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Summary. In this articles adjacency-preserving mappings from a graph to
another are formalized in the Mizar system [7], [2]. The generality of the approach
seems to be largely unpreceeded in the literature to the best of the author’s
knowledge. However, the most important property defined in the article is that
of two graphs being isomorphic, which has been extensively studied. Another
graph decorator is introduced as well.
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0. INTRODUCTION

Writing this article has been rather challenging. “Much of graph theory is
concerned with the study of simple graphs” [3, p. 3], so most graph theory
books are only concerned with graph homomorphisms between simple graphs,
if they are concerned with anything more general than isomorphisms at all. [3]
writes about general graphs; isomorphisms are done in the first chapter while
homomorphisms are only looked at in the context of vertex colorings in chap-
ter 14. The book “Graphs and homomorphisms” [§] only handles (di)graphs
without multiple parallel edges. The book “Graph coloring problems” [10]
notes homomorphisms between loopless graphs, but doesn’t elaborate. [6] only
handles homomorphisms between simple graphs. [I4] shortly describes homo-
morphisms between undirected graphs. [9] handles homomorphisms between
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digraphs without parallel edges. [16] writes about general graphs but, like most
graph books, only about isomorphisms. The best source so far has been [11],
where graph homomorphisms are introduced for digraphs possibly containing
loops and multiple parallel edges (just like graphs are formalized in [I5]) but the
focus is almost immediately shifted to homomorphisms between simple graphs.
So a quick overview of the formalized notation seems in order.

A graph G consists of a non empty set V(G) called vertices of G, a set E(G)
called edges of G and two functions s(G),t(G) : E(G) — V(G), the source and
target of G. For e € E(G),v,w € V(G) we write e joins v to w if s(G)(e) = v
and t(G)(e) = w, and we write e joins v and w if e joins v to w or e joins w to
v. Let G1, G4 be graphs. A partial graph mapping from G1 to G2 is an ordered
pair F' = (Fy, Fg) with the following properties:

e Fy is a partial function from V(G1) to V(Ga2).
e Ff is a partial function from E(G)) to E(Ga).
e For any e € dom Fg holds s(G)(e),t(G)(e) € dom Fy.

e For any e € dom Fg and v,w € dom Fy such that e joins v and w holds
Fx(e) joins Fy(v) and Fy(w).

Note that (f,0) is a valid partial graph mapping for any partial function f :
V(G1) — V(Gs), especially for f = ). Now define the following attributes:

e Fis empty if dom Fy = ().

e F'is total (or a homomorphism) if dom Fy = V(G1) and dom Fg = E(Gh).

e F'is onto (or surjective) if rng Fiy = V(G2) and rng Fg = E(G2).

e [ is one-to-one (or injective) if Fy and Fg are.

e [ is semi-continuous if for any e € dom Fg and v, w € dom Fy such that
Fi(e) joins Fy(v) and Fy(w) holds e joins v and w.

e F'is continuous if for any € € E(G2) and v, w € dom Fy such that € joins
Fy(v) and Fy(w) exists an e € dom Fi such that Fig(e) = € and e joins v
and w.

o F'is a weak subgraph-embedding if it is total and one-to-one.

e [ is a strong subgraph-embedding if it is total, one-to-one and continuous.

e [ is an isomorphism if it is total, one-to-one and onto.

Because modes in Mizar must always be inhabitated, partial graph mappings
are the chosen foundation rather than homomorphisms, which may not exist
between two graphs. The attributes total, onto and one-to-one were named like
their function analogons from [4] and [5]. The continuous attribute was inspired
by the continuous vertex mappings of [I1] and is in fact sometimes different
from semi-continuous. Semi-continuous seemed like the natural generalization
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of continuous for graph mappings instead of vertex mappings, but that turned
out to be false. Still, a semi-continuous graph mapping already carries a lot of
properties from G to Ga, so the definition was kept. Corresponding attributes
for directed graph mappings are given in this article as well.

If F' is a weak subgraph-embedding, then G; is isomorphic to a subgraph
of Go. If F' is a strong subgraph-embedding, then (G is isomorphic to an in-
duced subgraph of Gy. The short term embedding was desperately avoided to
be available for embeddings of graphs into the plane and other surfaces. If F
is one-to-one, it is also semi-continuous. If F' is semi-continuous and onto, it is
also continuous.

Originally, only an article about graph isomorphisms was planned, but it
was changed to provide a solid foundation of general graph mappings. Now this
article also includes the restriction of F' to subgraphs of Gy or Gs, the domain
and range of F' defined as the plain subgraphs of G; and G2 induced by dom Fy,
dom Fy and rng Fy, rng Fi respectively, and the images of walks under F. Of
course the inverse of F' and the composition of two graph mappings are included
as well.

Additionally, the ordering of a graph, which is just an enumeration of its
vertices, has been introduced as yet another graph decorator. This decorator is
planned as a tool to identify graphs with trees from [I]. Attributes describing
if F' preserves the weights, edge labels, vertex labels or the ordering have been
added as well.

1. PRELIMINARIES

Now we state the propositions:
(1) Let us consider functions A, B, C', D. Suppose D - A = C'| dom A. Then
(Dl/domB)-A=C|dom(B - A).
PROOF: Set f = (D[dom B) - A. Set g = C|dom(B - A). For every object
x such that z € dom f holds f(z) = g(z). O
(2) Let us consider a one-to-one function A, and functions C, D. Suppose
D-A=CldomA. Then C-(A7!) = DI dom(A™1).
PROOF: For every object y, y € dom(C-(A™1)) iff y € dom(D| dom(A™1)).
For every object y such that y € dom(C - (A™1)) holds (C - (A™1))(y) =
(D} dom(A1))(y). O
Let G be a non finite graph and X be a set. One can verify that
G.set(WeightSelector, X) is non finite and G.set(ELabelSelector, X') is non
finite and G.set(VLabelSelector, X) is non finite.
Let G be a non loopless graph. One can check that G.set(WeightSelector, X)
is non loopless and G.set(ELabelSelector, X) is non loopless and
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G .set(VLabelSelector, X) is non loopless.

Let G be a non non-multi graph. Note that G.set(WeightSelector, X) is non
non-multi and G.set(ELabelSelector, X) is non non-multi and

G .set(VLabelSelector, X) is non non-multi. Let G be a non non-directed-
multi graph. Let us note that G.set(WeightSelector, X) is non non-directed-
multi and G.set(ELabelSelector, X) is non non-directed-multi and

G .set(VLabelSelector, X) is non non-directed-multi.

Let G be a non connected graph. Observe that G.set(WeightSelector, X) is
non connected and G.set(ELabelSelector, X) is non connected and

G .set(VLabelSelector, X)) is non connected.

Let G be a non acyclic graph. Let us observe that G.set(WeightSelector, X)
is non acyclic and G.set(ELabelSelector, X) is non acyclic and

G .set(VLabelSelector, X) is non acyclic. Let G be a graph. We say that G
is elabel-full if and only if

(Def. 1) ELabelSelector € dom G' and there exists a many sorted set f indexed
by the edges of G such that G(ELabelSelector) = f.

We say that G is vlabel-full if and only if

(Def. 2) VLabelSelector € dom G and there exists a many sorted set f indexed
by the vertices of G such that G(VLabelSelector) = f.

Let us observe that every graph which is elabel-full is also elabeled and every
graph which is vlabel-full is also vlabeled.
Let G be an e-graph. We say that G is elabel-distinct if and only if

(Def. 3) the elabel of G is one-to-one.
Let G be a v-graph. We say that G is vlabel-distinct if and only if
(Def. 4) the vlabel of G is one-to-one.

Let G be a graph. Observe that G.set(ELabelSelector, idihe edges of @) is elabel-
full and elabel-distinct and G.set(VLabelSelector, idine vertices of ) is vlabel-full
and vlabel-distinct and there exists an e-graph which is elabel-distinct and
elabel-full and there exists a v-graph which is vlabel-distinct and vlabel-full.

Let G be an elabel-full graph. Let us observe that the elabel of G yields
a many sorted set indexed by the edges of G. Let G be a vlabel-full graph.
Observe that the vlabel of GG yields a many sorted set indexed by the vertices
of G. Let G be an elabel-distinct e-graph. Let us note that the elabel of G is
one-to-one.

Let G be a vlabel-distinct v-graph. Observe that the vlabel of G is one-to-
one. Let G be an elabel-full graph and X be a set. One can verify that

G.set(WeightSelector, X) is elabel-full and G.set(VLabelSelector, X) is elabel-
full. Let G be a vlabel-full graph. One can check that G.set(WeightSelector, X)
is vlabel-full and G.set(ELabelSelector, X) is vlabel-full.
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Let G be an elabel-distinct e-graph. Note that G.set(WeightSelector, X) is
elabel-distinct and G.set(VLabelSelector, X) is elabel-distinct.

Let G be a vlabel-distinct v-graph. Let us observe that G.set(WeightSelector,

X) is vlabel-distinct and G.set(ELabelSelector, X) is vlabel-distinct and the-
re exists an ev-graph which is elabel-full, elabel-distinct, vlabel-full, and vlabel-
distinct.

Let G1 be a w-graph, E be a set, and G2 be a graph given by reversing
directions of the edges E of G1. Observe that Ga.set(WeightSelector, the weight
of G1) is weighted.

Let G1 be an e-graph. One can verify that Gs.set(ELabelSelector, the elabel
of G1) is elabeled.

Let GG1 be a v-graph, V be a set, and G2 be a graph given by reversing
directions of the edges V of GG1. Observe that G.set(VLabelSelector, the vlabel
of G1) is vlabeled.

Let GG be an elabel-full graph, E be a set, and G2 be a graph given by rever-
sing directions of the edges F of G1. Note that Gs.set(ELabelSelector, the elabel
of G1) is elabel-full.

Let GG1 be a vlabel-full graph, V' be a set, and G2 be a graph given by rever-
sing directions of the edges V of G;. Note that Go.set(VLabelSelector, the vlabel
of Gy) is vlabel-full. Let G; be an elabel-distinct e-graph, E be a set, and
G2 be a graph given by reversing directions of the edges E of G1. Note that
Go.set(ELabelSelector, the elabel of G1) is elabel-distinct. Let G; be a vlabel-
distinct v-graph. Observe that Ga.set(VLabelSelector, the vlabel of G1) is vlabel-
distinct.

2. ORDERING OF A GRAPH

The functor OrderingSelector yielding an element of N is defined by the term
(Def. 5) 8.
Let G be a graph structure. We say that G is ordered if and only if

(Def. 6) OrderingSelector € dom G and G(OrderingSelector) is an enumeration
of the vertices of G.

Let G be a graph and X be a set. Note that G.set(OrderingSelector, X) is
graph-like and G.set(OrderingSelector, X) is non plain.

Let G be a w-graph. One can verify that G.set(OrderingSelector, X) is we-
ighted.

Let G be an e-graph. One can check that G.set(OrderingSelector, X) is ela-
beled.

Let G be a v-graph. Note that G.set(OrderingSelector, X) is vlabeled.
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Let G be a graph and X be an enumeration of the vertices of G. Note that
G .set(OrderingSelector, X) is ordered and there exists a graph structure which
is graph-like, weighted, elabeled, vlabeled, and ordered.

Let G be an ordered graph. The ordering of G yielding an enumeration of
the vertices of G is defined by the term

(Def. 7) G(OrderingSelector).
Now we state the proposition:

(3) Let us consider a graph G, and a set X.
Then G ~ G.set(OrderingSelector, X).

Let G be an elabel-full graph and X be a set. Let us note that

G.set(OrderingSelector, X)) is elabel-full.

Let G be a vlabel-full graph. Let us note that G.set(OrderingSelector, X) is
vlabel-full.

Let G be an elabel-distinct e-graph. Let us note that G.set(OrderingSelector,

X) is elabel-distinct.

Let G be a vlabel-distinct v-graph. Observe that G.set(OrderingSelector, X)
is vlabel-distinct.

Let G be a finite graph. Let us observe that G.set(OrderingSelector, X) is
finite.

Let G be a non finite graph. Let us observe that G.set(OrderingSelector, X)
is non finite.

Let G be a loopless graph. Let us observe that G.set(OrderingSelector, X)
is loopless.

Let G be a non loopless graph. Let us observe that G.set(OrderingSelector, X)
is non loopless.

Let G be a trivial graph. Let us observe that G.set(OrderingSelector, X) is
trivial.

Let G be a non trivial graph. Let us observe that G.set(OrderingSelector, X)
is non trivial.

Let G be a non-multi graph. Let us observe that G.set(OrderingSelector, X)
is non-multi.

Let G be a non non-multi graph. Let us observe that

G.set(OrderingSelector, X') is non non-multi.

Let G be a non-directed-multi graph. Let us observe that

G.set(OrderingSelector, X') is non-directed-multi.

Let G be a non non-directed-multi graph. Let us observe that

G.set(OrderingSelector, X') is non non-directed-multi.

Let G be a connected graph. Let us observe that G.set(OrderingSelector, X)
is connected.
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Let G be a non connected graph. Let us note that G.set(OrderingSelector, X)
is non connected.

Let G be an acyclic graph. Let us note that G.set(OrderingSelector, X) is
acyclic.

Let G be a non acyclic graph. One can check that G.set(OrderingSelector, X)
is non acyclic.

Let G be an edgeless graph. One can check that G.set(OrderingSelector, X)
is edgeless.

Let G be a non edgeless graph. Let us observe that G.set(OrderingSelector, X)
is non edgeless.

Let G be an ordered graph. Let us observe that G.set(WeightSelector, X) is
ordered and G.set(ELabelSelector, X) is ordered and G.set(VLabelSelector, X)
is ordered.

Let G; be an ordered graph and G be a spanning subgraph of G;. Note
that Ga.set(OrderingSelector, the ordering of G) is ordered.

Let E be a set and G2 be a graph given by reversing directions of the edges
E of G;. Let us observe that Gs.set(OrderingSelector, the ordering of G1) is
ordered.

3. GRAPH MAPPINGS

Let GG, G4 be graphs. A partial graph mapping from G to G5 is an object
defined by
(Def. 8) there exist functions f, g such that it = (f, g) and dom f C the vertices
of G1 and rng f C the vertices of GGo and dom g C the edges of G; and
rng g C the edges of G2 and for every object e such that e € dom g holds
(the source of G1)(e), (the target of G1)(e) € dom f and for every objects
e, v, w such that e € dom g and v, w € dom f holds if e joins v and w in
G1, then g(e) joins f(v) and f(w) in Ga.

Let us observe that every partial graph mapping from G to Gs is pair.

Let F' be a partial graph mapping from G; to G3. We introduce the notation
Fy as a synonym of (F); and Fg as a synonym of (F)a.

One can check that (Fy, Fg) reduces to F.

One can verify that Fy is function-like and relation-like as a set and Fg is
function-like and relation-like as a set and Fy is (the vertices of Gy )-defined and
(the vertices of G )valued as a function and Ff is (the edges of G1)-defined and
(the edges of Ga)valued as a function.

Note that the functor Fy yields a partial function from the vertices of G to
the vertices of Go. Observe that the functor F yields a partial function from
the edges of G; to the edges of G3. Now we state the proposition:
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(4) Let us consider graphs Gy, G2, a partial graph mapping F' from G; to
Go, and objects e, v, w. Suppose e € dom(Fg) and v, w € dom(Fy). If e
joins v and w in Gy, then (Fg)(e) joins (Fy)(v) and (Fy)(w) in G.

Let us consider graphs G1, Go, a partial graph mapping F' from G to Go,
and an object e. Now we state the propositions:

(5) Suppose e € dom(Fx). Then (the source of G1)(e), (the target of G1)(e) €
dom(Fy).

(6) Suppose e € rng Fig. Then (the source of G3)(e), (the target of G2)(e) €
rng Fy. The theorem is a consequence of (5) and (4).

(7) Let us consider graphs G, G2, and a partial graph mapping F' from G
to G3. Then

(i) dom(Fk) C G;.edgesBetween(dom(Fy)), and
(ii) rng Fr C G2.edgesBetween(rng Fy).

PROOF: For every object e such that e € dom(Fg) holds
e € GG.edgesBetween(dom(Fy)). For every object e such that e € rng F
holds e € G3.edgesBetween(rng Fy). O

(8) Let us consider graphs G, G2, a partial function f from the vertices of
GG1 to the vertices of G, and a partial function g from the edges of G
to the edges of G2. Suppose for every object e such that e € dom g holds
(the source of G1)(e), (the target of G1)(e) € dom f and for every objects
e, v, w such that e € domg and v, w € dom f holds if e joins v and w in
G1, then g(e) joins f(v) and f(w) in Ga. Then (f, g) is a partial graph
mapping from Gp to Gs.

Let us consider graphs G1, Ga, G3, G4 and a partial graph mapping F' from
(1 to G3. Now we state the propositions:

(9) If G1 = G3 and Gy =~ Gy, then F' is a partial graph mapping from G35 to
G4. The theorem is a consequence of (5), (4), and (8).

(10) Suppose there exist sets Ey, E9 such that G3 is a graph given by reversing
directions of the edges Fj of G; and G4 is a graph given by reversing
directions of the edges Fy of G3. Then F' is a partial graph mapping from
G3 to G4. The theorem is a consequence of (5), (4), and (8).

Let G be a graph. The functor idg yielding a partial graph mapping from
G to G is defined by the term

Def. 9) (ida, idg), where « is the vertices of G and [ is the edges of G.
B
Now we state the propositions:

(11) Let us consider graphs G, Ga. Suppose G1 ~ G3. Then

(i) idg, = idg,, and
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(ii) idg, is a partial graph mapping from G; to Ga.
The theorem is a consequence of (9).
(12) Let us consider a graph G1, a set E, and a graph G given by reversing
directions of the edges E of G;. Then
(i) idg, = idg,, and
(ii) idg, is a partial graph mapping from G; to Gs.
PRrROOF: There exist sets 1, Fy such that GG; is a graph given by reversing

directions of the edges Fj of G; and Gy is a graph given by reversing
directions of the edges Fo of G1. O

Let G1, G2 be graphs and F' be a partial graph mapping from G; to G2. We
say that F' is empty if and only if
(Def. 10) dom(Fy) is empty.
We say that F' is total if and only if
(Def. 11) dom(Fy) = the vertices of G and dom(Fg) = the edges of G;.
We say that F'is onto if and only if
(Def. 12) rng Fy = the vertices of Gy and rng Fg = the edges of Gs.
We say that F' is one-to-one if and only if
(Def. 13)  Fy is one-to-one and Fg is one-to-one.
We say that F'is directed if and only if
(Def. 14) for every objects e, v, w such that e € dom(Fg) and v, w € dom(Fy)
holds if e joins v to w in Gy, then (Fg)(e) joins (Fy)(v) to (Fy)(w) in Ga.
We say that F' is semi-continuous if and only if
(Def. 15) for every objects e, v, w such that e € dom(Fg) and v, w € dom(Fy)
holds if (Fg)(e) joins (Fy)(v) and (Fy)(w) in Ga, then e joins v and w in
G1.
We say that F' is continuous if and only if
(Def. 16) for every objects €, v, w such that v, w € dom(Fy) and é joins (Fy)(v)
and (Fy)(w) in G2 there exists an object e such that e joins v and w in
G1 and e € dom(Fk) and (Fg)(e) = €.
We say that F'is semi-directed-continuous if and only if
(Def. 17) for every objects e, v, w such that e € dom(Fg) and v, w € dom(Fy)
holds if (Fg)(e) joins (Fy)(v) to (Fy)(w) in Ga, then e joins v to w in Gj.
We say that F'is directed-continuous if and only if
(Def. 18) for every objects €, v, w such that v, w € dom(Fy) and € joins (Fy)(v)

to (Fy)(w) in Go there exists an object e such that e joins v to w in Gy
and e € dom(Fg) and (Fg)(e) = é.

269
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Let us consider graphs G, G2 and a partial graph mapping F' from G to
G5. Now we state the propositions:

(13) F is directed if and only if for every object e such that e € dom(Fx) holds
(the source of G2)((Fg)(e)) = (Fy)((the source of G1)(e)) and (the target
of G2)((Fg)(e)) = (Fy)((the target of G1)(e)). The theorem is a consequ-
ence of (5).

(14) F is directed if and only if (the source of G2)- (Fg) = (Fy) - ((the source
of G1)[dom(Fx)) and (the target of Go2) - (Fr) = (Fy) - ((the target of
G1)[ dom(Fg)). The theorem is a consequence of (13) and (5).

(15) F' is semi-continuous if and only if for every objects e, v, w such that
e € dom(Fg) and v, w € dom(Fy) holds e joins v and w in Gy iff (Fg)(e)
joins (Fy)(v) and (Fy)(w) in Gs.

(16) F' is semi-directed-continuous if and only if for every objects e, v, w
such that e € dom(Fg) and v, w € dom(Fy) holds e joins v to w in Gy iff
(Fg)(e) joins (Fy)(v) to (Fy)(w) in Ga.

PRrOOF: If F' is semi-directed-continuous, then for every objects e, v, w
such that e € dom(Fg) and v, w € dom(Fy) holds e joins v to w in Gy iff
(Fr)(e) joins (Fy)(v) to (Fy)(w) in Ga. O
Let Gy, G2 be graphs. Note that there exists a partial graph mapping from
(1 to G2 which is empty, one-to-one, directed-continuous, directed, continuous,
semi-directed-continuous, and semi-continuous and there exists a partial graph
mapping from G to G5 which is non empty, one-to-one, directed, semi-directed-
continuous, and semi-continuous.
Let F' be an empty partial graph mapping from G to Gs. One can verify
that Fy is empty as a set and Fg is empty as a set.
Let F' be a non empty partial graph mapping from G to GGo. One can verify
that Fy is non empty as a set.
Let F' be a one-to-one partial graph mapping from G to G3. One can verify
that Fy is one-to-one as a function and Fp is one-to-one as a function.
Now we state the propositions:

(17) Let us consider graphs Gi, G2, and a partial graph mapping F from
G1 to Gs. If Fy is one-to-one, then F' is semi-continuous. The theorem is
a consequence of (5) and (4).

(18) Let us consider graphs G, G2, and a directed partial graph mapping F
from G to Gs. If Fy is one-to-one, then F' is semi-directed-continuous.
The theorem is a consequence of (5).

(19) Let us consider graphs Gp, G2, and a semi-continuous partial graph
mapping F' from G to Ga. Suppose rng F = the edges of Go. Then F is
continuous.



ABOUT GRAPH MAPPINGS 271

(20) Let us consider graphs G1, G, and a semi-directed-continuous partial
graph mapping F' from G1 to Gs. Suppose rng Fg = the edges of G3. Then
F' is directed-continuous.

(21) Let us consider graphs G, G, and a partial graph mapping F' from G
to Go. Suppose Fy is one-to-one and rng Fg = the edges of G3. Then F' is
continuous. The theorem is a consequence of (17) and (19).

(22) Let us consider graphs G, Go, and a directed partial graph mapping F’
from G to G5. Suppose Fy is one-to-one and rng Fg = the edges of Gs.
Then F is directed-continuous. The theorem is a consequence of (18) and
(20).

(23) Let us consider graphs G1, G2, and a continuous partial graph mapping
F from G7 to Gs. If Fg is one-to-one, then F' is semi-continuous.

Let us consider graphs G1, G2 and a directed-continuous partial graph map-
ping F' from G; to G». Now we state the propositions:

(24) If Fg is one-to-one, then F' is semi-directed-continuous.

(25) If Fg is one-to-one, then F is directed. The theorem is a consequence of
(4).

(26) Let us consider graphs G, Go, a semi-continuous partial graph mapping
F from G; to G, and objects vy, vy. Suppose vy, vy € dom(Fy) and
(Fy)(v1) = (Fy)(v2) and there exist objects e, w such that e € dom(Fg)
and w € dom(Fy) and (Fg)(e) joins (Fy)(v1) and (Fy)(w) in Ga. Then
V1 = V2.

(27) Let us consider graphs Gp, G2, and a semi-continuous partial graph
mapping F' from G; to Go. Suppose for every object v such that v €
dom(Fy) there exist objects e, w such that e € dom(Fk) and w € dom(Fy)
and (Fg)(e) joins (Fy)(v) and (Fy)(w) in Ga. Then Fy is one-to-one. The
theorem is a consequence of (26).

(28) Let us consider graphs G, Ga, a semi-directed-continuous partial graph
mapping F' from G; to G2, and objects vy, va2. Suppose vy, ve € dom(Fy)
and (Fy)(v1) = (Fy)(v2) and there exist objects e, w such that e €
dom(Fg) and w € dom(Fy) and (Fg)(e) joins (Fy)(v1) to (Fy)(w) in
G5. Then vy = vs.

(29) Let us consider graphs G, G, and a semi-directed-continuous partial
graph mapping F from G1 to Gs. Suppose for every object v such that v €
dom(Fy) there exist objects e, w such that e € dom(Fk) and w € dom(Fy)
and (Fg)(e) joins (Fy)(v) to (Fy)(w) in Ga. Then Fy is one-to-one. The
theorem is a consequence of (28).

Let G1, G be graphs. One can verify that every partial graph mapping from
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(G1 to G2 which is one-to-one is also semi-continuous and every partial graph
mapping from G; to Gy which is one-to-one and directed is also semi-directed-
continuous and every partial graph mapping from G to G2 which is one-to-one
and onto is also continuous and every partial graph mapping from G; to Go
which is directed, one-to-one, and onto is also directed-continuous.

Every partial graph mapping from G; to G2 which is semi-continuous and
onto is also continuous and every partial graph mapping from G to G5 which is
semi-directed-continuous is also directed and semi-continuous and every partial
graph mapping from G; to G2 which is semi-directed-continuous and onto is
also directed-continuous and every partial graph mapping from G; to G5 which
is directed-continuous is also continuous.

Every partial graph mapping from G to G2 which is directed-continuous and
one-to-one is also directed and semi-directed-continuous and every partial graph
mapping from G; to GGo which is empty is also one-to-one, directed-continuous,
directed, and continuous and every partial graph mapping from G to G2 which
is total is also non empty and every partial graph mapping from G1 to G2 which
is onto is also non empty.

Let G be a graph. One can verify that idg is total, non empty, onto, one-to-
one, and directed-continuous.

Let us consider graphs G1, G, a partial function f from the vertices of G
to the vertices of Go, and a partial function g from the edges of G to the edges
of G5. Now we state the propositions:

(30) Suppose for every object e such that e € dom g holds (the source of
G1)(e), (the target of G1)(e) € dom f and for every objects e, v, w such
that e € domg and v, w € dom f holds if e joins v to w in Gy, then g(e)
joins f(v) to f(w) in Go. Then (f, g) is a directed partial graph mapping
from G; to Ga. The theorem is a consequence of (8).

(31) Suppose for every object e such that e € domg holds (the source of
G1)(e), (the target of G1)(e) € dom f and for every objects e, v, w such
that e € domg and v, w € dom f holds e joins v and w in G iff g(e)
joins f(v) and f(w) in Ga. Then (f, g) is a semi-continuous partial graph
mapping from G; to G3. The theorem is a consequence of (8).

(32) Suppose for every object e such that e € dom g holds (the source of
G1)(e), (the target of G1)(e) € dom f and for every objects e, v, w such
that e € domg and v, w € dom f holds e joins v to w in G iff g(e)
joins f(v) to f(w) in Ga. Then (f, g) is a semi-directed-continuous partial
graph mapping from G; to Ga. The theorem is a consequence of ().

(33) Let us consider graphs Gp, Ga. Then (0, §) is an empty, one-to-one,
directed-continuous partial graph mapping from G; to Gb.
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(34) Let us consider graphs G1, G, and a partial graph mapping F' from G,
to Ga. Suppose F' is total. Let us consider a vertex v of G1. Then (Fy)(v)
is a vertex of Gs.

(35) Let us consider graphs G, G, and a partial graph mapping F' from G;
to G2. Suppose F' is total. Then

(i) if G is loopless, then G is loopless, and
(ii) if Gy is edgeless, then G is edgeless.
The theorem is a consequence of (4).

(36) Let us consider graphs G, G2, and a continuous partial graph mapping
F from G to Ga. Suppose rng Fy = the vertices of Gy. If 1 is loopless,
then G is loopless.

PrOOF: For every object v, there exists no object e such that e joins v
and v in Go. O

(37) Let us consider graphs Gp, G2, and a semi-continuous partial graph
mapping F' from G to Go. If F is onto, then if GG} is loopless, then G is
loopless.

Let us consider graphs G, G2 and a partial graph mapping F' from G to
G5. Now we state the propositions:

(38) If rng F = the edges of G, then if G is edgeless, then Go is edgeless.
(39) If F is onto, then if G7 is edgeless, then G5 is edgeless.

(40) Let us consider a graph G, a non-multi graph Gg, and partial graph
mappings Fi, Fy from G; to Ga. Suppose Fiy = Fyy and dom(Fig) =
dom(Fsg). Then F; = F5. The theorem is a consequence of (5) and (4).

(41) Let us consider a graph G1, a non-directed-multi graph G2, and directed
partial graph mappings Fi, Fb from G to Ga. Suppose Fiy = Fby and
dom(Fig) = dom(Fsg). Then F} = Fy. The theorem is a consequence of
(5)-

(42) Let us consider a non-multi graph G1, a graph Gs, and a semi-continuous
partial graph mapping F' from G to Go. Then Fg is one-to-one. The
theorem is a consequence of (5) and (4).

(43) Let us consider a non-multi graph G, a graph G, and a partial graph
mapping F' from G to Go. If Fy is one-to-one, then Ff is one-to-one. The
theorem is a consequence of (5) and (4).

(44) Let us consider a non-directed-multi graph G, a graph G, and a direc-
ted partial graph mapping F' from G to Go. If Fy is one-to-one, then Fg
is one-to-one. The theorem is a consequence of (5).

Let G1 be a graph and G2 be a loopless graph. Observe that every partial
graph mapping from G to G2 which is directed and semi-continuous is also semi-
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directed-continuous and every partial graph mapping from G1 to Go which is
directed and continuous is also directed-continuous.

Let G be a trivial graph and G2 be a graph. Observe that every partial graph
mapping from G to G is directed and every partial graph mapping from G to
(2 which is semi-continuous is also semi-directed-continuous and every partial
graph mapping from G; to G2 which is continuous is also directed-continuous.

Let G be a trivial, non-directed-multi graph. Note that every partial graph
mapping from Gp to G2 is one-to-one.

Let G1 be a trivial, edgeless graph. Observe that every partial graph mapping
from GG to G5 which is non empty is also total.

Let G1 be a graph and G5 be a trivial, edgeless graph. Note that every
partial graph mapping from G1 to G2 which is non empty is also onto and every
partial graph mapping from G; to Gs is semi-continuous and continuous.

Let G1, G2 be graphs and F' be a partial graph mapping from G; to G2. We
say that F' is weak subgraph embedding if and only if

(Def. 19) F is total and one-to-one.
We say that F' is strong subgraph embedding if and only if
(Def. 20) F is total, one-to-one, and continuous.
We say that F'is isomorphism if and only if
(Def. 21) F is total, one-to-one, and onto.
We say that F'is directed-isomorphism if and only if
(Def. 22) F is directed, total, one-to-one, and onto.

One can check that every partial graph mapping from G to G2 which is weak
subgraph embedding is also total, non empty, one-to-one, and semi-continuous
and every partial graph mapping from G to G which is total and one-to-one
is also weak subgraph embedding and every partial graph mapping from G to
(9 which is strong subgraph embedding is also total, non empty, one-to-one,
continuous, and weak subgraph embedding and every partial graph mapping
from G to G2 which is total, one-to-one, and continuous is also strong subgraph
embedding.

Every partial graph mapping from G to G5 which is weak subgraph embed-
ding and continuous is also strong subgraph embedding and every partial graph
mapping from G; to G which is isomorphism is also onto, semi-continuous,
continuous, total, non empty, one-to-one, weak subgraph embedding, and strong
subgraph embedding and every partial graph mapping from G; to G2 which is
total, one-to-one, onto, and continuous is also isomorphism and every partial
graph mapping from G to G2 which is strong subgraph embedding and onto is
also isomorphism.
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Every partial graph mapping from G; to G5 which is weak subgraph embed-
ding, continuous, and onto is also isomorphism and every partial graph mapping
from Gy to Go which is directed-isomorphism is also directed, isomorphism,
continuous, total, non empty, semi-directed-continuous, semi-continuous, one-
to-one, weak subgraph embedding, and strong subgraph embedding and every
partial graph mapping from G to G2 which is directed and isomorphism is also
directed-continuous and directed-isomorphism.

Let G be a graph. Let us note that idg is weak subgraph embedding, strong
subgraph embedding, isomorphism, and directed-isomorphism and there exists
a partial graph mapping from G to G which is weak subgraph embedding, strong
subgraph embedding, isomorphism, and directed-isomorphism.

Now we state the propositions:

(45) Let us consider graphs G, G, and a partial graph mapping F' from G;
to G. Suppose F' is weak subgraph embedding. Then

(i) Gy.order() C Gq.order(), and
(ii) Gy.size() C Ga.size().

(46) Let us consider graphs G, Go, a partial graph mapping F' from G to G,
and subsets X, Y of the vertices of G1. Suppose F' is weak subgraph embed-
ding. Then G;.edgesBetween(X,Y) C Gs.edgesBetween((Fy)°X, (Fy)°Y).
PROOF: Set f = Fg[Gj.edgesBetween(X,Y'). For every object y such that
y € rng f holds y € Ga.edgesBetween((Fy)° X, (Fy)°Y). O

(47) Let us consider graphs G1, G2, a partial graph mapping F from G; to
G, and a subset X of the vertices of G1. Suppose F' is weak subgraph
embedding. Then G;.edgesBetween(X) C Ga.edgesBetween((Fy)°X).
PROOF: Set f = Fg|Gj.edgesBetween(X). For every object y such that
y € rng f holds y € Ga.edgesBetween((Fy)°X). O

(48) Let us consider graphs G, Ga, a directed partial graph mapping F' from
G1 to Go, and subsets X, Y of the vertices of G1. Suppose F' is weak
subgraph embedding. Then G;.edgesDBetween(X,Y") C
Go.edgesDBetween((Fy)° X, (Fy)°Y).

PROOF: Set f = Fg|G;.edgesDBetween(X,Y). For every object y such
that y € rng f holds y € Ga.edgesDBetween((Fy)° X, (Fy)°Y). O
Let us consider graphs G1, G2 and a partial graph mapping F' from G to
G5. Now we state the propositions:

(49) Suppose F' is weak subgraph embedding. Then
(i) if G is trivial, then G is trivial, and

(ii) if G2 is non-multi, then G; is non-multi, and
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(iii) if Go is simple, then G is simple, and
(iv) if G is finite, then G is finite.
PROOF: If G3 is non-multi, then G is non-multi. G;.order() C Gg.order()
and G.size() C Ga.size(). O
(50) Suppose F' is directed and weak subgraph embedding. Then
(i) if G is non-directed-multi, then G; is non-directed-multi, and
(ii) if G9 is directed-simple, then G is directed-simple.
Proor: If G5 is non-directed-multi, then G is non-directed-multi. G is
loopless and non-directed-multi. [

(51) Let us consider finite graphs G1, G, and a partial graph mapping F
from G to Ga. Suppose F' is strong subgraph embedding and G;.order() =
Ga.order() and Gj.size() = Ga.size(). Then F is isomorphism.

(52) Let us consider graphs G1, G, and a partial graph mapping F' from G;
to Go. Suppose F' is strong subgraph embedding. If G2 is complete, then
(1 is complete.

Let G1, G2 be graphs. We say that G2 is G1-isomorphic if and only if
(Def. 23) there exists a partial graph mapping F' from G; to G2 such that F is
isomorphism.
We say that G is Gi-directed-isomorphic if and only if

(Def. 24) there exists a partial graph mapping F from G; to G2 such that F is
directed-isomorphism.

Let G be a graph. Note that every graph which is G-directed-isomorphic is
also G-isomorphic and there exists a graph which is G-directed-isomorphic and
G-isomorphic.

Now we state the proposition:

(53) Every graph is directed-isomorphic and isomorphic to itself.

Let G1 be a graph and G2 be a Gi-isomorphic graph. Let us observe that
there exists a partial graph mapping from G to G2 which is isomorphism, strong
subgraph embedding, weak subgraph embedding, total, non empty, one-to-one,
onto, semi-continuous, and continuous.

An isomorphism between GG; and G5 is an isomorphism partial graph map-
ping from G1 to Gs. Let G5 be a GG1-directed-isomorphic graph. One can verify
that there exists a partial graph mapping from G to G5 which is isomorphism,
strong subgraph embedding, weak subgraph embedding, total, non empty, one-
to-one, onto, directed, semi-directed-continuous, and directed-continuous.

A directed isomorphism of GG; and G2 is a directed-isomorphism partial
graph mapping from G; to Gs. Let G1, G5 be w-graphs and F be a partial
graph mapping from G; to G2. We say that F' preserves weight if and only if
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(Def. 25) (the weight of G2) - (Fg) = (the weight of G1)[ dom(Ff).

Let Gy, G2 be e-graphs. We say that F' preserves elabel if and only if
(Def. 26) (the elabel of Ga) - (Fg) = (the elabel of G1)[ dom(Fg).

Let G1, G2 be v-graphs. We say that F preserves vlabel if and only if
(Def. 27) (the vlabel of G3) - (Fy) = (the vlabel of G;)| dom(Fy).

Let G1, G2 be ordered graphs. We say that F' preserves ordering if and only
if

(Def. 28) (the ordering of G2) - (Fy) = the ordering of G;[dom(Fy).

Let G be a w-graph. Note that idg preserves weight.

Let G be an e-graph. Let us note that idg preserves elabel.

Let G be a v-graph. Observe that idg preserves vlabel.

Let G be an ordered graph. Let us observe that idg preserves ordering.

Let G1, G2 be graphs and F' be a partial graph mapping from G to G2. The
functor dom F' yielding a subgraph of G induced by dom(Fy) and dom(Fg) is
defined by the term

(Def. 29) the plain subgraph of G induced by dom(Fy) and dom(Fg).
The functor rng F' yielding a subgraph of Gy induced by rng Fy and rng Fg is
defined by the term

(Def. 30) the plain subgraph of G5 induced by rng Fy and rng Fy.

One can verify that dom F' is plain and rng F' is plain.

Let us consider graphs GG1, G2 and a non empty partial graph mapping F
from G; to G5. Now we state the propositions:

(54) (i) the vertices of dom F' = dom(Fy), and
(ii) the edges of dom F' = dom(Fg), and
(iii) the vertices of rng F' = rng Fy, and
(iv) the edges of rng F' = rng Ff.
The theorem is a consequence of (7).
(55) Fis total if and only if dom F' ~ G;. The theorem is a consequence of
(54).
(56) F' is onto if and only if rng F' &~ G3. The theorem is a consequence of
(54).

Let Gy, G5 be graphs, H be a subgraph of G, and F' be a partial graph
mapping from Gi to Gs. The functor F'[H yielding a partial graph mapping
from H to G is defined by the term

(Def. 31) (Fy[(the vertices of H), F[(the edges of H)).

Now we state the propositions:
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(57) Let us consider graphs Gy, Go, a subgraph H of G, and a partial graph
mapping F' from G to Go. Then

(i) if F' is empty, then F'[H is empty, and

(i) if F is total, then F'[H is total, and

(iii) if F' is one-to-one, then F'[H is one-to-one, and
)

if F'is weak subgraph embedding, then F'[H is weak subgraph em-
bedding, and

(v) if F' is semi-continuous, then F'[H is semi-continuous, and
) if F'is not onto, then F'[H is not onto, and
) if F'is directed, then F'[H is directed, and

(viii) if F' is semi-directed-continuous, then F'[ H is semi-directed-continuous.

(iv

(vi

(vii

Proor: If F' is total, then F[H is total. If F' is semi-continuous, then
F[H is semi-continuous. If F'[H is onto, then F' is onto. If F' is directed,
then F'[H is directed. If F' is semi-directed-continuous, then F'[H is semi-
directed-continuous. [

(58) Let us consider graphs G, G, a set V', a subgraph H of G induced by
V', and a partial graph mapping F' from G; to Ga. Then

(i) if F' is continuous, then F'[H is continuous, and
(ii) if F' is strong subgraph embedding, then F'[H is strong subgraph
embedding, and
(iii) if F' is directed-continuous, then F'[H is directed-continuous.

The theorem is a consequence of (57).

Let G1, G5 be graphs, H be a subgraph of G1, and F be an empty partial
graph mapping from G; to Go. Let us observe that F'[H is empty.

Let F' be a one-to-one partial graph mapping from G; to Ga. Let us observe
that F'[H is one-to-one.

Let F' be a semi-continuous partial graph mapping from G to Go. Observe
that F'[H is semi-continuous.

Let V be a set, H be a subgraph of G; induced by V', and F be a continuous
partial graph mapping from G; to Gs. Let us observe that F[H is continuous.

Let H be a subgraph of G; and F be a directed partial graph mapping from
G1 to Ga. Note that F[H is directed.

Let F' be a semi-directed-continuous partial graph mapping from G; to Go.
One can check that F'[H is semi-directed-continuous.

Let V be a set, H be a subgraph of G; induced by V', and F' be a directed-
continuous partial graph mapping from G to Ga. Note that F[H is directed-
continuous.
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Let F be a non empty partial graph mapping from G1 to Go. One can verify
that F'[ dom F' is total.
Now we state the propositions:

(59) Let us consider graphs G, Go, a subgraph H of G1, and a partial graph
mapping F' from G to Ga. Then
(i) dom((F[H)y) = dom(Fy) N (the vertices of H), and
(i) dom((FH)g) = dom(Fg) N (the edges of H).
(60) Let us consider w-graphs G, G2, a w-subgraph H of G;, and a par-

tial graph mapping F' from G; to Go. If F' preserves weight, then F[H
preserves weight. The theorem is a consequence of (59).

(61) Let us consider e-graphs Gp, G2, an e-subgraph H of G1, and a partial
graph mapping F' from G to Gso. If F preserves elabel, then F'[H preserves
elabel. The theorem is a consequence of (59).

(62) Let us consider v-graphs G1, Ga, a v-subgraph H of G, and a partial
graph mapping F from G to Ga. If F' preserves vlabel, then F'[H preserves
vlabel. The theorem is a consequence of (59).

Let G1, G5 be graphs, H be a subgraph of Gs, and F' be a partial graph
mapping from Gp to Gs. The functor H|F yielding a partial graph mapping
from G; to H is defined by the term

(Def. 32) ((the vertices of H)|Fy, (the edges of H)|Fg).

Now we state the proposition:

(63) Let us consider graphs Gy, Go, a subgraph H of G2, and a partial graph
mapping F' from G to Ga. Then

(i) if F' is empty, then H|F is empty, and

)
) if F'is onto, then H|F is onto, and
) if F'is not total, then H1F is not total, and
(v) if F is directed, then H|F is directed, and
) if F' is semi-continuous, then H1F is semi-continuous, and
) if F'is continuous, then H1F is continuous, and
)

if F' is semi-directed-continuous, then H1F is semi-directed-continuous,
and

(ix) if F' is directed-continuous, then H1F is directed-continuous.

ProorF: If F' is onto, then H1F is onto. If F' is directed, then H1F is
directed. If F' is semi-continuous, then H|F is semi-continuous. If F' is
continuous, then H1F is continuous. If F' is semi-directed-continuous, then
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H1F is semi-directed-continuous. If F' is directed-continuous, then H|F
is directed-continuous. [J

Let G1, G5 be graphs, H be a subgraph of G, and F' be an empty partial
graph mapping from G; to G2. One can verify that H|F is empty.

Let F' be a one-to-one partial graph mapping from G to Ga. Let us observe
that H1F is one-to-one.

Let F' be a semi-continuous partial graph mapping from G to Ga. Observe
that H1F is semi-continuous.

Let F' be a continuous partial graph mapping from G to Ga. Let us note
that H1F is continuous.

Let F be a directed partial graph mapping from G7 to Go. Note that H|F
is directed.

Let F be a semi-directed-continuous partial graph mapping from G; to Gs.
One can check that H|F is semi-directed-continuous.

Let F be a directed-continuous partial graph mapping from G; to G3. One
can verify that H|F is directed-continuous.

Let F' be a non empty partial graph mapping from G to G2. Observe that
rng F'1F is onto.

Now we state the propositions:

(64) Let us consider graphs G, Go, a subgraph H of G2, and a partial graph
mapping F' from G; to G2. Then

(i) g (H1F)y = rng Fy N (the vertices of H), and
(ii) rng (H1F)g = rng Fi N (the edges of H).

(65) Let us consider w-graphs G, Ga, a w-subgraph H of G9, and a par-
tial graph mapping F' from G; to Go. If F' preserves weight, then H1F
preserves weight.

(66) Let us consider e-graphs G1, G2, an e-subgraph H of Go, and a partial
graph mapping F' from G to Gs. If F preserves elabel, then H1F preserves
elabel.

(67) Let us consider v-graphs G1, Ga, a v-subgraph H of G2, and a partial
graph mapping F from G to Ga. If F' preserves vlabel, then H1F preserves
vlabel.

(68) Let us consider graphs G, G2, a partial graph mapping F from G; to
G2, a subgraph H; of G1, and a subgraph Hs of Go. Then (Ho1F)[H; =
Hy|(F[Hy).

Let G1, G2 be graphs and F' be a one-to-one partial graph mapping from
G to Ga. The functor F~! yielding a partial graph mapping from Gg to G is
defined by the term
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(Def. 33) ((Fy)~!, (Fg)™1).

One can verify that F~! is one-to-one and semi-continuous.

Let F' be an empty, one-to-one partial graph mapping from G; to G2. One
can verify that F~! is empty.

Let F' be a non empty, one-to-one partial graph mapping from G; to G.
Let us note that F~! is non empty.

Let F' be a one-to-one, semi-directed-continuous partial graph mapping from
G1 to Go. One can verify that F~! is semi-directed-continuous.

Let us consider graphs GG, G2 and a one-to-one partial graph mapping F
from G; to G2. Now we state the propositions:

69) (1) F~ly = (Fy)™!, and
(11) FﬁlE = (F]E>71-

(70) (FH=l=F.

(71) F is total if and only if F~! is onto.

(72) F is onto if and only if F'~! is total.

(73) If F is total and continuous, then F~! is continuous.

(74) If F is total and directed-continuous, then F~! is directed-continuous.
(75) F is isomorphism if and only if F~! is isomorphism.

(76) Let us consider w-graphs G, G, and a one-to-one partial graph mapping

F from G; to G. Then F preserves weight if and only if F'~! preserves
weight. The theorem is a consequence of (2) and (70).

(77) Let us consider e-graphs G, G2, and a one-to-one partial graph mapping
F from G; to G5. Then F preserves elabel if and only if F~! preserves
elabel. The theorem is a consequence of (2) and (70).

(78) Let us consider v-graphs G1, G2, and a one-to-one partial graph mapping
F from G; to Go. Then F preserves vlabel if and only if F~! preserves
vlabel. The theorem is a consequence of (2) and (70).

(79) Let us consider graphs G, G, and a one-to-one partial graph mapping
F from G to Gy. Suppose F' is onto. Let us consider a vertex v of Gs.
Then (F~1y)(v) is a vertex of Gj.

(80) Let us consider a graph G. Then (idg)~! = idg.
(81) Let us consider graphs G'1, G2, and a non empty, one-to-one partial graph
mapping F' from G to Ga. Then

(i) dom F =rng F~!, and
(i) rng F' = dom(F~1).

The theorem is a consequence of (54).
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(82) Let us consider graphs G1, Ga, a one-to-one partial graph mapping F
from G to Ga, and a subgraph H of G1. Then (F|H)™ ! = H|F~L.

(83) Let us consider graphs G, Ga, a one-to-one partial graph mapping F'
from G1 to G, and a subgraph H of G3. Then (H1F)~! = F~'[H. The
theorem is a consequence of (82) and (70).

(84) Let us consider graphs G, G, and a partial graph mapping F' from G
to Go. Suppose F' is isomorphism. Then

(i) Gy.order() = Gy.order(), and
(ii) Gi.size() = Ga.size().
The theorem is a consequence of (45) and (75).

(85) Let us consider finite graphs G1, G, and a partial graph mapping F
from G1 to Gs. Suppose F' is strong subgraph embedding. If there exists
a partial graph mapping Fy from G to G5 such that Fj is isomorphism,
then F' is isomorphism. The theorem is a consequence of (84) and (51).

(86) Let us consider graphs G, G2, a partial graph mapping F' from G; to
G, and subsets X, Y of the vertices of G1. Suppose F' is isomorphism.
Then G;.edgesBetween(X,Y) = Gs.edgesBetween((Fy)°X, (Fy)°Y). The
theorem is a consequence of (46) and (75).

(87) Let us consider graphs G, G2, a partial graph mapping F' from G; to
G, and a subset X of the vertices of (G;. Suppose F' is isomorphism.
Then Gj.edgesBetween(X) = Gs.edgesBetween((Fy)°X). The theorem
is a consequence of (47) and (75).

(88) Let us consider graphs G1, Go, a directed partial graph mapping F
from G to Go, and subsets X, Y of the vertices of Gi. Suppose F' is
isomorphism. Then Gj.edgesDBetween(X,Y) =
Ga.edgesDBetween((Fy)°X, (Fy)°Y). The theorem is a consequence of
(48) and (75).

Let us consider graphs (G1, G3 and a partial graph mapping F' from G to
G2. Now we state the propositions:

(89) Suppose F' is isomorphism. Then
(i) Gy is trivial iff Go is trivial, and
(ii) Gy is loopless iff Go is loopless, and
(iii) G; is edgeless iff Go is edgeless, and

)
)
(iv) G is non-multi iff G is non-multi, and
(v) G is simple iff G2 is simple, and

)

(vi) Gy is finite iff Gy is finite, and
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(vii) Gy is complete iff G is complete.
The theorem is a consequence of (75), (35), (49), and (52).
(90) Suppose F' is directed-continuous and isomorphism. Then
(i) G; is non-directed-multi iff G is non-directed-multi, and
(ii) G; is directed-simple iff G is directed-simple.
The theorem is a consequence of (74), (75), and (50).

(91) Let us consider graphs Gi, G2, and a non empty, one-to-one partial

graph mapping F' from G; to G3. Then dom F'.loops() = rng F'.loops().
The theorem is a consequence of (81).
Let us consider graphs G1, G2 and a one-to-one partial graph mapping F
from G1 to Go. Now we state the propositions:

(92) If F is total, then Gy.loops() C Ga.loops(). The theorem is a consequ-
ence of (55).

(93) If F is onto, then Ga.loops() € Gi.loops(). The theorem is a consequ-
ence of (72) and (92).

(94) If F is isomorphism, then Gj.loops() = Ga.loops(). The theorem is
a consequence of (92) and (93).

(95) Let us consider a graph G1, and a Gi-isomorphic graph Gy. Then G is
Go-isomorphic. The theorem is a consequence of (75).

(96) Let us consider a graph G, and a Gj-directed-isomorphic graph Ga.
Then G; is Ga-directed-isomorphic. The theorem is a consequence of (71)
and (72).

Let us consider a graph Gy, a Gi-isomorphic graph G, a Gs-isomorphic
graph G5, and an isomorphism F' between G and G2. Now we state the propo-
sitions:

(97) Suppose there exists a set E such that G is a graph given by reversing
directions of the edges E of G1. Then F~! is an isomorphism between G5
and G3
PROOF: Reconsider F, = F~! as a partial graph mapping from G5 to Gs.
F is total. Fy is onto. I

(98) If G; =~ G3, then F~! is an isomorphism between G and G3. The
theorem is a consequence of (97).

(99) Let us consider a graph G, a Gp-directed-isomorphic graph Ga, a Ga-
directed-isomorphic graph G3, and a directed isomorphism F' of G; and
G. Suppose G ~ G3. Then F~!is a directed isomorphism of Gy and Gs.
PROOF: Reconsider F, = F~! as a partial graph mapping from G5 to Gs.
F5 is total. Fy is onto. [
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Let G1, G2, G3 be graphs, F1 be a partial graph mapping from G; to Ga,
and Fy be a partial graph mapping from G to G3. The functor F5 - F} yielding
a partial graph mapping from G; to G3 is defined by the term

(Def. 34)  ((Fav) - (F1v), (F2g) - (Fig))-

Let us consider graphs Gy, G2, G3, a partial graph mapping £} from G to
G2, and a partial graph mapping F5 from G5 to G3. Now we state the proposi-
tions:

(100) (i) F2- Fiyv = (Fay) - (Fiv), and

(i) F2- Fig = (F2g) - (F1g)-
(101) If Fy - Fy is onto, then F; is onto.
(102) If Fy - Fy is total, then Fj is total.

Let G1, G2, G3 be graphs, F1 be a one-to-one partial graph mapping from
(1 to G, and F3 be a one-to-one partial graph mapping from G to G'3. Observe
that F, - F} is one-to-one.

Let F} be a semi-continuous partial graph mapping from G to G5 and Fj
be a semi-continuous partial graph mapping from G2 to G3. Let us observe that
F5 - F is semi-continuous.

Let Fi be a continuous partial graph mapping from G; to G2 and F5 be
a continuous partial graph mapping from G5 to G3. One can check that Fs - Fy
is continuous.

Let F} be a directed partial graph mapping from G1 to G2 and F3 be a di-
rected partial graph mapping from G2 to G3. One can check that F5 - Fy is
directed.

Let F1 be a semi-directed-continuous partial graph mapping from G to Go
and Fy be a semi-directed-continuous partial graph mapping from Gs to Gs.
Note that Fy - F is semi-directed-continuous.

Let £} be a directed-continuous partial graph mapping from G to G2 and
F; be a directed-continuous partial graph mapping from G2 to G'3. Observe that
F5 - F} is directed-continuous.

Let F1 be an empty partial graph mapping from G to Go and F» be a partial
graph mapping from G5 to G3. Observe that Fs - F} is empty.

Let F} be a partial graph mapping from G; to G2 and F» be an empty
partial graph mapping from G2 to G3. Let us observe that F5 - F} is empty.

Let us consider graphs Gy, G2, G3, a partial graph mapping £} from G to
G2, and a partial graph mapping F5 from G2 to G3. Now we state the proposi-
tions:

(103) Suppose F; is total and rng Fiy C dom(Fay) and rng Fig C dom(Fag).
Then F5 - Fy is total.
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(104) If F} is total and F is total, then Fy - F} is total. The theorem is a con-
sequence of (103).

(105) Suppose Fy is onto and dom(Fay) C rng Fiy and dom(Fhg) C rng Fig.
Then F5 - F} is onto.

(106) If F} is onto and F5 is onto, then Fy - F} is onto. The theorem is a con-
sequence of (105).

(107) If Fy is weak subgraph embedding and F; is weak subgraph embedding,
then F5 - I} is weak subgraph embedding.

(108) If Fy is strong subgraph embedding and Fj is strong subgraph embed-
ding, then F5 - F} is strong subgraph embedding.

(109) If Fy is isomorphism and Fy is isomorphism, then F; - F is isomorphism.

(110) If F} is directed-isomorphism and F; is directed-isomorphism, then Fy-F}
is directed-isomorphism. The theorem is a consequence of (109).

(111) Let us consider w-graphs G1, Go, Gi3, a partial graph mapping F; from
G1 to Go, and a partial graph mapping Fy from Go to G3. Suppose F
preserves weight and Fy preserves weight. Then Fy - F preserves weight.
The theorem is a consequence of (1).

(112) Let us consider e-graphs G1, G, G3, a partial graph mapping F; from
G1 to Go, and a partial graph mapping F> from G5 to G3. Suppose Fj
preserves elabel and F5 preserves elabel. Then F; - F} preserves elabel. The
theorem is a consequence of (1).

(113) Let us consider v-graphs G, G2, Gis, a partial graph mapping F) from
G1 to G, and a partial graph mapping Fy from Gs to G3. Suppose Fi
preserves vlabel and F5 preserves vlabel. Then Fy - I} preserves vlabel.
The theorem is a consequence of (1).

(114) Let us consider graphs G1, Go, G, G4, a partial graph mapping F from
(1 to G2, a partial graph mapping F> from G5 to Gz, and a partial graph
mapping F3 from G3 to G4. Then Fj - (FQ . Fl) = (Fg . Fg) - Fi.

(115) Let us consider graphs G1, G, and a one-to-one partial graph mapping
F from G to G3. Suppose F' is isomorphism. Then

(i) F-(F') =idg,, and
(i) F~' - F =idg,.

(116) Let us consider graphs G, G, and a partial graph mapping F' from G;
to Go. Then

(i) F-(idg,) = F, and
(i) idg, - F = F.

285
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(117) Let us consider graphs G, G2, G3, a partial graph mapping F; from G,
to G, a partial graph mapping Fb from G35 to G3, and a subgraph H of
Gl. Then FQ . (Fl rH) = (F2 . Fl)fH
(118) Let us consider graphs G, Ga, G3, a partial graph mapping F; from G;
to G, a partial graph mapping F> from G2 to Gs, and a subgraph H of
Gg. Then (H1F2) . F1 == HW (F2 . Fl)
Let G1 be a graph and G2 be a GG1-isomorphic graph. Let us note that every
graph which is Ga-isomorphic is also G1-isomorphic.
Let Go be a Gj-directed-isomorphic graph. Note that every graph which is
Go-directed-isomorphic is also G1-directed-isomorphic.

4. WALKS INDUCED BY GRAPH MAPPINGS

Let G1, G2 be graphs, F' be a partial graph mapping from G; to G, and
W1 be a walk of G1. We say that W1 is F-defined if and only if
(Def. 35) Wj.vertices() C dom(Fy) and Wj.edges() C dom(FE).
Let W5 be a walk of G5. We say that W5 is F-valued if and only if
(Def. 36) Wha.vertices() C rng Fy and Wa.edges() C rng Fg.

Let F be a non empty partial graph mapping from G; to G2. Observe that
there exists a walk of G; which is F-defined and trivial and there exists a walk
of G9 which is Frvalued and trivial.

Let us consider graphs G1, G2 and an empty partial graph mapping F' from
G1 to Gs. Now we state the propositions:

(119) Every walk of G; is not F-defined.

(120) Every walk of G2 is not F-valued.

(121) Let us consider graphs G1, G2, a partial graph mapping F from G to
G, and a walk W7 of G1. If F is total, then W7 is F-defined.

(122) Let us consider graphs G, G2, a partial graph mapping F' from G; to
(o, and a walk Wy of Go. If F is onto, then W5 is Flvalued.

Let G1, G2 be graphs and F be a one-to-one partial graph mapping from G4
to Ga. Observe that every walk of G which is F-defined is also (F~!)}valued
and every walk of Gy which is Fivalued is also (F~!)-defined.

Let F be a non empty partial graph mapping from G; to G2 and Wy be
an F-defined walk of G1. The functor F°W; yielding a walk of G5 is defined by

(Def. 37) (Fy) - (Wy.vertexSeq()) = it.vertexSeq() and (Fg) - (Wi.edgeSeq()) =
it.edgeSeq().

Note that F°W7 is Frvalued.
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Let us observe that the functor F°W; yields an F-valued walk of Go. Let F
be a non empty, one-to-one partial graph mapping from G; to Go and W5 be
an Flvalued walk of Go. The functor F~!(W3) yielding an F-defined walk of G4
is defined by the term

(Def. 38) (F~1)°Ws.
Let us observe that the functor F~1(W3) is defined by

(Def. 39) (Fy) - (it.vertexSeq()) = Wha.vertexSeq() and (Fg) - (it.edgeSeq()) =
Wy.edgeSeq().

Now we state the propositions:

(123) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F' from G; to G, and an F-defined walk W; of Gi. Then
F~Y(F°Wy) = Wh.

(124) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F' from G7 to Go, and an F-valued walk Wy of Gs.

Then F°(F~1(W3)) = Wa.

(125) Let us consider graphs G1, G2, a non empty partial graph mapping F'

from G1 to G, and an F-defined walk Wy of G1. Then

(i) Wi.length() = (F'°W7).length(), and
(11) len W1 == len(FoWl).

(126) Let us consider graphs G, G2, a non empty, one-to-one partial graph
mapping F' from G to Go, and an F-valued walk Wy of Go. Then

(i) Wa.length() = (F~1(W3)).length(), and
(i) len Wo = len(F~1(Ws)).

(127) Let us consider graphs G1, G2, a non empty partial graph mapping F’
from G to G, and an F-defined walk Wy of G1. Then

(i) (Fy)(W.first()) = (F°Wh).first(), and
(i) (Fy)(Wh.last()) = (F°W7).last().
(128) Let us consider graphs G, G2, a non empty, one-to-one partial graph
mapping I’ from G; to Go, and an F-valued walk W5 of GGo. Then
(1) ((Fy) ) (Wa.first()) = (F~1(W3)).first(), and
(ii) ((Fy) Y (Wa.last()) = (F~1(W3)).last().
(129) Let us consider graphs Gj, G2, a non empty partial graph mapping
F from G to GGo, an F-defined walk W7 of Gy, and an odd element n

of N. If n < lenWy, then (Fy)(Wi(n)) = (F°Wi)(n). The theorem is
a consequence of (125).
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(130) Let us consider graphs G1, G, a non empty partial graph mapping F
from G to Go, an F-defined walk Wy of GG, and an even element n of N.
Suppose 1 < n < len Wj. Then (Fg)(Wi(n)) = (F°W1)(n). The theorem
is a consequence of (125).

Let us consider graphs G1, G2, a non empty partial graph mapping F' from

G1 to G, an F-defined walk W of (G1, and objects v, w. Now we state the

propositions:

(131) If Wy is walk from v to w, then v, w € dom(Fy).

(132) If Wy is walk from v to w, then F°W) is walk from (Fy)(v) to (Fy)(w).
The theorem is a consequence of (129) and (125).

(133) Let us consider graphs G1, G2, a non empty, one-to-one partial graph
mapping F' from G to Go, an F-defined walk W; of G, and objects v,
w. Then W is walk from v to w if and only if v, w € dom(Fy) and F°W;
is walk from (Fy)(v) to (Fy)(w). The theorem is a consequence of (131),
(132), and (123).

(134) Let us consider graphs G, G2, a non empty, one-to-one partial graph
mapping F' from G; to Ga, and an F-defined walk W; of G;. Suppo-
se (Fy)(Wh.first()) = (Fy)(Wi.last()). Then Wi .first() = Wi.last(). The
theorem is a consequence of (4).

Let us consider graphs G1, G, a non empty partial graph mapping F' from

G1 to Gg, and an F-defined walk W7 of GG1. Now we state the propositions:

(135) (F°W)).vertices() = (Fy)°(W;.vertices()).

PROOF: For every object y, y € rng(Fy) - (W7.vertexSeq()) iff y €
(Fy)°(Wi.vertices()). O
(136) (F°W7y).edges() = (Fg)°(Wj.edges()).
PROOF: For every object y, y € rng(Fg) - (W;.edgeSeq()) iff y €
(Fg)°(Wi.edges()). O
(137) (i) if Wy is trivial, then F°W; is trivial, and
(i) if W7 is closed, then F°W; is closed, and
(iii) if F°W; is trail-like, then W is trail-like, and

(iv) if F°W7 is path-like, then W7 is path-like.

PRroorF: If F°Wj is trail-like, then W is trail-like. For every odd elements
m, n of N such that m < n < len Wj holds if Wy (m) = Wi(n), then m =1
and n =lenWy. O

(138) Let us consider graphs G, G2, a non empty, one-to-one partial graph
mapping F' from G to G, and an F-defined walk Wj of G;. Then

(i) Wi is trivial iff F°W) is trivial, and
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(ii) W is closed iff F°W is closed, and
W1 is trail-like iff F°W is trail-like, and
W1 is path-like iff F°W; is path-like, and
(v) Wi is circuit-like iff F°W7 is circuit-like, and
(vi) Wy is cycle-like iff F°W is cycle-like.
The theorem is a consequence of (123) and (137).

Let us consider graphs G1, G2 and a partial graph mapping F' from G to
G5. Now we state the propositions:

(139) If F is strong subgraph embedding, then if G2 is acyclic, then Gy is
acyclic. The theorem is a consequence of (121) and (138).

(140) Suppose F is isomorphism. Then
(i) Gy is acyclic iff Go is acyclic, and
(ii) G; is chordal iff G5 is chordal, and
(iii) G is connected iff G is connected.

ProOF: F~! is isomorphism and semi-continuous. For every vertices u, v
of GG1, there exists a walk W of GG; such that W7 is walk from u to v. [J

5. GRAPH MAPPINGS AND GRAPH MODES

Let us consider graphs G1, Go, sets E1, Fo, a graph (G3 given by reversing
directions of the edges E; of G1, a graph G4 given by reversing directions of the
edges F» of G2, and a partial graph mapping Fj from G; to Go. Now we state
the propositions:

(141) There exists a partial graph mapping F' from G35 to G4 such that
(i) F = Fy, and
(ii) if Fy is not empty, then F' is not empty, and
(iii) if Fp is total, then F' is total, and

(v

(vi

)

)
(iv) if Fy is onto, then F' is onto, and

) if Fy is one-to-one, then F' is one-to-one, and

) if Fy is semi-continuous, then F' is semi-continuous, and
(vii) if Fp is continuous, then F' is continuous.

PROOF: Reconsider F' = Fj as a partial graph mapping from G3 to Gjy.
If Fpy is semi-continuous, then F' is semi-continuous. If Fj is continuous,
then F'is continuous by [13, (9)]. O

289
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(142) There exists a partial graph mapping F from G3 to G4 such that
(i) F = Fp, and
(ii) if Fp is weak subgraph embedding, then F' is weak subgraph embed-
ding, and
(iii) if Fy is strong subgraph embedding, then F is strong subgraph em-
bedding, and
(iv) if Fp is isomorphism, then F' is isomorphism.
The theorem is a consequence of (141).

(143) Let us consider a graph G, a Gi-isomorphic graph Go, sets Eq, Fo, and
a graph G5 given by reversing directions of the edges £ of G1. Then every
graph given by reversing directions of the edges F» of G5 is (G3-isomorphic.
The theorem is a consequence of (142).

Let us consider graphs G3, G4, sets Vi, Vs, a supergraph G of G3 extended
by the vertices from Vj, a supergraph G> of G4 extended by the vertices from
V2, a partial graph mapping Fy from G5 to G4, and a one-to-one function f.
Now we state the propositions:

(144) Suppose dom f = Vi \ (the vertices of G3) and rng f = V5 \ (the vertices
of G4). Then there exists a partial graph mapping F' from G to Ga such
that

(i
(11

= (Fov+f, Fog), and
if Fp is not empty, then F' is not empty, and
if Fy is total, then F' is total, and
(iv) if Fp is onto, then F' is onto, and
(vi) if Fp is directed, then F' is directed, and
(vii) if Fy is semi-continuous, then F' is semi-continuous, and

(viii

(i

) F
)
iii)
)
(v) if Fp is one-to-one, then F' is one-to-one, and
1)
i)
) if Fy is continuous, then F' is continuous, and
x) if Fy is semi-directed-continuous, then F is semi-directed-continuous,

and
(x) if Fy is directed-continuous, then F' is directed-continuous.

PROOF: Set h = Fyy+-f. Reconsider g = Fyg as a partial function from
the edges of G to the edges of G2. Reconsider F' = (h, g) as a partial
graph mapping from G to Gs. If Fj is total, then F' is total. If Fj is onto,
then F'is onto. If Fj is directed, then F'is directed. If Fy is semi-continuous,
then F' is semi-continuous. If Fy is continuous, then F' is continuous. If Fj
is semi-directed-continuous, then F' is semi-directed-continuous. If Fjy is
directed-continuous, then F' is directed-continuous. [J
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(145) Suppose dom f = Vi \ (the vertices of G3) and rng f = V5 \ (the vertices
of G4). Then there exists a partial graph mapping F' from G to G2 such
that

(1) F= (F0V+'f7 F0E>7 and
(ii) if Fp is weak subgraph embedding, then F' is weak subgraph embed-
ding, and

(iii) if Fj is strong subgraph embedding, then F is strong subgraph em-
bedding, and

(iv) if Fp is isomorphism, then F' is isomorphism, and

(v) if Fp is directed-isomorphism, then F' is directed-isomorphism.

The theorem is a consequence of (144).

(146) Let us consider a graph Gs, a Gs-isomorphic graph Gy, sets Vi, Va,
a supergraph GG1 of G5 extended by the vertices from V7, and a supergraph
G of G4 extended by the vertices from Va. Suppose Vi \ a = V5 \ 5. Then
(G5 is Gi-isomorphic, where « is the vertices of G'3 and [ is the vertices of
G4. The theorem is a consequence of (145).

(147) Let us consider a graph G3, a Gs-directed-isomorphic graph Gy, sets
Vi, Vo, a supergraph G of G3 extended by the vertices from Vi, and

a supergraph G of G4 extended by the vertices from V5. Suppose V; \ a =

Vo \ B. Then G3 is Gi-directed-isomorphic, where « is the vertices of G3
and [ is the vertices of G4. The theorem is a consequence of (145).

Let us consider graphs G3, G4, objects vy, v9, a supergraph G1 of G3 exten-
ded by v1, a supergraph Gs of G4 extended by vg, and a partial graph mapping
Fy from G3 to G4. Now we state the propositions:

(148) Suppose vy ¢ the vertices of G and v ¢ the vertices of G4. Then there
exists a partial graph mapping F from G to G5 such that

(1) F = (F0V+'(’U1r'—>’l)2), FOIE])a and
) if Fy is total, then F is total, and
) if Fy is onto, then F' is onto, and
) if Fy is one-to-one, then F' is one-to-one, and
(v) if Fp is directed, then F' is directed, and
) if Fy is semi-continuous, then F' is semi-continuous, and
) if Fp is continuous, then F' is continuous, and
)

if Fy is semi-directed-continuous, then F' is semi-directed-continuous,
and
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(ix) if Fp is directed-continuous, then F' is directed-continuous.

The theorem is a consequence of (144).
(149) Suppose vy ¢ the vertices of G5 and v ¢ the vertices of G4. Then there
exists a partial graph mapping F from G to G5 such that
(i) F = (Fov+-(vi——v2), Fog), and
(ii) if Fp is weak subgraph embedding, then F' is weak subgraph embed-
ding, and
(iii) if Fp is strong subgraph embedding, then F is strong subgraph em-
bedding, and
(iv) if Fp is isomorphism, then F' is isomorphism, and
(v) if Fy is directed-isomorphism, then F' is directed-isomorphism.
The theorem is a consequence of (148).

(150) Let us consider a graph G, a Gs-isomorphic graph G4, objects vy, v,
a supergraph Gy of G5 extended by vy, and a supergraph G of G4 exten-
ded by wve. Suppose v; € the vertices of Gj iff vy € the vertices of Gy.
Then G is Gy-isomorphic. The theorem is a consequence of (146).

(151) Let us consider a graph G3, a Gs-directed-isomorphic graph Gy, objects
v1, Vg, & supergraph GG1 of G extended by v, and a supergraph Gs of G4
extended by wve. Suppose v; € the vertices of Gj iff v9 € the vertices of
G4. Then Gy is G1-directed-isomorphic. The theorem is a consequence of
(147).

Let us consider graphs Gg, G4, vertices v1, vs of G, vertices vy, vq4 of Gy,
objects eq, ea, a supergraph GG1 of G3 extended by e; between vertices v1 and vs,
a supergraph Gs of G4 extended by e between vertices vo and vy, and a partial
graph mapping Fy from G3 to G4. Now we state the propositions:

(152) Suppose e; ¢ the edges of G5 and ea ¢ the edges of G4 and vy, v3 €
dom(Fyy) and ((Foy)(vi) = ve and (Foy)(vs) = vq or (Foy)(v1) = v4 and
(Foy)(v3) = v2). Then there exists a partial graph mapping F' from G to
G5 such that

(i) F = (Fyy, Fog+-(e1—e2)), and

(ii) if Fp is total, then F is total, and

(iii) if Fp is onto, then F' is onto, and

(iv) if Fp is one-to-one, then F' is one-to-one.
The theorem is a consequence of (5), (4), and (8).

(153) Suppose e; ¢ the edges of G3 and ey ¢ the edges of G4 and vy, v3 €
dom(Fyy) and ((Foy)(v1) = ve and (Foy)(vs) = vg or (Foy)(v1) = vg4 and
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(Fov)(vs) = va). Then there exists a partial graph mapping F' from G; to
G5 such that

(i) F = (Foy, Fop+-(e1——e2)), and
(ii) if Fp is weak subgraph embedding, then F' is weak subgraph embed-
ding, and
(iii) if Fp is isomorphism, then F' is isomorphism.
The theorem is a consequence of (152).
(154) Suppose e; ¢ the edges of G3 and ey ¢ the edges of G4 and vy, v3 €

dom(Fpy) and (Fpy)(v1) = vy and (Fpy)(vs) = vs. Then there exists
a partial graph mapping F' from G; to G such that

(i) F = (Foy, Fop+-(e1——e2)), and

(ii) if Fp is directed, then F' is directed, and

(iii) if Fp is directed-isomorphism, then F' is directed-isomorphism.

Proor: Consider F' being a partial graph mapping from G; to G5 such

that F' = (Fyy, Fog+-(e1——e2)) and if Fy is total, then F' is total and if

Fj is onto, then F'is onto and if Fj is one-to-one, then F' is one-to-one. If

Fy is directed, then F' is directed by [15 (16)], [12, (71),(70),(106)]. O

Let us consider graphs Gs, G4, a vertex vs of G3, a vertex vg of G4, objects

e1, €9, U1, U2, a supergraph Gi of GG3 extended by v, v3 and e; between them,

a supergraph Ga of G4 extended by va, v4 and ey between them, and a partial

graph mapping Fy from G3 to G4. Now we state the propositions:

(155) Suppose e; ¢ the edges of G and ey ¢ the edges of G4 and v; ¢
the vertices of G3 and ve ¢ the vertices of G4 and vz € dom(Fpy) and
(Foy)(v3) = vg. Then there exists a partial graph mapping F' from G; to
G4 such that

(1) F = (F()V—F'(Ull'—ﬂ)g), FOE+'(€1l'—>€2)), and
(ii) if Fp is total, then F is total, and
(iii) if Fp is onto, then F' is onto, and
(iv) if Fy is one-to-one, then F' is one-to-one, and

(v) if Fp is directed, then F' is directed.

ProOOF: Consider G5 being a supergraph of G5 extended by vy such that

(1 is a supergraph of G5 extended by e; between vertices v; and wvs.

Consider Gg being a supergraph of G4 extended by vs such that Gy is

a supergraph of Gg extended by ey between vertices vy and vy.

Consider F; being a partial graph mapping from G5 to Gg such that

Fy = (Fyy+-(vi—wv2), Fog) and if Fy is total, then F} is total and if Fy
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is onto, then Fj is onto and if Fj is one-to-one, then Fj is one-to-one and
if Fy is directed, then Fy is directed and if Fy is semi-continuous, then Fj
is semi-continuous and if Fy is continuous, then F is continuous and if Fy
is semi-directed-continuous, then F} is semi-directed-continuous and if Fy
is directed-continuous, then F} is directed-continuous. v, v3 € dom(Fiy)
and (Fiy)(v1) = vy and (Fivy)(v3) = vy.

Consider F> being a partial graph mapping from G; to G2 such that
Fy, = (Fiy, Fig+-(e1——e2)) and if F} is total, then Fy is total and if
Fy is onto, then F5 is onto and if Fj is one-to-one, then F5 is one-to-
one. Consider Fj being a partial graph mapping from G; to G2 such that
F3 = (Fiy, Fig+-(e1——e2)) and if F} is directed, then Fj is directed and
if F is directed-isomorphism, then Fj is directed-isomorphism. [

Suppose e; ¢ the edges of G3 and ey ¢ the edges of G4 and vy ¢
the vertices of G5 and va ¢ the vertices of G4 and v € dom(Fpy) and
(Fov)(v3) = vg. Then there exists a partial graph mapping F' from G to
G such that

(i) F = (Foy+-(v1—v9), Fop+-(e1——e2)), and

(ii) if Fp is weak subgraph embedding, then F'is weak subgraph embed-
ding, and

(iii) if Fp is isomorphism, then F' is isomorphism, and
(iv) if Fp is directed-isomorphism, then F is directed-isomorphism.

The theorem is a consequence of (155).

Let us consider graphs Gs, G4, a vertex vs of G3, a vertex vy of G4, objects

e1, €9, U1, U2, a supergraph G of GG3 extended by vs, v; and e; between them,
a supergraph Go of G4 extended by vy, v2 and es between them, and a partial
graph mapping Fy from G to G4. Now we state the propositions:

(157)

Suppose e; ¢ the edges of G3 and ey ¢ the edges of G4 and vy ¢
the vertices of G5 and vy ¢ the vertices of G4 and v € dom(Fpy) and
(Fov)(v3) = vg. Then there exists a partial graph mapping F' from G; to
G5 such that

(i) F = (Foy+:(vi——v2), Fog+-(e1——e2)), and
(i) if Fp is total, then F' is total, and
)
)

(iii
(iv) if Fp is one-to-one, then F' is one-to-one, and

(v) if Fp is directed, then F' is directed.

if Fy is onto, then F' is onto, and

PRrooF: Consider G5 being a supergraph of G3 extended by vy such that
(G1 is a supergraph of G5 extended by e; between vertices vs and wvj.
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Consider Gg being a supergraph of G4 extended by vs such that Go is
a supergraph of Gg extended by ey between vertices v4 and vs.

Consider F; being a partial graph mapping from G5 to Gg such that
Fy = (Fyy+-(vi—wv2), Fog) and if Fy is total, then F} is total and if Fy
is onto, then Fj is onto and if Fj is one-to-one, then Fj is one-to-one and
if Fy is directed, then F} is directed and if Fy is semi-continuous, then Fj
is semi-continuous and if Fy is continuous, then F} is continuous and if Fy
is semi-directed-continuous, then F} is semi-directed-continuous and if Fy
is directed-continuous, then F} is directed-continuous. vy, v3 € dom(Fy)
and (F1y)(v1) = vy and (Fivy)(vs) = vy.

Consider F5 being a partial graph mapping from G; to G2 such that
Fy = (Fiy, Fig+-(e1——e2)) and if Fy is total, then F» is total and if
Fy is onto, then F5 is onto and if Fj is one-to-one, then F5 is one-to-
one. Consider Fj being a partial graph mapping from G; to Go such that
F5 = (Fiy, Fig+-(e1——e2)) and if F} is directed, then Fj is directed and
if Fy is directed-isomorphism, then Fj is directed-isomorphism. [

(158) Suppose e; ¢ the edges of G3 and ez ¢ the edges of G4 and v; ¢
the vertices of G3 and vy ¢ the vertices of G4 and vz € dom(Fpy) and
(Fov)(v3) = vg. Then there exists a partial graph mapping F' from G to
(5 such that

(i) F = (Foy+ (vi=—wv2), Fop+-(e1——e2)), and
(ii) if Fp is weak subgraph embedding, then F' is weak subgraph embed-
ding, and
(iii) if Fp is isomorphism, then F' is isomorphism, and
(iv) if Fp is directed-isomorphism, then F' is directed-isomorphism.
The theorem is a consequence of (157).

(159) Let us consider graphs Gs, G4, a vertex vs of G, a vertex vy of Gy,
objects eq, ea, v1, v2, a supergraph Gy of G3 extended by vy, vs and e;
between them, a supergraph G2 of G4 extended by vy, vo and es between
them, and a partial graph mapping Fj from G3 to G4. Suppose e; ¢
the edges of G3 and ey ¢ the edges of G4 and vy ¢ the vertices of G5 and
vy ¢ the vertices of G4 and v € dom(Fpy) and (Fpy)(vs) = vs. Then
there exists a partial graph mapping F' from G; to Gy such that

(i) F = (Fov+-(v1——v2), Fopt-(e1——ez)), and
(ii) if Fp is total, then F is total, and
(iii) if Fp is onto, then F' is onto, and
)

(iv) if Fy is one-to-one, then F' is one-to-one, and



296

(160)

SEBASTIAN KOCH

(v) if Fy is weak subgraph embedding, then F' is weak subgraph embed-
ding, and

(vi) if Fp is isomorphism, then F' is isomorphism.

ProoF: Consider G5 being a supergraph of G5 extended by v; such that
(1 is a supergraph of G5 extended by e; between vertices vy and wvs.
Consider Gg being a supergraph of G4 extended by vs such that Go is
a supergraph of Gg extended by es between vertices v4 and vs.

Consider F; being a partial graph mapping from G5 to Gg such that
Fy = (Foy+-(viF—wv2), Fog) and if Fj is total, then Fj is total and if Fy
is onto, then Fj is onto and if Fj is one-to-one, then Fj is one-to-one and
if Fy is directed, then Fy is directed and if Fy is semi-continuous, then Fj
is semi-continuous and if Fj is continuous, then F} is continuous and if Fj
is semi-directed-continuous, then Fj is semi-directed-continuous and if Fj
is directed-continuous, then F} is directed-continuous. v, vs € dom(Fiy)
and (F1y)(v1) = vy and (Fiy)(v3) = vy.

Consider F5 being a partial graph mapping from G; to G2 such that
Fy = (Fiy, Fig+-(e1——e2)) and if F} is total, then Fj is total and if F}
is onto, then F5 is onto and if Fj is one-to-one, then F5 is one-to-one. [J

Let us consider graphs G3, G4, a vertex vz of G3, a vertex vy of Gy,
objects eq, es, v1, v, a supergraph G of G3 extended by vz, v1 and e;
between them, a supergraph G, of G4 extended by wvs, v4 and ey between
them, and a partial graph mapping Fy from G3 to G4. Suppose e; ¢
the edges of G3 and ey ¢ the edges of G4 and vy ¢ the vertices of G5 and
vg ¢ the vertices of G4 and vz € dom(Fpy) and (Foy)(vs) = vs4. Then
there exists a partial graph mapping F' from G to G such that

(i) F = (Fov+-(vi——v2), Fopt-(e1——e2)), and
) if Fy is total, then F is total, and
) if Fy is onto, then F' is onto, and
(iv) if Fp is one-to-one, then F' is one-to-one, and

) if Fy is weak subgraph embedding, then F' is weak subgraph embed-
ding, and
(vi) if Fp is isomorphism, then F' is isomorphism.
PrOOF: Consider G5 being a supergraph of G3 extended by vy such that
(1 is a supergraph of G5 extended by e; between vertices vs and wv;.
Consider Gg being a supergraph of G4 extended by vs such that Gy is
a supergraph of Gg extended by ey between vertices vy and vy.

Consider Fj being a partial graph mapping from G5 to Gg such that
Fy = (Fyy+-(v1—v2), For) and if Fy is total, then F} is total and if Fy
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is onto, then Fj is onto and if Fj is one-to-one, then Fj is one-to-one and
if Fy is directed, then Fy is directed and if Fy is semi-continuous, then Fj
is semi-continuous and if Fy is continuous, then F is continuous and if Fy
is semi-directed-continuous, then F} is semi-directed-continuous and if Fy
is directed-continuous, then F} is directed-continuous. v, v3 € dom(Fiy)
and (Fiy)(v1) = vy and (Fivy)(v3) = vy.
Consider F> being a partial graph mapping from G; to G2 such that
Fy = (Fiy, Fig+-(e1——e2)) and if F is total, then F; is total and if F}
is onto, then F5 is onto and if Fj is one-to-one, then Fb is one-to-one. [J
(161) Let us consider a graph G, an object v, a set V, and supergraphs G,
G of G extended by vertex v and edges between v and V of G. Then G»
is Gi-isomorphic. The theorem is a consequence of (8), (53), and (143).
(162) Let us consider graphs G3, G4, objects v1, va, sets Vi, Vo, a supergraph
G1 of G5 extended by vertex vy and edges between vy and Vi of Gjs,
a supergraph Gs of G4 extended by vertex vy and edges between vy and
V5 of G4, and a partial graph mapping Fy from Gg to G4. Suppose Vi C
the vertices of G5 and V5 C the vertices of G4 and v; ¢ the vertices of G3
and vy ¢ the vertices of G4 and Fyy [V} is one-to-one and dom(Fyy|Vy) =
Vi and rng(Fyy|Vi) = V. Then there exists a partial graph mapping F
from G to Gg such that

(i) Fv = Foy+-(v1——v2), and
FE[dom(FOIE) = F0E7 and
if Fy is total, then F' is total, and

)
)
(iv) if Fy is onto, then F' is onto, and
) if Fy is one-to-one, then F' is one-to-one, and
)

if Fy is weak subgraph embedding, then F'is weak subgraph embed-
ding, and

(vii) if Fy is isomorphism, then F' is isomorphism.

Proor: Vi C dom(Fpy). Set f = Fyy+-(vi——wv2). Consider h; being
a function from V; into G.edgesBetween(V7, {v1}) such that h is one-to-
one and onto and for every object w such that w € V; holds h;(w) joins w
and v1 in G1. Consider hs being a function from V3 into Ga.edgesBetween(Va,
{va2}) such that hs is one-to-one and onto and for every object w such that
w € V3 holds ho(w) joins w and vg in Ga. Set g = Fog+-ha - (Foy) - (h171).
dom(Fyg) misses dom(hs - (Foy) - (h1™!)). rng For misses rng hs - (Foy) -
(h1~1). Consider F; being a set such that V; = E; and E; misses the edges
of G3 and the edges of G; = (the edges of G3) U Fy and for every object
wy such that wy € Vj there exists an object e; such that ey € F; and e
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joins w1 and vy in G and for every object € such that € joins w; and vq
in G4 holds e; = é. o
Consider Ey being a set such that Vo = Fy and F misses the edges of
G4 and the edges of G2 = (the edges of G4) U Ey and for every object wo
such that we € V5 there exists an object ex such that eo € Eo and es joins
wy and vy in G9 and for every object € such that € joins wo and vy in Go
holds es = €. Reconsider F' = (f, g) as a partial graph mapping from G,
to Go. If Fj is total, then F' is total. If Fy is onto, then F' is onto. [
(163) Let us consider a graph G3, a Gs-isomorphic graph Gy, objects vy, va,
a supergraph G of GG3 extended by vertex v; and edges between v; and
the vertices of (G3, and a supergraph G2 of G4 extended by vertex vo and
edges between vy and the vertices of G4. Suppose v1 € the vertices of
G iff vy € the vertices of G4. Then G5 is Gi-isomorphic. The theorem is
a consequence of (162) and (143).

Let us consider graphs G, Go, a subgraph G5 of G; with loops removed,
a subgraph G4 of G5 with loops removed, and a one-to-one partial graph map-
ping Fy from G to Go. Now we state the propositions:

(164) There exists a one-to-one partial graph mapping F' from G5 to G4 such
that

(i) F = Fy|Gs, and
(i) if Fp is total, then F' is total, and
iii) if Fp is onto, then F' is onto, and
iv) if Fp is directed, then F is directed, and
(v) if Fp is semi-directed-continuous, then F' is semi-directed-continuous.

PROOF: Reconsider F' = G41(Fy[G3) as a one-to-one partial graph map-
ping from Gg3 to G4. If Fy is total, then F' is total. If F{y is onto, then F is
onto. [

(165) There exists a one-to-one partial graph mapping F' from G5 to G4 such
that

(i) F = Fy|Gs, and

(ii) if Fp is weak subgraph embedding, then F' is weak subgraph embed-
ding, and

(iii) if Fp is isomorphism, then F' is isomorphism, and
(iv) if Fp is directed-isomorphism, then F' is directed-isomorphism.

The theorem is a consequence of (164).
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(166) Let us consider a graph G1, a Gi-isomorphic graph Gs, and a subgraph
Gs of Gy with loops removed. Then every subgraph of Gy with loops
removed is Gz-isomorphic. The theorem is a consequence of (165).

(167) Let us consider a graph G, a Gj-directed-isomorphic graph Ga, and
a subgraph G3 of G with loops removed. Then every subgraph of G2 with
loops removed is G3-directed-isomorphic. The theorem is a consequence
of (165).

(168) Let us consider a graph G1, a Gi-isomorphic graph Gg, and a subgraph

G3 of G1 with parallel edges removed. Then every subgraph of Go with
parallel edges removed is G3-isomorphic.
Proo¥F: Consider G being a partial graph mapping from G to G5 such
that G is isomorphism. Consider E; being a representative selection of
the parallel edges of G1 such that G3 is a subgraph of GG1 induced by
the vertices of G and Ej.

Consider Es being a representative selection of the parallel edges of Go
such that G4 is a subgraph of G5 induced by the vertices of G2 and Es.
Define P[object, object] = $5 € F5 and (31, $2) € EdgeParEqRel(G3). For
every objects x, y1, yo such that x € the edges of G and Pz, y;1] and
Plx,y2] holds y; = ya. For every object = such that = € the edges of Go
there exists an object y such that P[z,y].

Consider h being a function such that dom h = the edges of G2 and for
every object x such that x € the edges of Gy holds P[z, h(z)]. O

(169) Let us consider a graph G, and subgraphs Gy, G of G with parallel
edges removed. Then (3 is G-isomorphic. The theorem is a consequence
of (53) and (168).

(170) Let us consider a graph G, a Gp-directed-isomorphic graph Go, and

a subgraph G3 of G7 with directed-parallel edges removed. Then eve-
ry subgraph of Gy with directed-parallel edges removed is Gs-directed-
isomorphic.
PRrOOF: Consider G being a partial graph mapping from G; to Go such
that G is directed-isomorphism. Consider F; being a representative selec-
tion of the directed-parallel edges of GG; such that (G3 is a subgraph of G
induced by the vertices of G; and Fj.

Consider Es being a representative selection of the directed-parallel
edges of G2 such that G4 is a subgraph of G2 induced by the verti-
ces of Gy and Fs. Define Plobject,object] = $2 € FEy and ($1, $2) €
DEdgeParEqRel(G2). For every objects z, y1, y2 such that x € the edges
of G and P[x, y1] and P|x, y2] holds y; = ys. For every object x such that
x € the edges of G2 there exists an object y such that P[z,y].
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Consider h being a function such that dom h = the edges of G2 and for
every object x such that x € the edges of Gy holds P[z, h(z)]. O

(171) Let us consider a graph G1, and subgraphs G2, G3 of G; with directed-
parallel edges removed. Then G35 is Ga-directed-isomorphic. The theorem
is a consequence of (53) and (170).

(172) Let us consider a graph Gi, a Gp-isomorphic graph G, and a simple
graph G3 of G;. Then every simple graph of Gy is Gs-isomorphic. The
theorem is a consequence of (166) and (168).

(173) Let us consider a graph G, and simple graphs Gg, G5 of G;. Then G3
is Ga-isomorphic. The theorem is a consequence of (53) and (172).

(174) Let us consider a graph G, a Gj-directed-isomorphic graph Ga, and
a directed-simple graph G3 of GG;. Then every directed-simple graph of
G is G3-directed-isomorphic. The theorem is a consequence of (167) and
(170).

(175) Let us consider a graph G1, and directed-simple graphs Ga, G3 of Gj.
Then G3 is Ga-directed-isomorphic. The theorem is a consequence of (53)
and (174).

(176) Let us consider trivial, loopless graphs G, G2, and a non empty partial
graph mapping F' from G; to G2. Then

(i) F is directed-isomorphism, and
(i) F = (the vertex of G1——the vertex of Ga, 0).

(177) Let us consider trivial graphs Gi, G2. Suppose Gj.size() = Ga.size().
Then there exists a partial graph mapping F' from G; to G2 such that F
is directed-isomorphism. The theorem is a consequence of (31).

(178) Let us consider trivial, loopless graphs G1, G2. Then G5 is G;-directed-
isomorphic and G1-isomorphic.
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