:: The Inner Product of Finite Sequences and of Points of $n$-dimensional :: Topological Space :: by Kanchun and Yatsuka Nakamura :: :: Received February 3, 2003 :: Copyright (c) 2003-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, NAT_1, SUBSET_1, FINSEQ_2, PRE_TOPC, EUCLID, RVSUM_1, FUNCT_1, CARD_1, FINSEQ_1, RELAT_1, VALUED_0, ARYTM_3, COMPLEX1, SQUARE_1, ARYTM_1, CARD_3, XXREAL_0, TARSKI, FUNCT_3, SUPINF_2, REAL_1; notations TARSKI, FUNCT_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0, COMPLEX1, FINSEQ_1, FINSEQ_2, VALUED_0, QUIN_1, STRUCT_0, PRE_TOPC, RVSUM_1, RLVECT_1, EUCLID, SQUARE_1, XXREAL_0; constructors REAL_1, SQUARE_1, BINOP_2, COMPLEX1, QUIN_1, FINSEQOP, MONOID_0, TOPRNS_1, RELSET_1, BINOP_1; registrations FUNCT_1, RELSET_1, NUMBERS, XREAL_0, SQUARE_1, BINOP_2, MEMBERED, FINSEQ_2, MONOID_0, EUCLID, VALUED_0, FINSEQ_1, QUIN_1; requirements REAL, SUBSET, NUMERALS, ARITHM, BOOLE; begin :: Preliminaries reserve i, n for Nat, x, y, a for Real, v for Element of n-tuples_on REAL, p, p1, p2, p3, q, q1, q2 for Point of TOP-REAL n; theorem :: EUCLID_2:1 mlt(v, 0*n).i = 0; theorem :: EUCLID_2:2 mlt(v, 0*n) = 0*n; begin :: Inner Product of Finite Sequences theorem :: EUCLID_2:3 for y1,y2 being real-valued FinSequence, x1,x2 being Element of REAL n st x1=y1 & x2=y2 holds |(y1,y2)|=1/4*((|.(x1+x2).|)^2-(|.(x1-x2).|)^2); theorem :: EUCLID_2:4 for x being real-valued FinSequence holds |.x.|^2 = |(x,x)|; theorem :: EUCLID_2:5 for x being real-valued FinSequence holds |.x.| = sqrt |(x,x)|; ::$CT theorem :: EUCLID_2:7 for x being real-valued FinSequence holds |(x,x)|=0 iff x=0*(len x); theorem :: EUCLID_2:8 for x being real-valued FinSequence holds |(x,x)| = 0 iff |.x.| = 0; theorem :: EUCLID_2:9 for x being real-valued FinSequence holds |(x, 0*(len x))| = 0; theorem :: EUCLID_2:10 for x being real-valued FinSequence holds |(0*(len x),x)| = 0; theorem :: EUCLID_2:11 for x,y being real-valued FinSequence st len x=len y holds |.x+y.|^2 = |.x.|^2 + 2*|(y, x)| + |.y.|^2; theorem :: EUCLID_2:12 for x,y being real-valued FinSequence st len x=len y holds |.x-y.|^2 = |.x.|^2 - 2*|(y, x)| + |.y.|^2; theorem :: EUCLID_2:13 for x,y being real-valued FinSequence st len x=len y holds |.x+y.|^2 + |.x -y.|^2 = 2*(|.x.|^2 + |.y.|^2); theorem :: EUCLID_2:14 for x,y being real-valued FinSequence st len x=len y holds |.x+y.|^2 - |.x -y.|^2 = 4* |(x,y)|; theorem :: EUCLID_2:15 :: Schwartz for x,y being real-valued FinSequence st len x=len y holds |.|(x,y)|.| <= |.x.|*|.y.|; theorem :: EUCLID_2:16 :: Triangle for x,y being real-valued FinSequence st len x=len y holds |.x+y.| <= |.x.| + |.y.|; begin :: Inner Product of Points of TOP-REAL n ::$CT theorem :: EUCLID_2:18 |(p1 + p2, p3)| = |(p1, p3)| + |(p2, p3)|; theorem :: EUCLID_2:19 for x being Real holds |(x*p1, p2)| = x*|(p1, p2)|; theorem :: EUCLID_2:20 for x being Real holds |(p1, x*p2)| = x*|(p1, p2)|; theorem :: EUCLID_2:21 |(-p1, p2)| = -|(p1, p2)|; theorem :: EUCLID_2:22 |(p1, -p2)| = -|(p1, p2)|; theorem :: EUCLID_2:23 |(-p1, -p2)| = |(p1, p2)|; theorem :: EUCLID_2:24 |(p1-p2, p3)| = |(p1, p3)| - |(p2, p3)|; theorem :: EUCLID_2:25 |((x*p1+y*p2), p3)| = x*|(p1,p3)| + y*|(p2,p3)|; theorem :: EUCLID_2:26 |(p, q1+q2)| = |(p, q1)| + |(p, q2)|; theorem :: EUCLID_2:27 |(p, q1-q2)| = |(p, q1)| - |(p, q2)|; theorem :: EUCLID_2:28 |(p1+p2, q1+q2)| = |(p1, q1)| + |(p1, q2)| + |(p2, q1)| + |(p2, q2)|; theorem :: EUCLID_2:29 |(p1-p2, q1-q2)| = |(p1, q1)| - |(p1, q2)| - |(p2, q1)| + |(p2, q2)|; theorem :: EUCLID_2:30 |(p+q, p+q)| = |(p, p)| + 2*|(p, q)| + |(q, q)|; theorem :: EUCLID_2:31 |(p-q, p-q)| = |(p, p)| - 2*|(p, q)| + |(q, q)|; theorem :: EUCLID_2:32 |(p, 0.TOP-REAL n)| = 0; theorem :: EUCLID_2:33 |(0.TOP-REAL n, p)| = 0; theorem :: EUCLID_2:34 |(0.TOP-REAL n, 0.TOP-REAL n)| = 0; theorem :: EUCLID_2:35 |(p,p)| >= 0; theorem :: EUCLID_2:36 |(p,p)| = |.p.|^2; theorem :: EUCLID_2:37 |.p.| = sqrt |(p,p)|; theorem :: EUCLID_2:38 0 <= |.p.|; theorem :: EUCLID_2:39 |. 0.TOP-REAL n .| = 0; theorem :: EUCLID_2:40 |(p,p)| = 0 iff |.p.| = 0; theorem :: EUCLID_2:41 |(p,p)| = 0 iff p = 0.TOP-REAL n; theorem :: EUCLID_2:42 |.p.|=0 iff p = 0.TOP-REAL n; theorem :: EUCLID_2:43 p <> 0.TOP-REAL n iff |(p, p)| > 0; theorem :: EUCLID_2:44 p <> 0.TOP-REAL n iff |.p.| > 0; theorem :: EUCLID_2:45 |.p+q.|^2 = |.p.|^2 + 2*|(q, p)| + |.q.|^2; theorem :: EUCLID_2:46 |.p-q.|^2 = |.p.|^2 - 2*|(q, p)| + |.q.|^2; theorem :: EUCLID_2:47 |.p+q.|^2 + |.p-q.|^2 = 2*(|.p.|^2 + |.q.|^2); theorem :: EUCLID_2:48 |.p+q.|^2 - |.p-q.|^2 = 4* |(p,q)|; theorem :: EUCLID_2:49 |(p,q)| = (1/4)*(|.p+q.|^2 - |.p-q.|^2); theorem :: EUCLID_2:50 |(p,q)| <= |(p,p)| + |(q,q)|; theorem :: EUCLID_2:51 :: Schwartz |.|(p,q)|.| <= |.p.|*|.q.|; theorem :: EUCLID_2:52 :: Triangle |.p+q.| <= |.p.| + |.q.|; theorem :: EUCLID_2:53 p,0.TOP-REAL n are_orthogonal; theorem :: EUCLID_2:54 0.TOP-REAL n,p are_orthogonal; theorem :: EUCLID_2:55 p,p are_orthogonal iff p=0.TOP-REAL n; theorem :: EUCLID_2:56 p, q are_orthogonal implies a*p,q are_orthogonal; theorem :: EUCLID_2:57 p, q are_orthogonal implies p,a*q are_orthogonal; theorem :: EUCLID_2:58 (for q holds p,q are_orthogonal) implies p=0.TOP-REAL n;