NUMERALS, ARITHM; begin definition func sec -> PartFunc of REAL,REAL equals :: FDIFF_9:def 1 cos^; func cosec -> PartFunc of REAL,REAL equals :: FDIFF_9:def 2 sin^; end; reserve x,a,b,c for Real, n for Nat, Z for open Subset of REAL, f, f1,f2 for PartFunc of REAL,REAL; theorem :: FDIFF_9:1 cos.x<>0 implies sec is_differentiable_in x & diff(sec, x) = sin. x/(cos.x)^2 ; theorem :: FDIFF_9:2 sin.x<>0 implies cosec is_differentiable_in x & diff(cosec, x) = -cos.x/(sin.x)^2; theorem :: FDIFF_9:3 (1/x) #Z n = 1/(x #Z n); :: f.x=sec.x theorem :: FDIFF_9:4 Z c= dom sec implies sec is_differentiable_on Z & for x st x in Z holds ( (sec)`|Z).x = sin.x/(cos.x)^2; :: f.x=cosec.x theorem :: FDIFF_9:5 Z c= dom cosec implies cosec is_differentiable_on Z & for x st x in Z holds ( (cosec)`|Z).x = -cos.x/(sin.x)^2; :: f.x=sec.(a*x+b) theorem :: FDIFF_9:6 Z c= dom (sec*f) & (for x st x in Z holds f.x = a*x+b) implies sec*f is_differentiable_on Z & for x st x in Z holds ((sec*f)`|Z).x = a*sin.(a* x+b)/(cos.(a*x+b))^2; :: f.x=cosec.(a*x+b) theorem :: FDIFF_9:7 Z c= dom (cosec*f) & (for x st x in Z holds f.x = a*x+b) implies cosec*f is_differentiable_on Z & for x st x in Z holds ((cosec*f)`|Z).x = -a* cos.(a*x+b)/(sin.(a*x+b))^2; :: f.x = sec.(1/x) theorem :: FDIFF_9:8 not 0 in Z & Z c= dom (sec*((id Z)^)) implies (sec*((id Z)^)) is_differentiable_on Z & for x st x in Z holds ((sec*((id Z)^))`|Z).x = -sin.(1 /x)/(x^2*(cos.(1/x))^2); :: f.x = cosec.(1/x) theorem :: FDIFF_9:9 not 0 in Z & Z c= dom (cosec*((id Z)^)) implies (cosec*((id Z)^)) is_differentiable_on Z & for x st x in Z holds ((cosec*((id Z)^))`|Z).x = cos.( 1/x)/(x^2*(sin.(1/x))^2); :: f.x = sec.(a+b*x+c*x^2) theorem :: FDIFF_9:10 Z c= dom (sec*(f1+c(#)f2)) & f2=#Z 2 & (for x st x in Z holds f1.x = a +b*x) implies sec*(f1+c(#)f2) is_differentiable_on Z & for x st x in Z holds (( sec*(f1+c(#)f2))`|Z).x = (b+2*c*x)*sin.(a+b*x+c*x^2)/(cos.(a+b*x+c*x^2))^2; :: f.x = cosec.(a+b*x+c*x^2) theorem :: FDIFF_9:11 Z c= dom (cosec*(f1+c(#)f2)) & f2=#Z 2 & (for x st x in Z holds f1.x = a+b*x) implies cosec*(f1+c(#)f2) is_differentiable_on Z & for x st x in Z holds ((cosec*(f1+c(#)f2))`|Z).x = -(b+2*c*x)*cos.(a+b*x+c*x^2)/(sin.(a+b*x+c*x^2))^2 ; :: f.x = sec.(exp_R.x) theorem :: FDIFF_9:12 Z c= dom (sec*exp_R) implies sec*exp_R is_differentiable_on Z & for x st x in Z holds ((sec*exp_R)`|Z).x = exp_R.x*sin.(exp_R.x)/(cos.(exp_R.x))^2; :: f.x = cosec.(exp_R.x) theorem :: FDIFF_9:13 Z c= dom (cosec*exp_R) implies cosec*exp_R is_differentiable_on Z & for x st x in Z holds ((cosec*exp_R)`|Z).x = -exp_R.x*cos.(exp_R.x)/(sin.(exp_R .x))^2; :: f.x = sec.(ln.x) theorem :: FDIFF_9:14 Z c= dom (sec*ln) implies sec*ln is_differentiable_on Z & for x st x in Z holds ((sec*ln)`|Z).x = sin.(ln.x)/(x*(cos.(ln.x))^2); :: f.x = cosec.(ln.x) theorem :: FDIFF_9:15 Z c= dom (cosec*ln) implies cosec*ln is_differentiable_on Z & for x st x in Z holds ((cosec*ln)`|Z).x = -cos.(ln.x)/(x*(sin.(ln.x))^2); :: f.x = exp_R.(sec.x) theorem :: FDIFF_9:16 Z c= dom (exp_R*sec) implies exp_R*sec is_differentiable_on Z & for x st x in Z holds ((exp_R*sec)`|Z).x = exp_R.(sec.x)*sin.x/(cos.x)^2; :: f.x = exp_R.(cosec.x) theorem :: FDIFF_9:17 Z c= dom (exp_R*cosec) implies exp_R*cosec is_differentiable_on Z & for x st x in Z holds ((exp_R*cosec)`|Z).x = -exp_R.(cosec.x)*cos.x/(sin.x)^2 ; :: f.x = ln.(sec.x) theorem :: FDIFF_9:18 Z c= dom (ln*sec) implies ln*sec is_differentiable_on Z & for x st x in Z holds ((ln*sec)`|Z).x = sin.x/cos.x; :: f.x = ln.(cosec.x) theorem :: FDIFF_9:19 Z c= dom (ln*cosec) implies ln*cosec is_differentiable_on Z & for x st x in Z holds ((ln*cosec)`|Z).x = -cos.x/sin.x; :: f.x=(sec.x) #Z n theorem :: FDIFF_9:20 Z c= dom (( #Z n)*sec) & 1<=n implies ( #Z n)*sec is_differentiable_on Z & for x st x in Z holds ((( #Z n)*sec)`|Z).x = n*sin.x/(cos.x) #Z (n+1); :: f.x=(cosec.x) #Z n theorem :: FDIFF_9:21 Z c= dom (( #Z n)*cosec) & 1<=n implies ( #Z n)*cosec is_differentiable_on Z & for x st x in Z holds ((( #Z n)*cosec)`|Z).x = -n*cos. x/(sin.x) #Z (n+1); :: f.x = sec.x-x theorem :: FDIFF_9:22 Z c= dom (sec-id Z) implies sec-id Z is_differentiable_on Z & for x st x in Z holds ((sec-id Z)`|Z).x=(sin.x-(cos.x)^2)/(cos.x)^2; :: f.x = -cosec.x-x theorem :: FDIFF_9:23 Z c= dom (-cosec-id Z) implies -cosec-id Z is_differentiable_on Z & for x st x in Z holds ((-cosec-id Z)`|Z).x = (cos.x-(sin.x)^2)/(sin.x)^2; :: f.x = exp_R.x*sec.x theorem :: FDIFF_9:24 Z c= dom (exp_R(#)sec) implies (exp_R(#)sec) is_differentiable_on Z & for x st x in Z holds ((exp_R(#)sec)`|Z).x = exp_R.x/cos.x+exp_R.x*sin.x/(cos.x )^2; :: f.x = exp_R.x*cosec.x theorem :: FDIFF_9:25 Z c= dom (exp_R(#)cosec) implies (exp_R(#)cosec) is_differentiable_on Z & for x st x in Z holds ((exp_R(#)cosec)`|Z).x = exp_R.x/sin.x-exp_R.x*cos.x/ (sin.x)^2; :: f.x = (1/a)*sec.(a*x)-x theorem :: FDIFF_9:26 (Z c= dom ((1/a)(#)(sec*f)-id Z) & for x st x in Z holds f.x=a*x & a<> 0) implies (1/a)(#)(sec*f)-id Z is_differentiable_on Z & for x st x in Z holds (((1/a)(#)(sec*f)-id Z)`|Z).x= (sin.(a*x)-(cos.(a*x))^2)/(cos.(a*x))^2; :: f.x = (-1/a)*cosec.(a*x)-x theorem :: FDIFF_9:27 (Z c= dom ((-1/a)(#)(cosec*f)-id Z) & for x st x in Z holds f.x=a*x & a<>0) implies (-1/a)(#)(cosec*f)-id Z is_differentiable_on Z & for x st x in Z holds (((-1/a)(#)(cosec*f)-id Z)`|Z).x= (cos.(a*x)-(sin.(a*x))^2)/(sin.(a*x))^2 ; :: f.x = (a*x+b)*sec.x theorem :: FDIFF_9:28 (Z c= dom (f(#)sec) & for x st x in Z holds f.x=a*x+b) implies (f(#) sec) is_differentiable_on Z & for x st x in Z holds ((f(#)sec)`|Z).x = a/cos.x+ (a*x+b)*sin.x/(cos.x)^2; :: f.x = (a*x+b)*cosec.x theorem :: FDIFF_9:29 (Z c= dom (f(#)cosec) & for x st x in Z holds f.x=a*x+b) implies (f(#) cosec) is_differentiable_on Z & for x st x in Z holds ((f(#)cosec)`|Z).x = a/ sin.x-(a*x+b)*cos.x/(sin.x)^2; :: f.x = ln.x*sec.x theorem :: FDIFF_9:30 Z c= dom (ln(#)sec) implies (ln(#)sec) is_differentiable_on Z & for x st x in Z holds ((ln(#)sec)`|Z).x = 1/cos.x/x+ln.x*sin.x/(cos.x)^2; :: f.x = ln.x*cosec.x theorem :: FDIFF_9:31 Z c= dom (ln(#)cosec) implies (ln(#)cosec) is_differentiable_on Z & for x st x in Z holds ((ln(#)cosec)`|Z).x = 1/sin.x/x-ln.x*cos.x/(sin.x)^2; :: f.x = 1/x*sec.x theorem :: FDIFF_9:32 not 0 in Z & Z c= dom ((id Z)^(#)sec) implies ((id Z)^(#)sec) is_differentiable_on Z & for x st x in Z holds (((id Z)^(#)sec)`|Z).x = -1/cos. x/x^2+sin.x/x/(cos.x)^2; :: f.x = 1/x*cosec.x theorem :: FDIFF_9:33 not 0 in Z & Z c= dom ((id Z)^(#)cosec) implies ((id Z)^(#)cosec) is_differentiable_on Z & for x st x in Z holds (((id Z)^(#)cosec)`|Z).x = -1/ sin.x/x^2-cos.x/x/(sin.x)^2; :: f.x = sec.(sin.x) theorem :: FDIFF_9:34 Z c= dom (sec*sin) implies sec*sin is_differentiable_on Z & for x st x in Z holds ((sec*sin)`|Z).x = cos.x*sin.(sin.x)/(cos.(sin.x))^2; :: f.x = sec.(cos.x) theorem :: FDIFF_9:35 Z c= dom (sec*cos) implies sec*cos is_differentiable_on Z & for x st x in Z holds ((sec*cos)`|Z).x = -sin.x*sin.(cos.x)/(cos.(cos.x))^2; :: f.x = cosec.(sin.x) theorem :: FDIFF_9:36 Z c= dom (cosec*sin) implies cosec*sin is_differentiable_on Z & for x st x in Z holds ((cosec*sin)`|Z).x = -cos.x*cos.(sin.x)/(sin.(sin.x))^2; :: f.x = cosec.(cos.x) theorem :: FDIFF_9:37 Z c= dom (cosec*cos) implies cosec*cos is_differentiable_on Z & for x st x in Z holds ((cosec*cos)`|Z).x = sin.x*cos.(cos.x)/(sin.(cos.x))^2; :: f.x = sec.(tan.x) theorem :: FDIFF_9:38 Z c= dom (sec*tan) implies sec*tan is_differentiable_on Z & for x st x in Z holds ((sec*tan)`|Z).x = sin.(tan.x)/(cos.x)^2/(cos.(tan.x))^2; :: f.x = sec.(cot.x) theorem :: FDIFF_9:39 Z c= dom (sec*cot) implies sec*cot is_differentiable_on Z & for x st x in Z holds ((sec*cot)`|Z).x = -sin.(cot.x)/(sin.x)^2/(cos.(cot.x))^2; :: f.x = cosec.(tan.x) theorem :: FDIFF_9:40 Z c= dom (cosec*tan) implies cosec*tan is_differentiable_on Z & for x st x in Z holds ((cosec*tan)`|Z).x = -cos.(tan.x)/(cos.x)^2/(sin.(tan.x))^2; :: f.x = cosec.(cot.x) theorem :: FDIFF_9:41 Z c= dom (cosec*cot) implies cosec*cot is_differentiable_on Z & for x st x in Z holds ((cosec*cot)`|Z).x = cos.(cot.x)/(sin.x)^2/(sin.(cot.x))^2; :: f.x = tan.x*sec.x theorem :: FDIFF_9:42 Z c= dom (tan(#)sec) implies (tan(#)sec) is_differentiable_on Z & for x st x in Z holds ((tan(#)sec)`|Z).x = 1/(cos.x)^2/cos.x+tan.x*sin.x/(cos.x)^2; :: f.x = cot.x*sec.x theorem :: FDIFF_9:43 Z c= dom (cot(#)sec) implies (cot(#)sec) is_differentiable_on Z & for x st x in Z holds ((cot(#)sec)`|Z).x = -1/(sin.x)^2/cos.x+cot.x*sin.x/(cos.x)^2 ; :: f.x = tan.x*cosec.x theorem :: FDIFF_9:44 Z c= dom (tan(#)cosec) implies (tan(#)cosec) is_differentiable_on Z & for x st x in Z holds ((tan(#)cosec)`|Z).x = 1/(cos.x)^2/sin.x-tan.x*cos.x/(sin .x)^2; :: f.x = cot.x*cosec.x theorem :: FDIFF_9:45 Z c= dom (cot(#)cosec) implies (cot(#)cosec) is_differentiable_on Z & for x st x in Z holds ((cot(#)cosec)`|Z).x = -1/(sin.x)^2/sin.x-cot.x*cos.x/( sin.x)^2;