:: Directed Geometrical Bundles and Their Analytical Representation :: by Grzegorz Lewandowski, Krzysztof Pra\.zmowski and Bo\.zena Lewandowska :: :: Received September 24, 1990 :: Copyright (c) 1990-2021 Association of Mizar Users :: (Stowarzyszenie Uzytkownikow Mizara, Bialystok, Poland). :: This code can be distributed under the GNU General Public Licence :: version 3.0 or later, or the Creative Commons Attribution-ShareAlike :: License version 3.0 or later, subject to the binding interpretation :: detailed in file COPYING.interpretation. :: See COPYING.GPL and COPYING.CC-BY-SA for the full text of these :: licenses, or see http://www.gnu.org/licenses/gpl.html and :: http://creativecommons.org/licenses/by-sa/3.0/. environ vocabularies XBOOLE_0, ANALOAF, SUBSET_1, STRUCT_0, ZFMISC_1, TDGROUP, DIRAF, BINOP_1, FUNCT_1, ALGSTR_0, SUPINF_2, ARYTM_3, RLVECT_1, ARYTM_1, VECTSP_1, MCART_1, PBOOLE, RELAT_1, TARSKI, AFVECT0; notations TARSKI, ZFMISC_1, SUBSET_1, STRUCT_0, ALGSTR_0, ANALOAF, TDGROUP, FUNCT_1, FUNCT_2, XTUPLE_0, MCART_1, BINOP_1, RELAT_1, VECTSP_1, RLVECT_1; constructors BINOP_1, DOMAIN_1, TDGROUP, RELSET_1, XTUPLE_0; registrations XBOOLE_0, SUBSET_1, RELSET_1, STRUCT_0, VECTSP_1, TDGROUP, RELAT_1, XTUPLE_0; requirements SUBSET, BOOLE; begin definition let IT be non empty AffinStruct; attr IT is WeakAffVect-like means :: AFVECT0:def 1 (for a,b,c being Element of IT st a ,b // c,c holds a=b) & (for a,b,c,d,p,q being Element of IT st a,b // p,q & c,d // p,q holds a,b // c,d) & (for a,b,c being Element of IT ex d being Element of IT st a,b // c,d) & (for a,b,c,a9,b9,c9 being Element of IT st a,b // a9,b9 & a ,c // a9,c9 holds b,c // b9,c9) & (for a,c being Element of IT ex b being Element of IT st a,b // b,c) & for a,b,c,d being Element of IT st a,b // c,d holds a,c // b,d; end; registration cluster strict WeakAffVect-like for non trivial AffinStruct; end; definition mode WeakAffVect is WeakAffVect-like non trivial AffinStruct; end; registration cluster AffVect-like -> WeakAffVect-like for non empty AffinStruct; end; reserve AFV for WeakAffVect; reserve a,b,c,d,e,f,a9,b9,c9,d9,f9,p,q,r,o,x99 for Element of AFV; :: :: Properties of Relation of Congruence of Vectors :: theorem :: AFVECT0:1 a,b // a,b; theorem :: AFVECT0:2 a,a // a,a; theorem :: AFVECT0:3 a,b // c,d implies c,d // a,b; theorem :: AFVECT0:4 a,b // a,c implies b = c; theorem :: AFVECT0:5 a,b // c,d & a,b // c,d9 implies d = d9; theorem :: AFVECT0:6 for a,b holds a,a // b,b; theorem :: AFVECT0:7 a,b // c,d implies b,a // d,c; theorem :: AFVECT0:8 a,b // c,d & a,c // b9,d implies b = b9; theorem :: AFVECT0:9 b,c // b9,c9 & a,d // b,c & a,d9 // b9,c9 implies d = d9; theorem :: AFVECT0:10 a,b // a9,b9 & c,d // b,a & c,d9 // b9,a9 implies d = d9; theorem :: AFVECT0:11 a,b // a9,b9 & c,d // c9,d9 & b,f // c,d & b9,f9 // c9,d9 implies a,f // a9,f9; theorem :: AFVECT0:12 a,b // a9,b9 & a,c // c9,b9 implies b,c // c9,a9; :: :: Relation of Maximal Distance :: definition let AFV; let a,b; pred MDist a,b means :: AFVECT0:def 2 a,b // b,a & a <> b; irreflexivity; symmetry; end; theorem :: AFVECT0:13 ex a,b st a<>b & not MDist a,b; theorem :: AFVECT0:14 MDist a,b & MDist a,c implies b = c or MDist b,c; theorem :: AFVECT0:15 MDist a,b & a,b // c,d implies MDist c,d; :: :: Midpoint Relation :: definition let AFV; let a,b,c; pred Mid a,b,c means :: AFVECT0:def 3 a,b // b,c; end; theorem :: AFVECT0:16 Mid a,b,c implies Mid c,b,a; theorem :: AFVECT0:17 Mid a,b,b iff a = b; theorem :: AFVECT0:18 Mid a,b,a iff a = b or MDist a,b; theorem :: AFVECT0:19 ex b st Mid a,b,c; theorem :: AFVECT0:20 Mid a,b,c & Mid a,b9,c implies b =b9 or MDist b,b9; theorem :: AFVECT0:21 ex c st Mid a,b,c; theorem :: AFVECT0:22 Mid a,b,c & Mid a,b,c9 implies c = c9; theorem :: AFVECT0:23 Mid a,b,c & MDist b,b9 implies Mid a,b9,c; theorem :: AFVECT0:24 Mid a,b,c & Mid a,b9,c9 & MDist b,b9 implies c = c9; theorem :: AFVECT0:25 Mid a,p,a9 & Mid b,p,b9 implies a,b // b9,a9; theorem :: AFVECT0:26 Mid a,p,a9 & Mid b,q,b9 & MDist p,q implies a,b // b9,a9; :: :: Point Symmetry :: definition let AFV; let a,b; func PSym(a,b) -> Element of AFV means :: AFVECT0:def 4 Mid b,a,it; end; theorem :: AFVECT0:27 PSym(p,a) = b iff a,p // p,b; theorem :: AFVECT0:28 PSym(p,a) = a iff a = p or MDist a,p; theorem :: AFVECT0:29 PSym(p,PSym(p,a)) = a; theorem :: AFVECT0:30 PSym(p,a) = PSym(p,b) implies a = b; theorem :: AFVECT0:31 ex a st PSym(p,a) = b; theorem :: AFVECT0:32 a,b // PSym(p,b),PSym(p,a); theorem :: AFVECT0:33 a,b // c,d iff PSym(p,a),PSym(p,b) // PSym(p,c),PSym(p,d); theorem :: AFVECT0:34 MDist a,b iff MDist PSym(p,a),PSym(p,b); theorem :: AFVECT0:35 Mid a,b,c iff Mid PSym(p,a),PSym(p,b),PSym(p,c); theorem :: AFVECT0:36 PSym(p,a) = PSym(q,a) iff p = q or MDist p,q; theorem :: AFVECT0:37 PSym(q,PSym(p,PSym(q,a))) = PSym(PSym(q,p),a); theorem :: AFVECT0:38 PSym(p,PSym(q,a)) = PSym(q,PSym(p,a)) iff p = q or MDist p,q or MDist q,PSym(p,q); theorem :: AFVECT0:39 PSym(p,PSym(q,PSym(r,a))) = PSym(r,PSym(q,PSym(p,a))); theorem :: AFVECT0:40 ex d st PSym(a,PSym(b,PSym(c,p))) = PSym(d,p); theorem :: AFVECT0:41 ex c st PSym(a,PSym(c,p)) = PSym(c,PSym(b,p)); :: :: Addition on the carrier :: definition let AFV,o; let a,b; func Padd(o,a,b) -> Element of AFV means :: AFVECT0:def 5 o,a // b,it; end; notation let AFV,o; let a; synonym Pcom(o,a) for PSym(o,a); end; definition let AFV,o; func Padd(o) -> BinOp of the carrier of AFV means :: AFVECT0:def 6 for a,b holds it.(a ,b) = Padd(o,a,b); end; definition let AFV,o; func Pcom(o) -> UnOp of the carrier of AFV means :: AFVECT0:def 7 for a holds it.a = Pcom(o,a); end; definition let AFV,o; func GroupVect(AFV,o) -> strict addLoopStr equals :: AFVECT0:def 8 addLoopStr(#the carrier of AFV,Padd(o),o#); end; registration let AFV,o; cluster GroupVect(AFV,o) -> non empty; end; theorem :: AFVECT0:42 the carrier of GroupVect(AFV,o) = the carrier of AFV & the addF of GroupVect(AFV,o) = Padd(o) & 0.GroupVect(AFV,o) = o; reserve a,b,c for Element of GroupVect(AFV,o); theorem :: AFVECT0:43 for a,b being Element of GroupVect(AFV,o), a9,b9 being Element of AFV st a=a9 & b=b9 holds a + b = (Padd(o)).(a9,b9); registration let AFV,o; cluster GroupVect(AFV,o) -> Abelian add-associative right_zeroed right_complementable; end; theorem :: AFVECT0:44 for a being Element of GroupVect(AFV,o), a9 being Element of AFV st a=a9 holds -a = (Pcom(o)).a9; theorem :: AFVECT0:45 0.GroupVect(AFV,o) = o; reserve a,b for Element of GroupVect(AFV,o); theorem :: AFVECT0:46 for a ex b st b + b = a; registration let AFV,o; cluster GroupVect(AFV,o) -> Two_Divisible; end; :: :: Representation Theorem for Directed Geometrical Bundles :: reserve AFV for AffVect, o for Element of AFV; theorem :: AFVECT0:47 for a being Element of GroupVect(AFV,o) st a + a = 0.(GroupVect( AFV,o)) holds a = 0.(GroupVect(AFV,o)); registration let AFV,o; cluster GroupVect(AFV,o) -> Fanoian; end; registration cluster strict non trivial for Uniquely_Two_Divisible_Group; end; definition mode Proper_Uniquely_Two_Divisible_Group is non trivial Uniquely_Two_Divisible_Group; end; theorem :: AFVECT0:48 GroupVect(AFV,o) is Proper_Uniquely_Two_Divisible_Group; registration let AFV,o; cluster GroupVect(AFV,o) -> non trivial; end; theorem :: AFVECT0:49 for ADG being Proper_Uniquely_Two_Divisible_Group holds AV(ADG) is AffVect; registration let ADG be Proper_Uniquely_Two_Divisible_Group; cluster AV(ADG) -> AffVect-like non trivial; end; theorem :: AFVECT0:50 for AFV being strict AffVect holds for o being Element of AFV holds AFV = AV(GroupVect(AFV,o)); theorem :: AFVECT0:51 for AS being strict AffinStruct holds (AS is AffVect iff ex ADG being Proper_Uniquely_Two_Divisible_Group st AS = AV(ADG) ); definition let X,Y be non empty addLoopStr; let f be Function of the carrier of X,the carrier of Y; pred f is_Iso_of X,Y means :: AFVECT0:def 9 f is one-to-one & rng(f) = the carrier of Y & for a,b being Element of X holds f.(a+b) = (f.a)+(f.b) & f.(0.X) = 0.Y & f. (-a) = -(f.a); end; definition let X,Y be non empty addLoopStr; pred X,Y are_Iso means :: AFVECT0:def 10 ex f being Function of the carrier of X,the carrier of Y st f is_Iso_of X,Y; end; reserve ADG for Proper_Uniquely_Two_Divisible_Group; reserve f for Function of the carrier of ADG,the carrier of ADG; theorem :: AFVECT0:52 for o9 being Element of ADG, o being Element of AV(ADG) st (for x being Element of ADG holds f.x = o9+x) & o=o9 holds for a,b being Element of ADG holds f.(a+b) =(Padd(o)).(f.a,f.b) & f.(0.ADG) = 0.(GroupVect(AV(ADG),o)) & f.(-a) = (Pcom(o)).(f.a); theorem :: AFVECT0:53 for o9 being Element of ADG st (for b being Element of ADG holds f.b = o9+b) holds f is one-to-one; theorem :: AFVECT0:54 for o9 being Element of ADG, o being Element of AV(ADG) st (for b being Element of ADG holds f.b = o9+b) holds rng(f) = the carrier of GroupVect(AV(ADG),o); theorem :: AFVECT0:55 for ADG being Proper_Uniquely_Two_Divisible_Group, o9 being Element of ADG, o being Element of AV(ADG) st o=o9 holds ADG,GroupVect(AV(ADG),o) are_Iso;