:: Brouwer Fixed Point Theorem for Disks on the Plane :: by Artur Korni{\l}owicz and Yasunari Shidama :: :: Received February 22, 2005 :: Copyright (c) 2005-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies NUMBERS, EUCLID, SUBSET_1, PRE_TOPC, XBOOLE_0, ZFMISC_1, TARSKI, STRUCT_0, METRIC_1, CARD_1, COMPLEX1, ARYTM_1, RELAT_1, XXREAL_0, CONVEX1, TOPREALB, PROB_1, RVSUM_1, ARYTM_3, SQUARE_1, FUNCT_3, CARD_3, POLYEQ_1, REAL_1, SUPINF_2, MCART_1, FUNCT_1, ABIAN, BORSUK_1, ALGSTR_1, FUNCOP_1, BORSUK_2, ORDINAL2, TOPALG_1, EQREL_1, WAYBEL20, RCOMP_1, TOPREALA, PSCOMP_1, TOPMETR, XXREAL_1, VALUED_1, PARTFUN3, PARTFUN1, TOPS_2, SETFAM_1, BROUWER, FUNCT_2, NAT_1, XCMPLX_0; notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, ORDINAL1, EQREL_1, COMPLEX1, SQUARE_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1, FUNCT_3, FUNCOP_1, PSCOMP_1, NUMBERS, XCMPLX_0, XREAL_0, REAL_1, RVSUM_1, RCOMP_1, VALUED_1, STRUCT_0, PRE_TOPC, BORSUK_1, TOPS_2, JORDAN1, QUIN_1, POLYEQ_1, BORSUK_2, TOPALG_1, TOPREAL9, TOPALG_2, TOPREALA, TOPREALB, PARTFUN3, ABIAN, XXREAL_0, RLVECT_1, EUCLID; constructors SQUARE_1, BINOP_2, COMPLEX1, QUIN_1, POLYEQ_1, ABIAN, MONOID_0, TOPALG_1, TOPREAL9, TOPREALA, TOPREALB, PARTFUN3, BORSUK_6, CONVEX1, PSCOMP_1, REAL_1, BINOP_1; registrations SUBSET_1, FUNCT_1, FUNCT_2, NUMBERS, XXREAL_0, XREAL_0, SQUARE_1, NAT_1, MEMBERED, QUIN_1, RCOMP_1, STRUCT_0, PRE_TOPC, TOPS_1, BORSUK_1, TEX_1, MONOID_0, EUCLID, TOPMETR, PSCOMP_1, BORSUK_2, TOPALG_1, TOPREAL9, TOPREALB, PARTFUN3, TOPALG_5, VALUED_0, ZFMISC_1, RELSET_1, PARTFUN4, VALUED_1, RELAT_1, ORDINAL1; requirements NUMERALS, BOOLE, SUBSET, ARITHM, REAL; begin reserve n for Element of NAT, a, r for Real, x for Point of TOP-REAL n; definition let S, T be non empty TopSpace; func DiffElems(S,T) -> Subset of [:S,T:] equals :: BROUWER:def 1 {[s,t] where s is Point of S, t is Point of T: s <> t}; end; theorem :: BROUWER:1 for S, T being non empty TopSpace, x being set holds x in DiffElems(S, T) iff ex s being Point of S, t being Point of T st x = [s,t] & s <> t; registration let S be non trivial TopSpace; let T be non empty TopSpace; cluster DiffElems(S,T) -> non empty; end; registration let S be non empty TopSpace; let T be non trivial TopSpace; cluster DiffElems(S,T) -> non empty; end; theorem :: BROUWER:2 cl_Ball(x,0) = {x}; definition let n be Nat, x be Point of TOP-REAL n, r be Real; func Tdisk(x,r) -> SubSpace of TOP-REAL n equals :: BROUWER:def 2 (TOP-REAL n) | cl_Ball(x,r); end; registration let n be Nat, x be Point of TOP-REAL n; let r be non negative Real; cluster Tdisk(x,r) -> non empty; end; theorem :: BROUWER:3 the carrier of Tdisk(x,r) = cl_Ball(x,r); registration let n be Element of NAT, x be Point of TOP-REAL n, r be Real; cluster Tdisk(x,r) -> convex; end; reserve n for Element of NAT, r for non negative Real, s, t, x for Point of TOP-REAL n; theorem :: BROUWER:4 s <> t & s is Point of Tdisk(x,r) & s is not Point of Tcircle(x,r ) implies ex e being Point of Tcircle(x,r) st {e} = halfline(s,t) /\ Sphere(x,r ); theorem :: BROUWER:5 s <> t & s in the carrier of Tcircle(x,r) & t is Point of Tdisk(x ,r) implies ex e being Point of Tcircle(x,r) st e <> s & {s,e} = halfline(s,t) /\ Sphere(x,r); definition let n be non zero Element of NAT, o be Point of TOP-REAL n, s, t be Point of TOP-REAL n, r be non negative Real; assume that s is Point of Tdisk(o,r) and t is Point of Tdisk(o,r) and s <> t; func HC(s,t,o,r) -> Point of TOP-REAL n means :: BROUWER:def 3 it in halfline(s,t) /\ Sphere(o,r) & it <> s; end; reserve n for non zero Element of NAT, s, t, o for Point of TOP-REAL n; theorem :: BROUWER:6 s is Point of Tdisk(o,r) & t is Point of Tdisk(o,r) & s <> t implies HC(s,t,o,r) is Point of Tcircle(o,r); theorem :: BROUWER:7 for S, T, O being Element of REAL n st S = s & T = t & O = o holds s is Point of Tdisk(o,r) & t is Point of Tdisk(o,r) & s <> t & a = (-|(t-s,s-o)| + sqrt(|(t-s,s-o)|^2-(Sum sqr (T-S))*(Sum sqr (S-O)-r^2))) / Sum sqr (T-S) implies HC(s,t,o,r) = (1-a)*s+a*t; theorem :: BROUWER:8 for r1, r2, s1, s2 being Real, s, t, o being Point of TOP-REAL 2 holds s is Point of Tdisk(o,r) & t is Point of Tdisk(o,r) & s <> t & r1 = t`1-s`1 & r2 = t`2-s`2 & s1 = s`1-o`1 & s2 = s`2-o`2 & a = (-(s1*r1+s2*r2) +sqrt((s1*r1+s2*r2)^2-(r1^2+r2^2)*(s1^2+s2^2-r^2))) / (r1^2+r2^2) implies HC(s, t,o,r) = |[ s`1+a*r1, s`2+a*r2 ]|; definition let n be non zero Element of NAT, o be Point of TOP-REAL n, r be non negative Real; let x be Point of Tdisk(o,r); let f be Function of Tdisk(o,r), Tdisk(o,r) such that not x is_a_fixpoint_of f; func HC(x,f) -> Point of Tcircle(o,r) means :: BROUWER:def 4 ex y, z being Point of TOP-REAL n st y = x & z = f.x & it = HC(z,y,o,r); end; theorem :: BROUWER:9 for x being Point of Tdisk(o,r), f being Function of Tdisk(o,r), Tdisk(o,r) st not x is_a_fixpoint_of f & x is Point of Tcircle(o,r) holds HC(x, f) = x; theorem :: BROUWER:10 for r being positive Real, o being Point of TOP-REAL 2, Y being non empty SubSpace of Tdisk(o,r) st Y = Tcircle(o,r) holds not Y is_a_retract_of Tdisk(o,r); definition let n be non zero Element of NAT; let r be non negative Real; let o be Point of TOP-REAL n; let f be Function of Tdisk(o,r), Tdisk(o,r); func BR-map(f) -> Function of Tdisk(o,r), Tcircle(o,r) means :: BROUWER:def 5 for x being Point of Tdisk(o,r) holds it.x = HC(x,f); end; theorem :: BROUWER:11 for o being Point of TOP-REAL n, x being Point of Tdisk(o,r), f being Function of Tdisk(o,r), Tdisk(o,r) st not x is_a_fixpoint_of f & x is Point of Tcircle(o,r) holds (BR-map(f)).x = x; theorem :: BROUWER:12 for f being continuous Function of Tdisk(o,r), Tdisk(o,r) holds f is without_fixpoints implies (BR-map(f)) | Sphere(o,r) = id Tcircle(o,r); theorem :: BROUWER:13 for r being positive Real, o being Point of TOP-REAL 2, f being continuous Function of Tdisk(o,r), Tdisk(o,r) holds f is without_fixpoints implies BR-map(f) is continuous; ::$N Brouwer Fixed Point Theorem theorem :: BROUWER:14 for r being non negative Real, o being Point of TOP-REAL 2, f being continuous Function of Tdisk(o,r), Tdisk(o,r) holds f is with_fixpoint; ::$N Brouwer Fixed Point Theorem for Disks on the Plane theorem :: BROUWER:15 for r being non negative Real, o being Point of TOP-REAL 2, f being continuous Function of Tdisk(o,r), Tdisk(o,r) ex x being Point of Tdisk(o ,r) st f.x = x;