:: Ascoli-Arzela's Theorem :: by Hiroshi Yamazaki , Keiichi Miyajima and Yasunari Shidama :: :: Received June 30, 2021 :: Copyright (c) 2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies ASCOLI, STRUCT_0, NUMBERS, PRE_TOPC, ORDINAL2, PCOMPS_1, NORMSP_0, SUBSET_1, RCOMP_1, RELAT_1, XBOOLE_0, FUNCT_1, TARSKI, CARD_1, ARYTM_3, ARYTM_1, REAL_1, FUNCT_2, ZFMISC_1, RSSPACE4, XXREAL_2, XXREAL_0, NORMSP_1, NORMSP_2, REWRITE1, NAT_1, ORDINAL4, RSSPACE3, SEQ_2, TMAP_1, ORDEQ_01, PARTFUN1, C0SP2, LOPBAN_1, METRIC_1, SETFAM_1, FINSET_1, METRIC_6, SEQ_4, TBSP_1, TOPMETR4, BHSP_3, C0SP3, UPROOTS, FINSEQ_1; notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, SETFAM_1, FUNCT_1, CARD_1, ORDINAL1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1, FINSET_1, NUMBERS, XCMPLX_0, XXREAL_0, XREAL_0, XXREAL_2, SEQ_4, STRUCT_0, PCOMPS_1, TBSP_1, RLVECT_1, NORMSP_0, NORMSP_1, NFCONT_1, PRE_TOPC, COMPTS_1, TOPS_2, METRIC_1, TMAP_1, TOPMETR, RSSPACE3, LOPBAN_1, NORMSP_2, RSSPACE4, NORMSP_3, TOPMETR4, C0SP3, METRIC_6, FINSEQ_1; constructors RSSPACE3, COMPLEX1, PCOMPS_1, TBSP_1, NFCONT_1, TOPMETR, SEQ_4, NORMSP_2, TMAP_1, TOPS_2, RSSPACE4, NORMSP_3, TOPMETR4, C0SP3, METRIC_6; registrations XBOOLE_0, SUBSET_1, STRUCT_0, PRE_TOPC, XREAL_0, NUMBERS, ORDINAL1, MEMBERED, VALUED_0, COMPTS_1, XXREAL_0, FUNCT_2, XXREAL_2, TOPMETR, RELSET_1, WAYBEL_2, XCMPLX_0, TOPS_1, RSSPACE4, NORMSP_3, C0SP3, TBSP_1, PCOMPS_1, CARD_1, NAT_1, FINSEQ_1, FINSET_1; requirements NUMERALS, BOOLE, SUBSET, ARITHM, REAL; begin :: Equicontinuousness and Equiboundedness of Continuous Functions reserve S, T for RealNormSpace; reserve F for Subset of Funcs(the carrier of S,the carrier of T); definition let X be non empty MetrSpace, Y be Subset of X; func Cl Y -> Subset of X means :: ASCOLI:def 1 ex Z be Subset of TopSpaceMetr X st Z = Y & it = Cl Z; end; theorem :: ASCOLI:1 for X be RealNormSpace, Y be Subset of X, Z be Subset of MetricSpaceNorm X st Y = Z holds Cl(Y) = Cl(Z); registration let X be non empty MetrSpace; let H be non empty Subset of X; cluster Cl(H) -> non empty; end; theorem :: ASCOLI:2 for S be TopSpace, F be FinSequence of bool the carrier of S st for i be Nat st i in Seg len F holds F/.i is compact holds union rng F is compact; theorem :: ASCOLI:3 for S be non empty TopSpace,T be NormedLinearTopSpace, f be Function of S,T, x be Point of S holds ( f is_continuous_at x iff for e be Real st 0 < e holds ex H being Subset of S st ( H is open & x in H & for y be Point of S st y in H holds ||.f.x-f.y.|| < e ) ); theorem :: ASCOLI:4 for S be non empty MetrSpace, V be non empty compact TopSpace, T be NormedLinearTopSpace, f be Function of V,T st V = TopSpaceMetr(S) holds f is continuous iff for e be Real st 0 < e holds ex d be Real st 0 < d & for x1,x2 be Point of S st dist(x1,x2) < d holds ||.f/.x1-f/.x2.|| < e; definition let S be non empty MetrSpace,T be RealNormSpace; let F be Subset of Funcs(the carrier of S,the carrier of T); attr F is equibounded means :: ASCOLI:def 2 ex K be Real st for f be Function of the carrier of S,the carrier of T st f in F holds for x be Element of S holds ||.f.x.|| <= K; end; definition let S be non empty MetrSpace, T be RealNormSpace; let F be Subset of Funcs(the carrier of S,the carrier of T); let x0 be Point of S; pred F is_equicontinuous_at x0 means :: ASCOLI:def 3 for e be Real st 0 < e ex d be Real st 0 < d & for f be Function of the carrier of S,the carrier of T st f in F holds for x be Point of S st dist(x,x0) < d holds ||.f.x-f.x0.|| < e; end; definition let S be non empty MetrSpace, T be RealNormSpace; let F be Subset of Funcs(the carrier of S,the carrier of T); attr F is equicontinuous means :: ASCOLI:def 4 for e be Real st 0 < e ex d be Real st 0 < d & for f be Function of the carrier of S,the carrier of T st f in F holds for x1,x2 be Point of S st dist(x1,x2) < d holds ||.f.x1-f.x2.|| < e; end; theorem :: ASCOLI:5 for S be non empty MetrSpace, T be RealNormSpace, F be Subset of Funcs(the carrier of S,the carrier of T) st TopSpaceMetr(S) is compact holds F is equicontinuous iff for x be Point of S holds F is_equicontinuous_at x; begin :: Ascoli-Arzela's Theorem reserve S,Z for RealNormSpace; reserve T for RealBanachSpace; reserve F for Subset of Funcs(the carrier of S,the carrier of T); theorem :: ASCOLI:6 for Z be RealNormSpace holds Z is complete iff MetricSpaceNorm Z is complete; theorem :: ASCOLI:7 for Z be RealNormSpace, H be non empty Subset of MetricSpaceNorm Z st Z is complete holds (MetricSpaceNorm Z) | Cl(H) is complete; theorem :: ASCOLI:8 for Z be RealNormSpace, H be non empty Subset of MetricSpaceNorm Z holds (MetricSpaceNorm Z) | H is totally_bounded iff (MetricSpaceNorm Z) | Cl(H) is totally_bounded; theorem :: ASCOLI:9 for Z be RealNormSpace, F be non empty Subset of Z, H be non empty Subset of MetricSpaceNorm Z st Z is complete & H = F & (MetricSpaceNorm Z) | H is totally_bounded holds Cl(H) is sequentially_compact & (MetricSpaceNorm Z) | Cl(H) is compact & Cl(F) is compact; theorem :: ASCOLI:10 for Z be RealNormSpace, F be non empty Subset of Z, H be non empty Subset of MetricSpaceNorm Z, T being Subset of TopSpaceNorm Z st Z is complete & H = F & H = T holds ( (MetricSpaceNorm Z) | H is totally_bounded iff Cl(H) is sequentially_compact) & ( (MetricSpaceNorm Z) | H is totally_bounded iff (MetricSpaceNorm Z) | Cl(H) is compact) & ( (MetricSpaceNorm Z) | H is totally_bounded iff Cl(F) is compact) & ( (MetricSpaceNorm Z) | H is totally_bounded iff Cl(T) is compact); theorem :: ASCOLI:11 for S be non empty compact TopSpace,T be NormedLinearTopSpace st T is complete holds for H be non empty Subset of (MetricSpaceNorm R_NormSpace_of_ContinuousFunctions(S,T)) holds Cl(H) is sequentially_compact iff (MetricSpaceNorm R_NormSpace_of_ContinuousFunctions(S,T) ) | H is totally_bounded; theorem :: ASCOLI:12 for S be non empty compact TopSpace,T be NormedLinearTopSpace st T is complete holds for F be non empty Subset of R_NormSpace_of_ContinuousFunctions(S,T), H be non empty Subset of MetricSpaceNorm R_NormSpace_of_ContinuousFunctions(S,T) st H = F holds Cl(F) is compact iff (MetricSpaceNorm R_NormSpace_of_ContinuousFunctions(S,T) ) | H is totally_bounded; theorem :: ASCOLI:13 for M be non empty MetrSpace,S be non empty compact TopSpace, T be NormedLinearTopSpace st S = TopSpaceMetr(M) & T is complete holds for G be Subset of Funcs(the carrier of M, the carrier of T), H be non empty Subset of MetricSpaceNorm R_NormSpace_of_ContinuousFunctions(S,T) st G = H & (MetricSpaceNorm R_NormSpace_of_ContinuousFunctions(S,T)) | H is totally_bounded holds G is equibounded & G is equicontinuous; theorem :: ASCOLI:14 for M be non empty MetrSpace,S be non empty compact TopSpace, T be NormedLinearTopSpace st S = TopSpaceMetr(M) & T is complete holds for G be Subset of Funcs(the carrier of M, the carrier of T), H be non empty Subset of MetricSpaceNorm R_NormSpace_of_ContinuousFunctions(S,T) st G = H & (MetricSpaceNorm R_NormSpace_of_ContinuousFunctions(S,T)) | H is totally_bounded holds ( for x be Point of S, Hx be non empty Subset of MetricSpaceNorm T st Hx = {f.x where f is Function of S,T :f in H } holds (MetricSpaceNorm T) | Hx is totally_bounded ) & G is equicontinuous; theorem :: ASCOLI:15 for T be NormedLinearTopSpace, RNS be RealNormSpace st RNS = the NORMSTR of T & the topology of T = the topology of TopSpaceNorm RNS holds distance_by_norm_of RNS = distance_by_norm_of T & MetricSpaceNorm RNS = MetricSpaceNorm T & TopSpaceNorm T = TopSpaceNorm RNS; theorem :: ASCOLI:16 for M be non empty MetrSpace,S be non empty compact TopSpace, T be NormedLinearTopSpace, G be Subset of Funcs(the carrier of M, the carrier of T), H be non empty Subset of MetricSpaceNorm R_NormSpace_of_ContinuousFunctions(S,T) st S = TopSpaceMetr(M) & T is complete & G = H holds (MetricSpaceNorm R_NormSpace_of_ContinuousFunctions(S,T)) | H is totally_bounded iff G is equicontinuous & for x be Point of S, Hx be non empty Subset of MetricSpaceNorm T st Hx = {f.x where f is Function of S,T :f in H } holds (MetricSpaceNorm T) | Cl(Hx) is compact; theorem :: ASCOLI:17 for M be non empty MetrSpace,S be non empty compact TopSpace, T be NormedLinearTopSpace, G be Subset of Funcs(the carrier of M, the carrier of T), H be non empty Subset of (MetricSpaceNorm R_NormSpace_of_ContinuousFunctions(S,T)) st S = TopSpaceMetr(M) & T is complete & G = H holds Cl(H) is sequentially_compact iff G is equicontinuous & for x be Point of S, Hx be non empty Subset of MetricSpaceNorm T st Hx = {f.x where f is Function of S,T :f in H } holds (MetricSpaceNorm T) | Cl(Hx) is compact; theorem :: ASCOLI:18 for M be non empty MetrSpace,S be non empty compact TopSpace, T be NormedLinearTopSpace, F be non empty Subset of R_NormSpace_of_ContinuousFunctions(S,T), G be Subset of Funcs(the carrier of M, the carrier of T) st S = TopSpaceMetr(M) & T is complete & G = F holds Cl(F) is compact iff G is equicontinuous & for x be Point of S, Fx be non empty Subset of MetricSpaceNorm T st Fx = {f.x where f is Function of S,T :f in F } holds (MetricSpaceNorm T) | Cl(Fx) is compact; theorem :: ASCOLI:19 for M be non empty MetrSpace,S be non empty compact TopSpace, T be NormedLinearTopSpace, F be non empty Subset of R_NormSpace_of_ContinuousFunctions(S,T), G be Subset of Funcs(the carrier of M, the carrier of T) st S = TopSpaceMetr(M) & T is complete & G = F holds Cl(F) is compact iff ( for x be Point of M holds G is_equicontinuous_at x ) & for x be Point of S, Fx be non empty Subset of MetricSpaceNorm T st Fx = {f.x where f is Function of S,T :f in F } holds (MetricSpaceNorm T) | Cl(Fx) is compact; theorem :: ASCOLI:20 for T be NormedLinearTopSpace holds T is compact iff TopSpaceNorm T is compact; theorem :: ASCOLI:21 for T be NormedLinearTopSpace, X be set holds X is compact Subset of T iff X is compact Subset of TopSpaceNorm T; theorem :: ASCOLI:22 for T be NormedLinearTopSpace st T is compact holds T is complete; registration cluster compact -> complete for NormedLinearTopSpace; end; theorem :: ASCOLI:23 for M be non empty MetrSpace,S be non empty compact TopSpace, T be NormedLinearTopSpace, U be compact Subset of T, F be non empty Subset of R_NormSpace_of_ContinuousFunctions(S,T), G be Subset of Funcs(the carrier of M, the carrier of T) st S = TopSpaceMetr(M) & T is complete & G = F & for f be Function st f in F holds rng f c= U holds ( Cl(F) is compact implies G is equibounded & G is equicontinuous ) & ( G is equicontinuous implies Cl(F) is compact );