:: Functional Space Consisted by Continuous Functions on Topological Space :: by Hiroshi Yamazaki , Keiichi Miyajima and Yasunari Shidama :: :: Received March 30, 2021 :: Copyright (c) 2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies STRUCT_0, FUNCOP_1, NUMBERS, VALUED_0, PRE_TOPC, ORDINAL2, SUBSET_1, RCOMP_1, RELAT_1, XBOOLE_0, FUNCT_1, TARSKI, CARD_1, ARYTM_3, ARYTM_1, COMPLEX1, CONNSP_2, RLVECT_1, ALGSTR_0, FUNCSDOM, REAL_1, FUNCT_2, VALUED_1, RSSPACE, BINOP_1, SUPINF_2, REALSET1, ZFMISC_1, RSSPACE4, XXREAL_2, XXREAL_0, NORMSP_1, NORMSP_2, REWRITE1, NAT_1, MONOID_0, NORMSP_0, FRECHET, RSSPACE3, SEQ_2, TMAP_1, ORDEQ_01, PARTFUN1, SEQFUNC, C0SP2, LOPBAN_1, METRIC_1, RELAT_2, PRE_POLY, RLSUB_1, RLTOPSP1, SETFAM_1, FINSET_1, FCONT_1, CFCONT_1, SEQ_4, C0SP3; notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, SETFAM_1, RELAT_1, FUNCT_1, ORDINAL1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1, DOMAIN_1, FUNCOP_1, REALSET1, FINSET_1, NUMBERS, XCMPLX_0, XXREAL_0, XREAL_0, COMPLEX1, XXREAL_2, VALUED_0, SEQ_2, SEQ_4, RCOMP_1, SEQFUNC, STRUCT_0, ALGSTR_0, PRE_POLY, RLVECT_1, RLSUB_1, NORMSP_0, NORMSP_1, NFCONT_1, PRE_TOPC, TOPS_2, COMPTS_1, FRECHET, FRECHET2, VFUNCT_1, CONNSP_2, RUSUB_4, TMAP_1, CONVEX1, RLTOPSP1, RSSPACE, RSSPACE3, LOPBAN_1, NORMSP_2, MONOID_0, RSSPACE4, SEQFUNC2; constructors REALSET1, RSSPACE3, COMPLEX1, RCOMP_1, C0SP1, FRECHET, FRECHET2, NFCONT_1, SEQFUNC, MEASURE6, TOPMETR, SEQ_4, COMPTS_1, COMSEQ_2, NORMSP_2, VFUNCT_1, TMAP_1, RUSUB_4, CONVEX1, TOPS_2, MONOID_0, RSSPACE4, PRE_POLY, SEQFUNC2; registrations XBOOLE_0, SUBSET_1, STRUCT_0, PRE_TOPC, XREAL_0, REALSET1, NUMBERS, ORDINAL1, VALUED_0, PSCOMP_1, XXREAL_0, FUNCT_2, XXREAL_2, RELSET_1, WAYBEL_2, VFUNCT_1, NORMSP_0, NORMSP_1, NORMSP_2, RLVECT_1, RLTOPSP1, BORSUK_1, MONOID_0, RSSPACE4; requirements NUMERALS, BOOLE, SUBSET, ARITHM, REAL; begin :: Real Vector Space of Continuous Functions reserve S for non empty TopSpace, T for LinearTopSpace, X for non empty Subset of the carrier of S; theorem :: C0SP3:1 for X be non empty TopSpace, S be non empty LinearTopSpace, f,g be Function of X,S, x be Point of X st f is_continuous_at x & g is_continuous_at x holds f+g is_continuous_at x; theorem :: C0SP3:2 for X be non empty TopSpace, S be non empty LinearTopSpace, f be Function of X,S, x be Point of X, a be Real st f is_continuous_at x holds a(#)f is_continuous_at x; theorem :: C0SP3:3 for X be non empty TopSpace, S be non empty LinearTopSpace, f,g be Function of X,S st f is continuous & g is continuous holds f+g is continuous; theorem :: C0SP3:4 for X be non empty TopSpace, S be non empty LinearTopSpace, f be Function of X,S, a be Real st f is continuous holds a(#)f is continuous; definition let S be non empty TopSpace, T be non empty LinearTopSpace; func ContinuousFunctions(S,T) -> Subset of RealVectSpace(the carrier of S,T) equals :: C0SP3:def 1 { f where f is Function of the carrier of S, the carrier of T :f is continuous }; end; registration let S be non empty TopSpace, T be non empty LinearTopSpace; cluster ContinuousFunctions(S,T) -> non empty functional; end; theorem :: C0SP3:5 for S be non empty TopSpace, T be non empty LinearTopSpace holds ContinuousFunctions(S,T) is linearly-closed; theorem :: C0SP3:6 for S be non empty TopSpace, T be non empty LinearTopSpace holds RLSStruct (# ContinuousFunctions(S,T), Zero_(ContinuousFunctions(S,T),RealVectSpace(the carrier of S,T)), Add_(ContinuousFunctions(S,T),RealVectSpace(the carrier of S,T)), Mult_(ContinuousFunctions(S,T), RealVectSpace(the carrier of S,T)) #) is Subspace of RealVectSpace(the carrier of S,T); registration let S be non empty TopSpace, T be non empty LinearTopSpace; cluster RLSStruct (# ContinuousFunctions(S,T), Zero_(ContinuousFunctions(S,T),RealVectSpace(the carrier of S,T)), Add_(ContinuousFunctions(S,T), RealVectSpace(the carrier of S,T)), Mult_(ContinuousFunctions(S,T), RealVectSpace(the carrier of S,T)) #) -> Abelian add-associative right_zeroed right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital; end; definition let S be non empty TopSpace, T be non empty LinearTopSpace; func R_VectorSpace_of_ContinuousFunctions(S,T) -> strict RealLinearSpace equals :: C0SP3:def 2 RLSStruct (# ContinuousFunctions(S,T), Zero_(ContinuousFunctions(S,T),RealVectSpace(the carrier of S,T)), Add_(ContinuousFunctions(S,T), RealVectSpace(the carrier of S,T)), Mult_(ContinuousFunctions(S,T), RealVectSpace(the carrier of S,T)) #); end; registration let S be non empty TopSpace, T be non empty LinearTopSpace; cluster R_VectorSpace_of_ContinuousFunctions(S,T) -> constituted-Functions; end; definition let S be non empty TopSpace, T be non empty LinearTopSpace, f be VECTOR of R_VectorSpace_of_ContinuousFunctions(S,T); let v be Element of S; redefine func f .v -> VECTOR of T; end; theorem :: C0SP3:7 for S be non empty TopSpace, T be non empty LinearTopSpace for f,g,h be VECTOR of R_VectorSpace_of_ContinuousFunctions(S,T) holds h = f+g iff for x be Element of S holds h.x = f.x + g.x; theorem :: C0SP3:8 for S be non empty TopSpace, T be non empty LinearTopSpace for f,h be VECTOR of R_VectorSpace_of_ContinuousFunctions(S,T) for a be Real holds h = a*f iff for x be Element of S holds h.x = a * f.x; theorem :: C0SP3:9 for S be non empty TopSpace, T be non empty LinearTopSpace holds 0. R_VectorSpace_of_ContinuousFunctions(S,T) = (the carrier of S) --> 0.T; registration let S be non empty TopSpace, T be non empty LinearTopSpace; cluster the carrier of R_VectorSpace_of_ContinuousFunctions(S,T) -> functional; end; ::::::::::::Norm Space version:::::::::::::::::::::::::::: begin :: Real Vector Space of Continuous Functions reserve S,T for RealNormSpace, X for non empty Subset of the carrier of S; theorem :: C0SP3:10 for x being Point of T holds (the carrier of S) --> x is_continuous_on the carrier of S; definition let S,T be RealNormSpace; func ContinuousFunctions(S,T) -> Subset of RealVectSpace(the carrier of S,T) equals :: C0SP3:def 3 { f where f is Function of the carrier of S, the carrier of T :f is_continuous_on the carrier of S }; end; registration let S,T be RealNormSpace; cluster ContinuousFunctions(S,T) -> non empty functional; end; theorem :: C0SP3:11 for S,T be RealNormSpace holds ContinuousFunctions(S,T) is linearly-closed; theorem :: C0SP3:12 for S,T be RealNormSpace holds RLSStruct (# ContinuousFunctions(S,T), Zero_(ContinuousFunctions(S,T),RealVectSpace(the carrier of S,T)), Add_(ContinuousFunctions(S,T),RealVectSpace(the carrier of S,T)), Mult_(ContinuousFunctions(S,T), RealVectSpace(the carrier of S,T)) #) is Subspace of RealVectSpace(the carrier of S,T); registration let S,T be RealNormSpace; cluster RLSStruct (# ContinuousFunctions(S,T), Zero_(ContinuousFunctions(S,T),RealVectSpace(the carrier of S,T)), Add_(ContinuousFunctions(S,T), RealVectSpace(the carrier of S,T)), Mult_(ContinuousFunctions(S,T), RealVectSpace(the carrier of S,T)) #) -> Abelian add-associative right_zeroed right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital; end; definition let S,T be RealNormSpace; func R_VectorSpace_of_ContinuousFunctions(S,T) -> strict RealLinearSpace equals :: C0SP3:def 4 RLSStruct (# ContinuousFunctions(S,T), Zero_(ContinuousFunctions(S,T),RealVectSpace(the carrier of S,T)), Add_(ContinuousFunctions(S,T), RealVectSpace(the carrier of S,T)), Mult_(ContinuousFunctions(S,T), RealVectSpace(the carrier of S,T)) #); end; registration let S,T be RealNormSpace; cluster R_VectorSpace_of_ContinuousFunctions(S,T) -> constituted-Functions; end; definition let S,T be RealNormSpace, f be VECTOR of R_VectorSpace_of_ContinuousFunctions(S,T); let v be Element of S; redefine func f .v -> VECTOR of T; end; theorem :: C0SP3:13 for S,T be RealNormSpace for f,g,h be VECTOR of R_VectorSpace_of_ContinuousFunctions(S,T) holds h = f+g iff for x be Element of S holds h.x = f.x + g.x; theorem :: C0SP3:14 for S,T be RealNormSpace for f,h be VECTOR of R_VectorSpace_of_ContinuousFunctions(S,T) for a be Real holds h = a*f iff for x be Element of S holds h.x = a * f.x; theorem :: C0SP3:15 for S,T be RealNormSpace holds R_VectorSpace_of_ContinuousFunctions(S,T) is Subspace of RealVectSpace(the carrier of S,T); theorem :: C0SP3:16 for S,T be RealNormSpace holds 0. R_VectorSpace_of_ContinuousFunctions(S,T) = (the carrier of S) --> 0.T; definition let S,T be RealNormSpace; let f be object such that f in ContinuousFunctions(S,T); func modetrans(f,S,T) -> Function of S,T means :: C0SP3:def 5 it = f & it is_continuous_on the carrier of S; end; begin :: Normed Topological Linear Space definition struct(RLTopStruct,NORMSTR) RLNormTopStruct (# carrier -> set, ZeroF -> Element of the carrier, addF -> BinOp of the carrier, Mult -> Function of [:REAL, the carrier:],the carrier, topology -> Subset-Family of the carrier, normF -> Function of the carrier,REAL #); end; registration let X be non empty set, O be Element of X, F be BinOp of X, G be Function of [:REAL,X:],X, T be Subset-Family of X, N be Function of X,REAL; cluster RLNormTopStruct (# X,O,F,G,T,N #) -> non empty; end; registration cluster strict non empty for RLNormTopStruct; end; definition let X be non empty RLNormTopStruct; attr X is norm-generated means :: C0SP3:def 6 ex RNS be RealNormSpace st RNS = the NORMSTR of X & the topology of X = the topology of TopSpaceNorm RNS; end; registration cluster strict add-continuous Mult-continuous TopSpace-like Abelian add-associative right_zeroed right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like norm-generated T_2 for non empty RLNormTopStruct; end; definition mode NormedLinearTopSpace is strict add-continuous Mult-continuous TopSpace-like Abelian add-associative right_zeroed right_complementable vector-distributive scalar-distributive scalar-associative scalar-unital discerning reflexive RealNormSpace-like norm-generated T_2 non empty RLNormTopStruct; end; theorem :: C0SP3:17 for X be NormedLinearTopSpace holds X is LinearTopSpace; theorem :: C0SP3:18 for X be NormedLinearTopSpace holds X is RealNormSpace; theorem :: C0SP3:19 for X being NormedLinearTopSpace, RNS being RealNormSpace st RNS = the NORMSTR of X for x,y be Point of X, x1,y1 be Point of RNS, a be Real st x1=x & y1=y holds x+y = x1+y1 & a*x = a*x1 & x-y = x1-y1 & ||.x.|| = ||.x1.||; theorem :: C0SP3:20 for X being NormedLinearTopSpace, S being sequence of X, x being Point of X holds S is_convergent_to x iff for r being Real st 0 < r holds ex m being Nat st for n being Nat st m <= n holds ||.((S . n) - x).|| < r; theorem :: C0SP3:21 for X being NormedLinearTopSpace, S being sequence of X, x being Point of X holds S is convergent & x=lim S iff for r being Real st 0 < r holds ex m being Nat st for n being Nat st m <= n holds ||.((S . n) - x).|| < r; theorem :: C0SP3:22 for X being NormedLinearTopSpace, S being sequence of X st S is convergent holds for r being Real st 0 < r holds ex m being Nat st for n being Nat st m <= n holds ||.(S . n) - (lim S) .|| < r; theorem :: C0SP3:23 for X being NormedLinearTopSpace, V being Subset of X holds V is open iff for x being Point of X st x in V holds ex r being Real st r > 0 & { y where y is Point of X : ||.(x - y).|| < r } c= V; theorem :: C0SP3:24 for X being NormedLinearTopSpace for x being Point of X for r being Real for V being Subset of X st V = { y where y is Point of X : ||.(x - y).|| < r } holds V is open; theorem :: C0SP3:25 for X being NormedLinearTopSpace for x being Point of X for r being Real for V being Subset of X st V = { y where y is Point of X : ||.(x - y).|| <= r } holds V is closed; theorem :: C0SP3:26 for X being NormedLinearTopSpace, RNS being RealNormSpace, t being sequence of X, s being sequence of RNS st RNS = the NORMSTR of X & t=s & t is convergent holds s is convergent & lim s = lim t; theorem :: C0SP3:27 for X being NormedLinearTopSpace, RNS being RealNormSpace, s being sequence of X, t being sequence of RNS st RNS = the NORMSTR of X & s=t holds s is convergent iff t is convergent; theorem :: C0SP3:28 for X being NormedLinearTopSpace, V being Subset of X holds V is closed iff for s1 being sequence of X st rng s1 c= V & s1 is convergent holds lim s1 in V; theorem :: C0SP3:29 for X being NormedLinearTopSpace, RNS be RealNormSpace, V being Subset of X, W being Subset of RNS st RNS = the NORMSTR of X & the topology of X = the topology of (TopSpaceNorm RNS) & V = W holds V is closed iff W is closed; theorem :: C0SP3:30 for X being NormedLinearTopSpace, V be Subset of X, x being Point of X holds ( V is a_neighborhood of x iff ( ex r being Real st r > 0 & { y where y is Point of X : ||.y-x.|| < r } c= V )); theorem :: C0SP3:31 for X being NormedLinearTopSpace, V being Subset of X holds V is compact iff for s1 being sequence of X st rng s1 c= V holds ex s2 being sequence of X st s2 is subsequence of s1 & s2 is convergent & lim s2 in V; theorem :: C0SP3:32 for X being NormedLinearTopSpace, RNS be RealNormSpace, V being Subset of X, W being Subset of RNS st RNS = the NORMSTR of X & the topology of X = the topology of TopSpaceNorm RNS & V = W holds V is compact iff W is compact; begin :: Real Norm Space of Continuous Functions theorem :: C0SP3:33 for X, X1 being set for S being RealNormSpace for f being PartFunc of S,REAL st f is_continuous_on X & X1 c= X holds f is_continuous_on X1; theorem :: C0SP3:34 for S be non empty compact TopSpace,T be NormedLinearTopSpace holds for x being set st x in ContinuousFunctions(S,T) holds x in BoundedFunctions (the carrier of S,T); theorem :: C0SP3:35 for S be non empty compact TopSpace,T be NormedLinearTopSpace holds (R_VectorSpace_of_ContinuousFunctions(S,T) is Subspace of R_VectorSpace_of_BoundedFunctions(the carrier of S,T)); definition let S be non empty compact TopSpace,T be NormedLinearTopSpace; func ContinuousFunctionsNorm(S,T) -> Function of (ContinuousFunctions(S,T)),REAL equals :: C0SP3:def 7 (BoundedFunctionsNorm(the carrier of S,T)) | (ContinuousFunctions(S,T)); end; definition let S be non empty compact TopSpace,T be NormedLinearTopSpace; func R_NormSpace_of_ContinuousFunctions(S,T) -> strict NORMSTR equals :: C0SP3:def 8 NORMSTR (# ContinuousFunctions(S,T), Zero_(ContinuousFunctions(S,T),RealVectSpace(the carrier of S,T)), Add_(ContinuousFunctions(S,T),RealVectSpace(the carrier of S,T)), Mult_(ContinuousFunctions(S,T),RealVectSpace(the carrier of S,T)), ContinuousFunctionsNorm(S,T) #); end; registration let S be non empty compact TopSpace,T be NormedLinearTopSpace; cluster R_NormSpace_of_ContinuousFunctions(S,T) -> non empty; end; theorem :: C0SP3:36 for S be non empty compact TopSpace,T be NormedLinearTopSpace for x be Point of R_NormSpace_of_ContinuousFunctions(S,T), y be Point of R_NormSpace_of_BoundedFunctions(the carrier of S,T) st x=y holds ||.x.||= ||.y.||; theorem :: C0SP3:37 for S be non empty compact TopSpace, T be NormedLinearTopSpace, f be Point of R_NormSpace_of_ContinuousFunctions(S,T), g be Function of S,T st f=g holds for t be Point of S holds ||.g.t.|| <= ||.f.||; theorem :: C0SP3:38 for S be non empty compact TopSpace,T be NormedLinearTopSpace for x1,x2 be Point of R_NormSpace_of_ContinuousFunctions(S,T), y1,y2 be Point of R_NormSpace_of_BoundedFunctions(the carrier of S,T) st x1=y1 & x2=y2 holds x1+x2=y1+y2; theorem :: C0SP3:39 for S be non empty compact TopSpace,T be NormedLinearTopSpace for a be Real, x be Point of R_NormSpace_of_ContinuousFunctions(S,T), y be Point of R_NormSpace_of_BoundedFunctions(the carrier of S,T) st x=y holds a*x=a*y; registration let S be non empty compact TopSpace,T be NormedLinearTopSpace; cluster R_NormSpace_of_ContinuousFunctions(S,T) -> non empty right_complementable Abelian add-associative right_zeroed vector-distributive scalar-distributive scalar-associative scalar-unital; end; theorem :: C0SP3:40 for S be non empty compact TopSpace,T be NormedLinearTopSpace holds (the carrier of S) --> 0.T = 0.R_NormSpace_of_ContinuousFunctions(S,T); theorem :: C0SP3:41 for S be non empty compact TopSpace,T be NormedLinearTopSpace holds 0.R_NormSpace_of_ContinuousFunctions(S,T) = 0.R_NormSpace_of_BoundedFunctions(the carrier of S,T); theorem :: C0SP3:42 for S be non empty compact TopSpace,T be NormedLinearTopSpace for F be Point of R_NormSpace_of_ContinuousFunctions(S,T) holds 0 <= ||.F.||; theorem :: C0SP3:43 for S be non empty compact TopSpace,T be NormedLinearTopSpace for F be Point of R_NormSpace_of_ContinuousFunctions(S,T) holds F = 0.R_NormSpace_of_ContinuousFunctions(S,T) implies 0 = ||.F.||; theorem :: C0SP3:44 for S be non empty compact TopSpace,T be NormedLinearTopSpace for F,G,H being Point of R_NormSpace_of_ContinuousFunctions(S,T) for f,g,h be Function of S,T holds (f=F & g=G & h=H implies (H = F+G iff for x be Element of S holds h.x = f.x + g.x)); theorem :: C0SP3:45 for a be Real for S be non empty compact TopSpace,T be NormedLinearTopSpace for F,G being Point of R_NormSpace_of_ContinuousFunctions(S,T) for f,g being Function of S,T holds (f=F & g=G implies ( G = a*F iff for x be Element of S holds g.x = a*f.x )); theorem :: C0SP3:46 for a being Real for S be non empty compact TopSpace,T be NormedLinearTopSpace for F,G being Point of R_NormSpace_of_ContinuousFunctions(S,T) holds ( ||.F.|| = 0 iff F = 0.R_NormSpace_of_ContinuousFunctions(S,T)) & (||.a*F.|| = |.a.| * ||.F.|| & ||.F+G.|| <= ||.F.|| + ||.G.||); registration let S be non empty compact TopSpace,T be NormedLinearTopSpace; cluster R_NormSpace_of_ContinuousFunctions(S,T) -> reflexive discerning RealNormSpace-like; end; theorem :: C0SP3:47 for S be non empty compact TopSpace,T be NormedLinearTopSpace for x1,x2 be Point of R_NormSpace_of_ContinuousFunctions(S,T), y1,y2 be Point of R_NormSpace_of_BoundedFunctions(the carrier of S,T) st x1=y1 & x2=y2 holds x1-x2=y1-y2; theorem :: C0SP3:48 for S be non empty compact TopSpace,T be NormedLinearTopSpace for F,G,H be Point of R_NormSpace_of_ContinuousFunctions(S,T) for f,g,h be Function of S,T holds f=F & g=G & h=H implies (H = F-G iff (for x be Element of S holds h.x = f.x - g.x)); theorem :: C0SP3:49 for S be non empty TopSpace,T be NormedLinearTopSpace, H be Functional_Sequence of the carrier of S,the carrier of T, LimH be Function of S,T st H is_unif_conv_on (the carrier of S) & ( for n be Nat holds ex Hn be Function of S,T st Hn = H.n & Hn is continuous ) & LimH = lim(H,the carrier of S) holds LimH is continuous; theorem :: C0SP3:50 for S be non empty compact TopSpace,T be NormedLinearTopSpace holds for Y be Subset of the carrier of R_NormSpace_of_BoundedFunctions(the carrier of S,T) st Y = ContinuousFunctions(S,T) holds Y is closed; theorem :: C0SP3:51 for S be non empty compact TopSpace, T be NormedLinearTopSpace st T is complete holds for seq be sequence of R_NormSpace_of_ContinuousFunctions(S,T) st seq is Cauchy_sequence_by_Norm holds seq is convergent; theorem :: C0SP3:52 for S be non empty compact TopSpace, T be NormedLinearTopSpace st T is complete holds R_NormSpace_of_ContinuousFunctions(S,T) is complete; begin :: Some Properties of Support definition let X be ZeroStr; let f be (the carrier of X)-valued Function; func support f -> set means :: C0SP3:def 9 for x being object holds x in it iff x in dom f & f /. x <> 0.X; end; theorem :: C0SP3:53 for X be ZeroStr, f be (the carrier of X)-valued Function holds support f c= dom f; definition let X be non empty TopSpace, T be RealLinearSpace; let f be Function of X,T; redefine func support f -> Subset of X; end; theorem :: C0SP3:54 for X be non empty TopSpace, T be RealLinearSpace for f,g be Function of X,T holds support(f+g) c= support(f) \/ support(g); theorem :: C0SP3:55 for X be non empty TopSpace,T be RealLinearSpace, f be Function of X,T, a be Real holds support(a(#)f) c= support(f); begin :: Space of Real-valued Continuous Functionals with Bounded Support definition let X be non empty TopSpace, T be NormedLinearTopSpace; func C_0_Functions(X,T) -> non empty Subset of RealVectSpace(the carrier of X,T) equals :: C0SP3:def 10 { f where f is Function of the carrier of X, the carrier of T : f is continuous & ex Y be non empty Subset of X st Y is compact & Cl support f c= Y }; end; theorem :: C0SP3:56 for X be non empty TopSpace,T be NormedLinearTopSpace for v,u be Element of RealVectSpace(the carrier of X,T) st v in C_0_Functions(X,T) & u in C_0_Functions(X,T) holds v + u in C_0_Functions(X,T); theorem :: C0SP3:57 for X be non empty TopSpace,T be NormedLinearTopSpace for a be Real,u be Element of RealVectSpace(the carrier of X,T) st u in C_0_Functions(X,T) holds a * u in C_0_Functions(X,T); theorem :: C0SP3:58 for X be non empty TopSpace,T be NormedLinearTopSpace holds C_0_Functions(X,T) is linearly-closed; registration let X be non empty TopSpace,T be NormedLinearTopSpace; cluster C_0_Functions(X,T) -> non empty linearly-closed; end; definition let X be non empty TopSpace,T be NormedLinearTopSpace; func R_VectorSpace_of_C_0_Functions(X,T) -> RealLinearSpace equals :: C0SP3:def 11 RLSStruct (# C_0_Functions(X,T), Zero_(C_0_Functions(X,T), RealVectSpace(the carrier of X,T)), Add_(C_0_Functions(X,T), RealVectSpace(the carrier of X,T)), Mult_(C_0_Functions(X,T), RealVectSpace(the carrier of X,T)) #); end; theorem :: C0SP3:59 for X be non empty TopSpace,T be NormedLinearTopSpace holds R_VectorSpace_of_C_0_Functions(X,T) is Subspace of RealVectSpace(the carrier of X,T); theorem :: C0SP3:60 for X be non empty TopSpace,T be NormedLinearTopSpace for x being set st x in C_0_Functions(X,T) holds x in BoundedFunctions(the carrier of X,T); definition let X be non empty TopSpace, T be NormedLinearTopSpace; func C_0_FunctionsNorm(X,T) -> Function of (C_0_Functions(X,T)),REAL equals :: C0SP3:def 12 (BoundedFunctionsNorm(the carrier of X,T)) | (C_0_Functions(X,T)); end; definition let X be non empty TopSpace,T be NormedLinearTopSpace; func R_Normed_Space_of_C_0_Functions (X,T) -> NORMSTR equals :: C0SP3:def 13 NORMSTR (# C_0_Functions(X,T), Zero_(C_0_Functions(X,T), RealVectSpace(the carrier of X,T)), Add_(C_0_Functions(X,T), RealVectSpace(the carrier of X,T)), Mult_(C_0_Functions(X,T), RealVectSpace(the carrier of X,T)), C_0_FunctionsNorm(X,T) #); end; registration let X be non empty TopSpace,T be NormedLinearTopSpace; cluster R_Normed_Space_of_C_0_Functions (X,T) -> strict non empty; end; theorem :: C0SP3:61 for X be non empty TopSpace, T be NormedLinearTopSpace for x being set st x in C_0_Functions(X,T) holds x in ContinuousFunctions(X,T); theorem :: C0SP3:62 for X be non empty TopSpace, T be NormedLinearTopSpace holds 0.R_VectorSpace_of_C_0_Functions(X,T) = X -->0.T; theorem :: C0SP3:63 for X be non empty TopSpace,T be NormedLinearTopSpace holds 0.R_Normed_Space_of_C_0_Functions (X,T) = X --> 0.T; theorem :: C0SP3:64 for X be non empty TopSpace,T be NormedLinearTopSpace for x1,x2 be Point of R_Normed_Space_of_C_0_Functions (X,T), y1,y2 be Point of R_NormSpace_of_BoundedFunctions(the carrier of X,T) st x1=y1 & x2=y2 holds x1+x2=y1+y2; theorem :: C0SP3:65 for X be non empty TopSpace,T be NormedLinearTopSpace for a be Real,x be Point of R_Normed_Space_of_C_0_Functions (X,T), y be Point of R_NormSpace_of_BoundedFunctions(the carrier of X,T) st x=y holds a*x=a*y; theorem :: C0SP3:66 for a be Real for X be non empty TopSpace,T be NormedLinearTopSpace for F,G be Point of R_Normed_Space_of_C_0_Functions (X,T) holds (||.F.|| = 0 iff F = 0.R_Normed_Space_of_C_0_Functions (X,T) ) & ||.a*F.|| = |.a.| * ||.F.|| & ||.F+G.|| <= ||.F.|| + ||.G.||; theorem :: C0SP3:67 for X be non empty TopSpace,T be NormedLinearTopSpace holds R_Normed_Space_of_C_0_Functions (X,T) is RealNormSpace-like; registration let X be non empty TopSpace,T be NormedLinearTopSpace; cluster R_Normed_Space_of_C_0_Functions (X,T) -> reflexive discerning RealNormSpace-like vector-distributive scalar-distributive scalar-associative scalar-unital Abelian add-associative right_zeroed right_complementable; end; theorem :: C0SP3:68 for X be non empty TopSpace,T be NormedLinearTopSpace holds R_Normed_Space_of_C_0_Functions (X,T) is RealNormSpace;