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Summary. This article formalizes different variants of the complement
graph in the Mizar system [3], based on the formalization of graphs in [6].
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0. Introduction

In the first section of this article, the property of a graph to be reflexive is
rigorously introduced. But since the irreflexive attribute was called loopless in
[6], loopfull was chosen this time.

The following section introduces a mode to add loops to a subset of the
vertices of a graph. It is shown that for a finite subset this operation can be
done by adding a loop at a time (cf. [5]). It is also shown that adding loops
can preserve isomorphism between graphs, if the subset of vertices of the second
graph the loops are added to is the image under an isomorphism of the subset
of vertices of the first graphs the loops are added to.

The next four sections formalize the directed complement with loops, the
undirected complement with loops, the directed complement without loops and
the undirected complement without loops, respectively. Given a simple undi-
rected graph, its complement is usually defined on the same vertex set; two
different vertices being adjacent iff they weren’t adjacent in the original graph
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[8], [2], [1]. A similar definition can be given for simple digraphs [1]. The loop
variants are introduced on the base of similarity between graphs and relations.

In contrast to the literature the definitions formalized allow to take the
complement of any graphs, with parallel edges simply being ignored. So any
complement of a graph is also a complement of that graph with its parallel
edges removed. Furthermore on a technical note, the vertex sets of the graph
and its complement are required to be the same, while the edge sets have to be
disjoint. This choice was made to ensure the union of a graph and its comple-
ment would be complete and its intersection edgeless. Since the edge set of the
complement graph is otherwise unspecified, for each complement type all possi-
ble complements of a graph are only isomorphic to each other. Other theorems
include:

• Involutiveness of the graph complement: If a graph is of the right type
(e.g. simple for undirected complement without loops), then it is the com-
plement of its complement.

• The complement of an edgeless graph is complete.

• The undirected complement without loops of a complete graph is edgeless.

• The complement of an unconnected graph is connected.

• The neighbors of a vertex in a complement without loops of a graph is the
complement of the neighbors in the original graph.

• If a graph has order at least 3, no vertex can be an endvertex in both that
graph and its directed complement without loops (the directed K2 is a
counterexample for order equal to 2.)

• If a graph has order at least 4, no vertex can be an endvertex in both that
graph and its undirected complement without loops (P3 with its comple-
ment K2 +K1 is a counterexample for order equal to 3.)

The last section briefly introduces the property of a graph to be self-comple-
mentary for all four variants, but without going into depth. However, it is shown
that these four variants are mutually exclusive, except for K1 which is self-
complementary with respect to the directed or undirected complement, without
loops in both cases.
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1. Loopfull Graphs

Let G be a graph. We say that G is loopfull if and only if

(Def. 1) for every vertex v of G, there exists an object e such that e joins v and
v in G.

Let us consider a graph G. Now we state the propositions:

(1) G is loopfull if and only if for every vertex v of G, there exists an object
e such that e joins v to v in G.

(2) G is loopfull if and only if for every vertex v of G, v and v are adjacent.

One can verify that every graph which is loopfull is also non loopless and
every graph which is trivial and non loopless is also loopfull and there exists
a graph which is loopfull and complete and there exists a graph which is non
loopfull.

Now we state the proposition:

(3) Let us consider a graph G1, a set E, and a graph G2 given by reversing
directions of the edges E of G1. Then G1 is loopfull if and only if G2 is
loopfull.

Let G be a loopfull graph and E be a set. One can check that every graph
given by reversing directions of the edges E of G is loopfull.

Let G be a non loopfull graph. Let us observe that every graph given by
reversing directions of the edges E of G is non loopfull.

Now we state the propositions:

(4) Let us consider graphs G1, G2. If G1 ≈ G2, then if G1 is loopfull, then
G2 is loopfull.

(5) Let us consider a loopfull graph G2, and a supergraph G1 of G2. Suppose
the vertices of G1 = the vertices of G2. Then G1 is loopfull.

Let us consider graphs G1, G2 and a partial graph mapping F from G1 to
G2. Now we state the propositions:

(6) Suppose rngFV = the vertices of G2 and G1.loops() ⊆ dom(FE). Then
if G1 is loopfull, then G2 is loopfull.

(7) If F is total and onto, then if G1 is loopfull, then G2 is loopfull. The
theorem is a consequence of (6).

(8) Suppose F is semi-continuous and dom(FV) = the vertices of G1 and
G2.loops() ⊆ rngFE. Then if G2 is loopfull, then G1 is loopfull.

(9) If F is total, onto, and semi-continuous, then if G2 is loopfull, then G1
is loopfull. The theorem is a consequence of (8).

(10) If F is isomorphism, then G1 is loopfull iff G2 is loopfull.
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Let G be a loopfull graph and V be a set. Let us observe that every subgraph
of G induced by V is loopfull and every subgraph of G with vertices V removed
is loopfull and every subgraph of G with vertex V removed is loopfull.

Let G be a non loopfull graph. Let us observe that every spanning subgraph
of G is non loopfull.

Let E be a set. Let us note that every subgraph of G induced by the vertices
of G and E is non loopfull and every subgraph of G with edges E removed is
non loopfull and every subgraph of G with edge E removed is non loopfull.

Now we state the proposition:

(11) Let us consider a graph G2, a set V , and a supergraph G1 of G2 extended
by the vertices from V . Suppose V \ (the vertices of G2) 6= ∅. Then G1 is
not loopfull.

Let G be a non loopfull graph and V be a set. Observe that every supergraph
of G extended by the vertices from V is non loopfull.

Let G be a loopfull graph and v, e, w be objects. One can verify that every
supergraph of G extended by e between vertices v and w is loopfull.

Now we state the propositions:

(12) Let us consider a graph G2, a vertex v of G2, objects e, w, and a su-
pergraph G1 of G2 extended by v, w and e between them. Suppose e /∈
the edges of G2 and w /∈ the vertices of G2. Then G1 is not loopfull.

(13) Let us consider a graph G2, objects v, e, a vertex w of G2, and a su-
pergraph G1 of G2 extended by v, w and e between them. Suppose e /∈
the edges of G2 and v /∈ the vertices of G2. Then G1 is not loopfull.

Let G be a non loopfull graph and v, e, w be objects. Let us observe that
every supergraph of G extended by v, w and e between them is non loopfull.

Now we state the proposition:

(14) Let us consider a graph G2, an object v, a subset V of the vertices of
G2, and a supergraph G1 of G2 extended by vertex v and edges between
v and V of G2. Suppose v /∈ the vertices of G2. Then G1 is not loopfull.

Let G be a non loopfull graph, v be an object, and V be a set. One can check
that every supergraph of G extended by vertex v and edges between v and V
of G is non loopfull.

Let G be a loopfull graph. Let us note that every subgraph of G with parallel
edges removed is loopfull and every subgraph of G with directed-parallel edges
removed is loopfull.

Let G be a non loopfull graph. Note that every subgraph of G with parallel
edges removed is non loopfull and every subgraph of G with directed-parallel
edges removed is non loopfull.
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Let GF be a graph-yielding function. We say that GF is loopfull if and only
if

(Def. 2) for every object x such that x ∈ domGF there exists a graph G such
that GF (x) = G and G is loopfull.

Let G be a loopfull graph. Let us note that 〈G〉 is loopfull and N 7−→ G is
loopfull.

Let GF be a non empty, graph-yielding function. Note that GF is loopfull if
and only if the condition (Def. 3) is satisfied.

(Def. 3) for every element x of domGF , GF (x) is loopfull.

Let GSq be a graph sequence. Let us note that GSq is loopfull if and only if
the condition (Def. 4) is satisfied.

(Def. 4) for every natural number n, GSq(n) is loopfull.

Let us observe that every graph-yielding function which is empty is also
loopfull and every graph-yielding function which is non empty and loopfull is
also non loopless and there exists a graph sequence which is loopfull and there
exists a graph-yielding finite sequence which is non empty and loopfull.

Let GF be a loopfull, non empty, graph-yielding function and x be an ele-
ment of domGF . Note that GF (x) is loopfull.

Let GSq be a loopfull graph sequence and x be a natural number. Note that
GSq(x) is loopfull.

Let p be a loopfull, graph-yielding finite sequence and n be a natural number.
Observe that p�n is loopfull and p�n is loopfull.

Let m be a natural number. One can check that smid(p,m, n) is loopfull and
〈p(m), . . . , p(n)〉 is loopfull.

Let p, q be loopfull, graph-yielding finite sequences. Observe that p a q is
loopfull and p aa q is loopfull.

Let G1, G2 be loopfull graphs. Note that 〈G1, G2〉 is loopfull.
Let G3 be a loopfull graph. Let us note that 〈G1, G2, G3〉 is loopfull.

2. Adding Loops to a Graph

Let G be a graph and V be a set.
A graph by adding a loop to each vertex of G in V is a supergraph of G

defined by

(Def. 5) (i) the vertices of it = the vertices of G and there exists a set E and
there exists a one-to-one function f such that E misses the edges of
G and the edges of it = (the edges of G) ∪ E and dom f = E and
rng f = V and the source of it = (the source ofG)+·f and the target
of it = (the target of G)+·f , if V ⊆ the vertices of G,
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(ii) it ≈ G, otherwise.

A graph by adding a loop to each vertex of G is a graph by adding a loop
to each vertex of G in the vertices of G. Now we state the proposition:

(15) Let us consider a graph G2, a set V , and a graph G1 by adding a loop
to each vertex of G2 in V . Then the vertices of G1 = the vertices of G2.

Let us consider a graph G2, a set V , a graph G1 by adding a loop to each
vertex of G2 in V , and objects e, v, w. Now we state the propositions:

(16) If v 6= w, then e joins v to w in G1 iff e joins v to w in G2.

(17) If v 6= w, then e joins v and w in G1 iff e joins v and w in G2. The
theorem is a consequence of (16).

(18) Let us consider a graph G2, a subset V of the vertices of G2, a graph
G1 by adding a loop to each vertex of G2 in V , and a vertex v of G1. If
v ∈ V , then v and v are adjacent.

(19) Let us consider a graph G2, a set V , and a graph G1 by adding a loop
to each vertex of G2 in V . Then G1.order() = G2.order().

(20) Let us consider a graph G2, a subset V of the vertices of G2, and a graph
G1 by adding a loop to each vertex ofG2 in V . ThenG1.size() = G2.size()+
V .

(21) Let us consider graphs G1, G2. Then G1 is a graph by adding a loop to
each vertex of G2 in ∅ if and only if G1 ≈ G2. The theorem is a consequence
of (15).

(22) Every graph is a graph by adding a loop to each vertex of G in ∅.
(23) Let us consider a graph G, subsets V1, V2 of the vertices of G, a graph
G1 by adding a loop to each vertex of G in V1, and a graph G2 by adding
a loop to each vertex of G1 in V2. Suppose V1 misses V2. Then G2 is
a graph by adding a loop to each vertex of G in V1 ∪ V2. The theorem is
a consequence of (15).

(24) Let us consider a graph G3, subsets V1, V2 of the vertices of G3, and
a graph G1 by adding a loop to each vertex of G3 in V1 ∪ V2. Suppose V1
misses V2. Then there exists a graph G2 by adding a loop to each vertex
of G3 in V1 such that G1 is a graph by adding a loop to each vertex of G2
in V2.

(25) Let us consider a loopless graph G2, a subset V of the vertices of G2,
and a graph G1 by adding a loop to each vertex of G2 in V . Then

(i) the edges of G2 misses G1.loops(), and

(ii) the edges of G1 = (the edges of G2) ∪G1.loops().
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(26) Let us consider a loopless graph G1, a set V , a graph G2 by adding a loop
to each vertex of G1 in V , and a subgraph G3 of G2 with loops removed.
Then G1 ≈ G3. The theorem is a consequence of (25).

(27) Let us consider graphs G1, G2, and a vertex v of G2. Then G1 is a graph
by adding a loop to each vertex of G2 in {v} if and only if there exists
an object e such that e /∈ the edges of G2 and G1 is a supergraph of G2
extended by e between vertices v and v.

(28) Let us consider a graph G2, a finite subset V of the vertices of G2, and
a graph G1 by adding a loop to each vertex of G2 in V . Then there exists
a non empty, graph-yielding finite sequence p such that

(i) p(1) ≈ G2, and

(ii) p(len p) = G1, and

(iii) len p = V + 1, and

(iv) for every element n of dom p such that n ¬ len p − 1 there exists
a vertex v of G2 and there exists an object e such that p(n + 1) is
a supergraph of p(n) extended by e between vertices v and v and
v ∈ V and e /∈ the edges of p(n).

Proof: Define P[natural number] ≡ for every graph G2 for every finite
subset V of the vertices of G2 for every graph G1 by adding a loop to
each vertex of G2 in V such that V = $1 there exists a non empty, graph-
yielding finite sequence p such that p(1) ≈ G2 and p(len p) = G1 and
len p = V + 1.

For every element n of dom p such that n ¬ len p − 1 there exists
a vertex v of G2 and there exists an object e such that p(n + 1) is a su-
pergraph of p(n) extended by e between vertices v and v and v ∈ V and
e /∈ the edges of p(n). P[0]. For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[k]. �

(29) Let us consider graphs G3, G4, sets V1, V2, a graph G1 by adding a loop
to each vertex of G3 in V1, a graph G2 by adding a loop to each vertex
of G4 in V2, and a partial graph mapping F0 from G3 to G4. Suppose
V1 ⊆ the vertices of G3 and V2 ⊆ the vertices of G4 and F0V�V1 is one-
to-one and dom(F0V�V1) = V1 and rng(F0V�V1) = V2. Then there exists
a partial graph mapping F from G1 to G2 such that

(i) FV = F0V, and

(ii) FE�dom(F0E) = F0E, and

(iii) if F0 is not empty, then F is not empty, and

(iv) if F0 is total, then F is total, and
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(v) if F0 is onto, then F is onto, and

(vi) if F0 is one-to-one, then F is one-to-one, and

(vii) if F0 is directed, then F is directed, and

(viii) if F0 is weak subgraph embedding, then F is weak subgraph embed-
ding, and

(ix) if F0 is isomorphism, then F is isomorphism, and

(x) if F0 is directed-isomorphism, then F is directed-isomorphism.

Proof: Reconsider f = F0V as a partial function from the vertices ofG1 to
the vertices of G2. Consider E1 being a set, f1 being a one-to-one function
such that E1 misses the edges of G3 and the edges of G1 = (the edges
of G3) ∪ E1 and dom f1 = E1 and rng f1 = V1 and the source of G1 =
(the source of G3)+·f1 and the target of G1 = (the target of G3)+·f1.

Consider E2 being a set, f2 being a one-to-one function such that E2
misses the edges of G4 and the edges of G2 = (the edges of G4) ∪ E2 and
dom f2 = E2 and rng f2 = V2 and the source of G2 = (the source of
G4)+·f2 and the target of G2 = (the target of G4)+·f2. Set h = f2−1 ·
(F0V�V1) · f1. Set g = F0E+·h. Reconsider F = 〈〈f, g〉〉 as a partial graph
mapping from G1 to G2. If F0 is total, then F is total. If F0 is onto, then
F is onto by [7, (6)]. If F0 is one-to-one, then F is one-to-one. If F0 is
directed, then F is directed by [4, (70), (71)]. �

(30) Let us consider a graph G3, a G3-isomorphic graph G4, and a graph G1
by adding a loop to each vertex of G3. Then every graph by adding a loop
to each vertex of G4 is G1-isomorphic. The theorem is a consequence of
(29).

(31) Let us consider a graph G3, a G3-directed-isomorphic graph G4, and
a graph G1 by adding a loop to each vertex of G3. Then every graph by
adding a loop to each vertex of G4 is G1-directed-isomorphic. The theorem
is a consequence of (29).

(32) Let us consider graphs G3, G4, a set V , a graph G1 by adding a loop to
each vertex of G3 in V , and a graph G2 by adding a loop to each vertex
of G4 in V . If G3 ≈ G4, then G2 is G1-directed-isomorphic. The theorem
is a consequence of (29).

(33) Let us consider a graph G3, sets V , E, a graph G4 given by reversing
directions of the edges E of G3, and a graph G1 by adding a loop to each
vertex of G3 in V . Then every graph by adding a loop to each vertex of
G4 in V is G1-isomorphic. The theorem is a consequence of (29).

(34) Let us consider a graph G3, sets E, V , a graph G4 given by reversing
directions of the edges E of G3, a graph G1 by adding a loop to each vertex
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of G3 in V , and a graph G2 given by reversing directions of the edges E
of G1. Suppose E ⊆ the edges of G3. Then G2 is a graph by adding a loop
to each vertex of G4 in V . The theorem is a consequence of (15).

(35) Let us consider a graph G3, a subset V1 of the vertices of G3, a non
empty subset V2 of the vertices of G3, a subgraph G4 of G3 induced by V2,
and a graph G1 by adding a loop to each vertex of G3 in V1. Then every
subgraph of G1 induced by V2 is a graph by adding a loop to each vertex
of G4 in V1 ∩ V2.

(36) Let us consider a graph G2, a set V , a graph G1 by adding a loop to
each vertex of G2 in V , a vertex v1 of G1, and a vertex v2 of G2. Suppose
v1 /∈ V and v1 = v2. Then

(i) v1 is isolated iff v2 is isolated, and

(ii) v1 is endvertex iff v2 is endvertex.

The theorem is a consequence of (17).

(37) Let us consider a graph G2, a set V , a graph G1 by adding a loop to
each vertex of G2 in V , and a path P of G1. Then

(i) P is a path of G2, or

(ii) there exist objects v, e such that e joins v and v in G1 and P =
G1.walkOf(v, e, v).

The theorem is a consequence of (15).

(38) Let us consider a graph G2, a set V , a graph G1 by adding a loop to
each vertex of G2 in V , and a walk W of G1. Suppose W.edges() mis-
ses (G1.loops()) \ (G2.loops()). Then W is a walk of G2. The theorem is
a consequence of (15).

Let G be a graph. Observe that every graph by adding a loop to each vertex
of G is loopfull.

Let V be a non empty subset of the vertices of G. Observe that every graph
by adding a loop to each vertex of G in V is non loopless.

Now we state the proposition:

(39) Let us consider a graph G2, a set V , and a graph G1 by adding a loop
to each vertex of G2 in V . Then G1 is finite if and only if G2 is finite. The
theorem is a consequence of (15).

Let G be a finite graph and V be a set. Observe that every graph by adding
a loop to each vertex of G in V is finite.

Let G be a non finite graph. Note that every graph by adding a loop to each
vertex of G in V is non finite.

Now we state the proposition:
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(40) Let us consider a graph G2, a set V , and a graph G1 by adding a loop
to each vertex of G2 in V . Then G1 is connected if and only if G2 is
connected. The theorem is a consequence of (15) and (37).

Let G be a connected graph and V be a set. Let us observe that every graph
by adding a loop to each vertex of G in V is connected.

Let G be a non connected graph. Let us note that every graph by adding a
loop to each vertex of G in V is non connected.

Now we state the proposition:

(41) Let us consider a graph G2, a set V , and a graph G1 by adding a loop
to each vertex of G2 in V . Then G1 is chordal if and only if G2 is chordal.
The theorem is a consequence of (17) and (37).

Let G be a chordal graph and V be a set. Let us observe that every graph
by adding a loop to each vertex of G in V is chordal.

Let G be a non edgeless graph. Let us note that every graph by adding a
loop to each vertex of G in V is non edgeless.

Let G be a loopfull graph. Note that every graph by adding a loop to each
vertex of G in V is loopfull.

Let G be a simple graph. Let us note that every graph by adding a loop to
each vertex of G in V is non-multi.

Let G be a directed-simple graph. Note that every graph by adding a loop
to each vertex of G in V is non-directed-multi.

Let us consider a graph G2, a subset V of the vertices of G2, a graph G1 by
adding a loop to each vertex of G2 in V , a vertex v1 of G1, and a vertex v2 of
G2. Now we state the propositions:

(42) Suppose v1 = v2 and v1 ∈ V . Then there exists an object e such that

(i) e joins v1 to v1 in G1, and

(ii) e /∈ the edges of G2, and

(iii) v1.edgesIn() = v2.edgesIn() ∪ {e}, and

(iv) v1.edgesOut() = v2.edgesOut() ∪ {e}, and

(v) v1.edgesInOut() = v2.edgesInOut() ∪ {e}.
(43) If v1 = v2 and v1 ∈ V , then v1.inDegree() = v2.inDegree() + 1 and
v1.outDegree() = v2.outDegree() + 1 and v1.degree() = v2.degree() + 2.
The theorem is a consequence of (42).

(44) Suppose v1 = v2 and v1 /∈ V . Then

(i) v1.edgesIn() = v2.edgesIn(), and

(ii) v1.inDegree() = v2.inDegree(), and

(iii) v1.edgesOut() = v2.edgesOut(), and



About graph complements 51

(iv) v1.outDegree() = v2.outDegree(), and

(v) v1.edgesInOut() = v2.edgesInOut(), and

(vi) v1.degree() = v2.degree().

3. Directed Graph Complement with Loops

Let G be a graph.
A directed graph complement of G with loops is a non-directed-multi graph

defined by

(Def. 6) the vertices of it = the vertices of G and the edges of it misses the edges
of G and for every vertices v, w of G, there exists an object e1 such that
e1 joins v to w in G iff there exists no object e2 such that e2 joins v to w
in it.

Now we state the proposition:

(45) Let us consider graphs G1, G2, G3, and a directed graph complement G4
of G1 with loops. Suppose G1 ≈ G2 and G3 ≈ G4. Then G3 is a directed
graph complement of G2 with loops.

Let G be a graph. Observe that there exists a directed graph complement of
G with loops which is plain.

Now we state the propositions:

(46) Let us consider a graph G1, a directed graph complement G2 of G1 with
loops, and objects e1, e2, v, w. If e1 joins v to w in G1, then e2 does not
join v to w in G2.

(47) Let us consider a graph G1, and a subgraph G2 of G1 with directed-
parallel edges removed. Then every directed graph complement of G1 with
loops is a directed graph complement of G2 with loops. The theorem is
a consequence of (46).

(48) Let us consider graphs G1, G2, a subgraph G3 of G1 with directed-
parallel edges removed, a subgraph G4 of G2 with directed-parallel edges
removed, a directed graph complement G5 of G1 with loops, and a direc-
ted graph complement G6 of G2 with loops. Suppose G4 is G3-directed-
isomorphic. Then G6 is G5-directed-isomorphic. The theorem is a conse-
quence of (47).

(49) Let us consider a graph G1, a G1-directed-isomorphic graph G2, and a di-
rected graph complement G3 of G1 with loops. Then every directed graph
complement of G2 with loops is G3-directed-isomorphic. The theorem is
a consequence of (48).
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(50) Let us consider a graph G1, and directed graph complements G2, G3
of G1 with loops. Then G3 is G2-directed-isomorphic. The theorem is
a consequence of (49).

(51) Let us consider a graph G1, a graph G2 given by reversing directions of
the edges of G1, and a directed graph complement G3 of G1 with loops.
Then every graph given by reversing directions of the edges of G3 is a di-
rected graph complement of G2 with loops. The theorem is a consequence
of (46).

(52) Let us consider a graph G1, a non empty subset V of the vertices of G1,
a subgraph G2 of G1 induced by V , and a directed graph complement G3
of G1 with loops. Then every subgraph of G3 induced by V is a directed
graph complement of G2 with loops. The theorem is a consequence of (46).

(53) Let us consider a graph G1, a proper subset V of the vertices of G1,
a subgraph G2 of G1 with vertices V removed, and a directed graph com-
plement G3 of G1 with loops. Then every subgraph of G3 with vertices V
removed is a directed graph complement of G2 with loops. The theorem
is a consequence of (52).

(54) Let us consider a non-directed-multi graph G1, and a directed graph
complement G2 of G1 with loops. Then G1 is a directed graph complement
of G2 with loops.

Let us consider a graph G1 and a directed graph complement G2 of G1 with
loops. Now we state the propositions:

(55) G1.order() = G2.order().

(56) (i) G1 is trivial iff G2 is trivial, and

(ii) G1 is loopfull iff G2 is loopless, and

(iii) G1 is loopless iff G2 is loopfull.
The theorem is a consequence of (55), (1), and (46).

Let G be a trivial graph. One can verify that every directed graph comple-
ment of G with loops is trivial. Let G be a non trivial graph. One can check
that every directed graph complement of G with loops is non trivial. Let G be
a loopfull graph. Note that every directed graph complement of G with loops is
loopless.

Let G be a non loopfull graph. Let us note that every directed graph com-
plement of G with loops is non loopless. Let G be a loopless graph. Observe that
every directed graph complement of G with loops is loopfull. Let G be a non
loopless graph. Let us observe that every directed graph complement of G with
loops is non loopfull.

Now we state the proposition:
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(57) Let us consider a graph G1, and a directed graph complement G2 of G1
with loops. Suppose the edges of G1 = G1.loops(). Then G2 is complete.

Let G be an edgeless graph. One can verify that every directed graph com-
plement of G with loops is complete. Let G be a non connected graph. One can
check that every directed graph complement of G with loops is connected.

Now we state the propositions:

(58) Let us consider a graph G1, a directed graph complement G2 of G1 with
loops, a vertex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2. Then

(i) if v1 is isolated, then v2 is not isolated, and

(ii) if v1 is endvertex, then v2 is not endvertex.

(59) Let us consider a graph G1, a directed graph complement G2 of G1 with
loops, and vertices v, w of G1. Suppose there exists no object e such that
e joins v and w in G1. Then there exists an object e such that e joins v
and w in G2.
Proof: There exists no object e such that e joins v to w in G1. Consider
e being an object such that e joins v to w in G2. �

Let us consider a graph G1, a directed graph complement G2 of G1 with
loops, a vertex v1 of G1, and a vertex v2 of G2. Now we state the propositions:

(60) Suppose v1 = v2. Then

(i) v2.inNeighbors() = (the vertices of G2) \ (v1.inNeighbors()), and

(ii) v2.outNeighbors() = (the vertices of G2) \ (v1.outNeighbors()).

(61) Suppose v1 = v2 and v1 is isolated. Then

(i) v2.inNeighbors() = the vertices of G2, and

(ii) v2.outNeighbors() = the vertices of G2, and

(iii) v2.allNeighbors() = the vertices of G2.

The theorem is a consequence of (60).

4. Undirected Graph Complement with Loops

Let G be a graph.
An undirected graph complement of G with loops is a non-multi graph de-

fined by

(Def. 7) the vertices of it = the vertices of G and the edges of it misses the edges
of G and for every vertices v, w of G, there exists an object e1 such that
e1 joins v and w in G iff there exists no object e2 such that e2 joins v and
w in it.
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Now we state the proposition:

(62) Let us consider graphs G1, G2, G3, and an undirected graph comple-
ment G4 of G1 with loops. Suppose G1 ≈ G2 and G3 ≈ G4. Then G3 is
an undirected graph complement of G2 with loops.

Let G be a graph. Note that there exists an undirected graph complement
of G with loops which is plain.

Now we state the propositions:

(63) Let us consider a graph G1, and a non-multi graph G2. Then G2 is an un-
directed graph complement of G1 with loops if and only if the vertices of
G2 = the vertices of G1 and the edges of G2 misses the edges of G1 and
for every vertices v1, w1 of G1 and for every vertices v2, w2 of G2 such
that v1 = v2 and w1 = w2 holds v1 and w1 are adjacent iff v2 and w2 are
not adjacent.

(64) Let us consider a graph G1, an undirected graph complement G2 of G1
with loops, and objects e1, e2, v, w. If e1 joins v and w in G1, then e2 does
not join v and w in G2.

(65) Let us consider a graph G1, and a subgraph G2 of G1 with parallel
edges removed. Then every undirected graph complement of G1 with loops
is an undirected graph complement of G2 with loops. The theorem is
a consequence of (64).

(66) Let us consider graphs G1, G2, a subgraph G3 of G1 with parallel edges
removed, a subgraph G4 of G2 with parallel edges removed, an undirec-
ted graph complement G5 of G1 with loops, and an undirected graph
complement G6 of G2 with loops. If G4 is G3-isomorphic, then G6 is G5-
isomorphic. The theorem is a consequence of (65).

(67) Let us consider a graph G1, a G1-isomorphic graph G2, and an undirec-
ted graph complement G3 of G1 with loops. Then every undirected graph
complement of G2 with loops is G3-isomorphic. The theorem is a conse-
quence of (66).

(68) Let us consider a graph G1, and undirected graph complements G2, G3
of G1 with loops. Then G3 is G2-isomorphic. The theorem is a consequence
of (67).

(69) Let us consider a graph G1, a non empty subset V of the vertices of G1,
a subgraph G2 of G1 induced by V , and an undirected graph complement
G3 of G1 with loops. Then every subgraph of G3 induced by V is an undi-
rected graph complement of G2 with loops. The theorem is a consequence
of (64).

(70) Let us consider a graph G1, a proper subset V of the vertices of G1,
a subgraph G2 of G1 with vertices V removed, and an undirected graph
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complement G3 of G1 with loops. Then every subgraph of G3 with vertices
V removed is an undirected graph complement of G2 with loops. The
theorem is a consequence of (69).

(71) Let us consider a non-multi graph G1, and an undirected graph comple-
ment G2 of G1 with loops. Then G1 is an undirected graph complement
of G2 with loops.

Let us consider a graph G1 and an undirected graph complement G2 of G1
with loops. Now we state the propositions:

(72) G1.order() = G2.order().

(73) (i) G1 is trivial iff G2 is trivial, and

(ii) G1 is loopfull iff G2 is loopless, and

(iii) G1 is loopless iff G2 is loopfull.
The theorem is a consequence of (72) and (64).

Let G be a trivial graph. Observe that every undirected graph complement
of G with loops is trivial.

Let G be a non trivial graph. Let us observe that every undirected graph
complement of G with loops is non trivial.

Let G be a loopfull graph. One can verify that every undirected graph com-
plement of G with loops is loopless.

Let G be a non loopfull graph. One can check that every undirected graph
complement of G with loops is non loopless.

Let G be a loopless graph. Note that every undirected graph complement of
G with loops is loopfull.

Let G be a non loopless graph. Let us note that every undirected graph
complement of G with loops is non loopfull.

Now we state the proposition:

(74) Let us consider a graph G1, and an undirected graph complement G2
of G1 with loops. Suppose the edges of G1 = G1.loops(). Then G2 is
complete.

Let G be an edgeless graph. Observe that every undirected graph comple-
ment of G with loops is complete.

Now we state the proposition:

(75) Let us consider a complete graph G1, and an undirected graph com-
plement G2 of G1 with loops. Then the edges of G2 = G2.loops(). The
theorem is a consequence of (64).

Let G be a complete, loopfull graph. Observe that every undirected graph
complement of G with loops is edgeless.
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Let G be a non connected graph. Note that every undirected graph comple-
ment of G with loops is connected.

Let us consider a graph G1, an undirected graph complement G2 of G1 with
loops, a vertex v1 of G1, and a vertex v2 of G2. Now we state the propositions:

(76) If v1 = v2, then if v1 is isolated, then v2 is not isolated and if v1 is
endvertex, then v2 is not endvertex.

(77) If v1 = v2, then v2.allNeighbors() = (the vertices ofG2)\(v1.allNeighbors
()).

(78) If v1 = v2 and v1 is isolated, then v2.allNeighbors() = the vertices of G2.
The theorem is a consequence of (77).

5. Directed Graph Complement without Loops

Let G be a graph.
A directed graph complement of G is a directed-simple graph defined by

(Def. 8) there exists a directed graph complement G′ of G with loops such that
it is a subgraph of G′ with loops removed.

Now we state the proposition:

(79) Let us consider graphs G1, G2, G3, and a directed graph complement
G4 of G1. Suppose G1 ≈ G2 and G3 ≈ G4. Then G3 is a directed graph
complement of G2. The theorem is a consequence of (45).

Let G be a graph. One can check that there exists a directed graph comple-
ment of G which is plain. Now we state the propositions:

(80) Let us consider a graph G1, and a directed-simple graph G2. Then G2
is a directed graph complement of G1 if and only if the vertices of G2 =
the vertices of G1 and the edges of G2 misses the edges of G1 and for every
vertices v, w of G1 such that v 6= w holds there exists an object e1 such
that e1 joins v to w in G1 iff there exists no object e2 such that e2 joins v
to w in G2. The theorem is a consequence of (46), (26), and (1).

(81) Let us consider a graph G1, a directed graph complement G2 of G1, and
objects e1, e2, v, w. If e1 joins v to w in G1, then e2 does not join v to w
in G2. The theorem is a consequence of (80).

(82) Let us consider a graph G1, and a directed-simple graph G2 of G1. Then
every directed graph complement of G1 is a directed graph complement of
G2. The theorem is a consequence of (80) and (81).

(83) Let us consider graphs G1, G2, a directed-simple graph G3 of G1, a di-
rected-simple graph G4 of G2, a directed graph complement G5 of G1,
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and a directed graph complement G6 of G2. Suppose G4 is G3-directed-
isomorphic. Then G6 is G5-directed-isomorphic. The theorem is a conse-
quence of (82) and (80).

(84) Let us consider a graph G1, a G1-directed-isomorphic graph G2, and
a directed graph complement G3 of G1. Then every directed graph com-
plement of G2 is G3-directed-isomorphic. The theorem is a consequence of
(83).

(85) Let us consider a graph G1, and directed graph complements G2, G3 of
G1. Then G3 is G2-directed-isomorphic. The theorem is a consequence of
(84).

(86) Let us consider a graph G1, a graph G2 given by reversing directions of
the edges of G1, and a directed graph complement G3 of G1. Then every
graph given by reversing directions of the edges of G3 is a directed graph
complement of G2. The theorem is a consequence of (80) and (81).

(87) Let us consider a graph G1, a non empty subset V of the vertices of
G1, a subgraph G2 of G1 induced by V , and a directed graph complement
G3 of G1. Then every subgraph of G3 induced by V is a directed graph
complement of G2. The theorem is a consequence of (80) and (81).

(88) Let us consider a graph G1, a proper subset V of the vertices of G1,
a subgraph G2 of G1 with vertices V removed, and a directed graph com-
plement G3 of G1. Then every subgraph of G3 with vertices V removed is
a directed graph complement of G2. The theorem is a consequence of (80)
and (87).

(89) Let us consider a directed-simple graph G1, and a directed graph com-
plement G2 of G1. Then G1 is a directed graph complement of G2. The
theorem is a consequence of (80).

Let us consider a graph G1 and a directed graph complement G2 of G1. Now
we state the propositions:

(90) G1.order() = G2.order().

(91) G1 is trivial if and only if G2 is trivial. The theorem is a consequence of
(90).

Let G be a trivial graph. One can verify that every directed graph comple-
ment of G is trivial. Let G be a non trivial graph. One can check that every
directed graph complement of G is non trivial. Now we state the proposition:

(92) Let us consider a graph G1, and a directed graph complement G2 of G1.
Suppose the edges of G1 = G1.loops(). Then G2 is complete. The theorem
is a consequence of (80).

Let G be an edgeless graph. One can check that every directed graph com-
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plement of G is complete. Let G be a trivial, edgeless graph. Let us observe that
every directed graph complement of G is edgeless. Let G be a non connected
graph. One can check that every directed graph complement of G is connected.
Now we state the proposition:

(93) Let us consider a non trivial graph G1, a directed graph complement G2
of G1, a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then if v1 is
isolated, then v2 is not isolated. The theorem is a consequence of (80).

Let us consider a graph G1, a directed graph complement G2 of G1, a vertex
v1 of G1, and a vertex v2 of G2. Now we state the propositions:

(94) If v1 = v2 and 3 ⊆ G1.order(), then if v1 is endvertex, then v2 is not
endvertex.
Proof: Consider u, w being vertices of G1 such that u 6= v1 and w 6= v1
and u 6= w and u and v1 are adjacent and v1 and w are not adjacent.
There exists no object e such that e joins v1 to w in G1. Consider e1 being
an object such that e1 joins v1 to w in G2. There exists no object e such
that e joins w to v1 in G1. Consider e2 being an object such that e2 joins w
to v1 in G2. Consider e′ being an object such that v2.edgesInOut() = {e′}
and e′ does not join v2 and v2 in G2. �

(95) Suppose v1 = v2. Then

(i) v2.inNeighbors() = (the vertices of G2) \ (v1.inNeighbors() ∪ {v2}),
and

(ii) v2.outNeighbors() = (the vertices of G2)\(v1.outNeighbors()∪{v2}).

The theorem is a consequence of (60).

(96) Suppose v1 = v2 and v1 is isolated. Then

(i) v2.inNeighbors() = (the vertices of G2) \ {v2}, and

(ii) v2.outNeighbors() = (the vertices of G2) \ {v2}, and

(iii) v2.allNeighbors() = (the vertices of G2) \ {v2}.

The theorem is a consequence of (95).

6. Undirected Graph Complement without Loops

Let G be a graph.
A graph complement of G is a simple graph defined by

(Def. 9) there exists an undirected graph complement G′ of G with loops such
that it is a subgraph of G′ with loops removed.

Now we state the proposition:
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(97) Let us consider graphs G1, G2, G3, and a graph complement G4 of G1.
Suppose G1 ≈ G2 and G3 ≈ G4. Then G3 is a graph complement of G2.
The theorem is a consequence of (62).

Let G be a graph. Observe that there exists a graph complement of G which
is plain. Let us consider a graph G1 and a simple graph G2. Now we state the
propositions:

(98) G2 is a graph complement of G1 if and only if the vertices of G2 =
the vertices of G1 and the edges of G2 misses the edges of G1 and for
every vertices v, w of G1 such that v 6= w holds there exists an object e1
such that e1 joins v and w in G1 iff there exists no object e2 such that e2
joins v and w in G2. The theorem is a consequence of (64) and (26).

(99) G2 is a graph complement of G1 if and only if the vertices of G2 =
the vertices of G1 and the edges of G2 misses the edges of G1 and for
every vertices v1, w1 of G1 and for every vertices v2, w2 of G2 such that
v1 = v2 and w1 = w2 and v1 6= w1 holds v1 and w1 are adjacent iff v2 and
w2 are not adjacent. The theorem is a consequence of (98).

(100) Let us consider a graph G1, a graph complement G2 of G1, and objects
e1, e2, v, w. If e1 joins v and w in G1, then e2 does not join v and w in
G2. The theorem is a consequence of (98).

(101) Let us consider a graph G1, and a simple graph G2 of G1. Then every
graph complement of G1 is a graph complement of G2. The theorem is
a consequence of (98) and (100).

(102) Let us consider graphs G1, G2, a simple graph G3 of G1, a simple graph
G4 of G2, a graph complement G5 of G1, and a graph complement G6
of G2. If G4 is G3-isomorphic, then G6 is G5-isomorphic. The theorem is
a consequence of (101) and (98).

(103) Let us consider a graph G1, a G1-isomorphic graph G2, and a graph com-
plement G3 of G1. Then every graph complement of G2 is G3-isomorphic.
The theorem is a consequence of (102).

(104) Let us consider a graph G1, and graph complements G2, G3 of G1. Then
G3 is G2-isomorphic. The theorem is a consequence of (103).

(105) Let us consider a graph G1, an object v, a subset V of the vertices of G1,
a supergraph G2 of G1 extended by vertex v and edges between v and V
of G1, and a graph complement G3 of G1. Suppose v /∈ the vertices of G1
and the edges of G2 misses the edges of G3. Then there exists a supergraph
G4 of G3 extended by vertex v and edges between v and (the vertices of
G1) \ V of G3 such that G4 is a graph complement of G2. The theorem is
a consequence of (98).

(106) Let us consider a graph G1, an object v, a supergraph G2 of G1 extended
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by v, and a graph complement G3 of G1. Suppose v /∈ the vertices of G1.
Then there exists a supergraph G4 of G3 extended by vertex v and edges
between v and the vertices of G3 such that G4 is a graph complement of
G2. The theorem is a consequence of (98) and (105).

(107) Let us consider a graph G1, an object v, a supergraph G2 of G1 exten-
ded by vertex v and edges between v and the vertices of G1, a graph
complement G3 of G1, and a supergraph G4 of G3 extended by v. Suppose
v /∈ the vertices of G1 and the edges of G2 misses the edges of G3. Then
G4 is a graph complement of G2. The theorem is a consequence of (105)
and (97).

(108) Let us consider a graph G1, a non empty subset V of the vertices of G1,
a subgraph G2 of G1 induced by V , and a graph complement G3 of G1.
Then every subgraph of G3 induced by V is a graph complement of G2.
The theorem is a consequence of (98) and (100).

(109) Let us consider a graph G1, a proper subset V of the vertices of G1,
a subgraph G2 of G1 with vertices V removed, and a graph complement
G3 of G1. Then every subgraph of G3 with vertices V removed is a graph
complement of G2. The theorem is a consequence of (98) and (108).

(110) Let us consider a simple graph G1, and a graph complement G2 of G1.
Then G1 is a graph complement of G2. The theorem is a consequence of
(98).

Let us consider a graph G1 and a graph complement G2 of G1. Now we state
the propositions:

(111) G1.order() = G2.order().

(112) G1 is trivial if and only if G2 is trivial. The theorem is a consequence of
(111).

LetG be a trivial graph. Observe that every graph complement ofG is trivial.
Let G be a non trivial graph. Let us observe that every graph complement of G
is non trivial. Now we state the proposition:

(113) Let us consider a graph G1, and a graph complement G2 of G1. Then

(i) G1 is complete iff G2 is edgeless, and

(ii) the edges of G1 = G1.loops() iff G2 is complete.

The theorem is a consequence of (99) and (98).

Let G be a complete graph. Observe that every graph complement of G is
edgeless.

Let G be a non complete graph. Let us observe that every graph complement
of G is non edgeless.
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Let G be an edgeless graph. One can verify that every graph complement of
G is complete.

LetG be a non connected graph. One can check that every graph complement
of G is connected.

Now we state the propositions:

(114) Let us consider a non trivial graph G1, a graph complement G2 of G1,
a vertex v1 of G1, and a vertex v2 of G2. If v1 = v2, then if v1 is isolated,
then v2 is not isolated. The theorem is a consequence of (98).

(115) Let us consider a graph G1, a graph complement G2 of G1, a vertex v1
of G1, and a vertex v2 of G2. Suppose v1 = v2 and G1.order() = 2. Then

(i) if v1 is endvertex, then v2 is isolated, and

(ii) if v1 is isolated, then v2 is endvertex.

The theorem is a consequence of (111), (98), and (100).

(116) Let us consider a simple graph G1, a graph complement G2 of G1, a ver-
tex v1 of G1, and a vertex v2 of G2. Suppose v1 = v2 and G1.order() = 2.
Then

(i) v1 is endvertex iff v2 is isolated, and

(ii) v1 is isolated iff v2 is endvertex.

The theorem is a consequence of (110), (111), and (115).

Let us consider a graph G1, a graph complement G2 of G1, a vertex v1 of
G1, and a vertex v2 of G2. Now we state the propositions:

(117) If v1 = v2 and 4 ⊆ G1.order(), then if v1 is endvertex, then v2 is not
endvertex. The theorem is a consequence of (99).

(118) If v1 = v2, then v2.allNeighbors() = (the vertices ofG2)\(v1.allNeighbors
() ∪ {v2}). The theorem is a consequence of (77).

(119) If v1 = v2 and v1 is isolated, then v2.allNeighbors() = (the vertices of
G2) \ {v2}. The theorem is a consequence of (118).

7. Self-complementary Graphs

Let G be a graph. We say that G is self-DLcomplementary if and only if

(Def. 10) every directed graph complement of G with loops is G-directed-isomor-
phic.

We say that G is self-Lcomplementary if and only if

(Def. 11) every undirected graph complement of G with loops is G-isomorphic.

We say that G is self-Dcomplementary if and only if
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(Def. 12) every directed graph complement of G is G-directed-isomorphic.

We say that G is self-complementary if and only if

(Def. 13) every graph complement of G is G-isomorphic.

Let us consider a graph G. Now we state the propositions:

(120) G is self-DLcomplementary if and only if there exists a directed graph
complement H of G with loops such that H is G-directed-isomorphic. The
theorem is a consequence of (50).

(121) G is self-Lcomplementary if and only if there exists an undirected graph
complement H of G with loops such that H is G-isomorphic. The theorem
is a consequence of (68).

(122) G is self-Dcomplementary if and only if there exists a directed graph
complement H of G such that H is G-directed-isomorphic. The theorem
is a consequence of (85).

(123) G is self-complementary if and only if there exists a graph complement
H of G such that H is G-isomorphic. The theorem is a consequence of
(104).

Let us observe that every graph which is self-DLcomplementary is also non
loopless, non loopfull, non-directed-multi, and connected and every graph which
is self-Lcomplementary is also non loopless, non loopfull, non-multi, and con-
nected and every graph which is self-Dcomplementary is also directed-simple
and connected and every graph which is self-complementary is also simple and
connected.

Every graph which is trivial and edgeless is also self-Dcomplementary
and self-complementary and every graph which is self-Dcomplementary and
self-complementary is also trivial and edgeless and every graph which is self-
DLcomplementary is also non trivial, non self-Lcomplementary, non self-Dcom-
plementary, and non self-complementary and every graph which is self-Lcom-
plementary is also non trivial, non self-DLcomplementary, non self-Dcomple-
mentary, and non self-complementary and there exists a graph which is self-
Dcomplementary and self-complementary.
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