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Summary. In this article, we formalize in Mizar [1], [2] a binary operation
of points on an elliptic curve over GF(p) in affine coordinates. We show that the
operation is unital, complementable and commutative. Elliptic curve cryptogra-
phy [3], whose security is based on a difficulty of discrete logarithm problem of
elliptic curves, is important for information security.
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1. SET oF PoOINTS ON ELLIPTIC CURVE IN AFFINE COORDINATES

From now on p denotes a 5 or greater prime number and z denotes an element
of the parameters of elliptic curve p.
Now we state the propositions:

(1) Let us consider a prime number p, elements a, b of GF(p), and an ele-
ment P of ProjCo(GF(p)). Suppose P = (0, 1, 0) or (P)s3 = 1. Then
the represent point of P = P.
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Proor: If P = (0, 1, 0), then the represent point of P = P. If (P)g3 =1,
then the represent point of P = P by [5 (2)], [6 (3)]. O

(2) Let us consider a 5 or greater prime number p, an element z of the para-
meters of elliptic curve p, and elements P, O of ECgctprojco((2)1). Suppose
O = (0, 1, 0). Then (P)g 3 = 0 if and only if P = O. The theorem is a con-
sequence of (1).

(3) Let us consider a 5 or greater prime number p, an element z of the pa-
rameters of elliptic curve p, and an element P of ECgetprojco((2)1). If
(P)s;3 =0, then P = (compellp,,;c,(2, p))(P). The theorem is a consequ-
ence of (2).

(4) Let us consider elements P, O of ECgetprojco((2)1). Suppose O = (0,
1, 0). Then (addellpyojco(2; p)) (P, (compellp,ico (2, 1)) (P)) = O. The the-
orem is a consequence of (2) and (3).

Let p be a b or greater prime number and z be an element of the parameters
of elliptic curve p. The functor EC-SetAffCo(z, p) yielding a non empty subset
of ECsetProjco((2)1) is defined by the term

(Def. 1) {P, where P is an element of ECgetprojco((2)1) : (P)33 =1 or P = (0,
1, 0)}.

Now we state the proposition:

(5) (0, 1, 0) is an element of EC-SetAffCo(z, p).

Let us consider a 5 or greater prime number p, an element z of the parameters
of elliptic curve p, and an element P of ECgetprojco((2)1). Now we state the
propositions:

(6) The represent point of P is an element of EC-SetAffCo(z, p).
(7) If P € EC-SetAffCo(z,p), then the represent point of P = P. The the-
orem is a consequence of (1).

Let us consider elements P, O of ECgetprojco((2)1). Now we state the pro-
positions:

(8) If O =(0,1,0) and P # O, then (the represent point of P)33 = 1. The
theorem is a consequence of (2).
(9) Suppose O = (0, 1, 0) and the represent point of P = O. Then

(i) the represent point of P = O, and
(i) P=0.
The theorem is a consequence of (2) and (1).

(10) Let us consider an element P of ProjCo(GF(p)). Then the represent
point of the represent point of P = the represent point of P. The theorem
is a consequence of (1).
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(11) Let us consider elements P, @ of ECgetprojco((2)1). Suppose the represent
point of P = the represent point of ). Then the represent point of
P = the represent point of (). The theorem is a consequence of (10).

Let p be a 5 or greater prime number and z be an element of the parameters
of elliptic curve p. The functor compell-AffCo(z, p) yielding a unary operation
on EC-SetAffCo(z, p) is defined by

(Def. 2) for every element P of EC-SetAffCo(z,p), it(P) = the represent point
of (CompeHProjCo(zap))(P)'
Let F be a function from EC-SetAffCo(z,p) into EC-SetAffCo(z,p) and
P be an element of EC-SetAffCo(z,p). Let us observe that the functor F(P)
yields an element of EC-SetAffCo(z, p). The functor addell-AffCo(z, p) yielding
a binary operation on EC-SetAffCo(z, p) is defined by
(Def. 3) for every elements P, @ of EC-SetAffCo(z, p), it(P, Q) = the represent
point of (addeHProjCo(Zap))(Pv Q)
Let F be a function from EC-SetAffCo(z,p) x EC-SetAffCo(z, p) into

EC-SetAffCo(z,p) and @, R be elements of EC-SetAffCo(z, p). Let us obse-
rve that the functor FI(Q, R) yields an element of EC-SetAffCo(z,p). Now we
state the proposition:

(12) Let us consider elements P, O of ECgetprojco((2)1). Suppose O = (0, 1,
0). Then

(i) (addellprojco(2,p))(P,O) = P, and
(ii) (addellprojco(z,p))(O,P) = P.

Let us consider elements P, O of EC-SetAffCo(z,p). Now we state the pro-
positions:

(13) If O = (0, 1, 0), then (addell-AffCo(z,p))(O, P) = P. The theorem is
a consequence of (12) and (7).

(14) If O = (0, 1, 0), then (addell-AffCo(z,p))(P,0) = P. The theorem is
a consequence of (12) and (7).

(15) Let us consider an element O of EC-SetAffCo(z, p). Suppose O = (0, 1,
0). Then O is a unity w.r.t. addell-AffCo(z, p). The theorem is a consequ-
ence of (13) and (14).

(16) Let us consider elements P, O of EC-SetAffCo(z, p). Suppose O = (0, 1,
0). Then (addell-AffCo(z, p))(P, (compell-AffCo(z,p))(P)) = O. The the-

orem is a consequence of (7), (4), and (2).



318 YUICHI FUTA, HIROYUKI OKAZAKI, AND YASUNARI SHIDAMA

2. COMMUTATIVE PROPERTY OF OPERATIONS OF POINTS ON ELLIPTIC
CURVE

Now we state the propositions:

(17) Let us consider a 5 or greater prime number p, an element z of the para-
meters of elliptic curve p, and elements P, Q, O, Ps, Q3 of ECgetprojco((2)1)-
Suppose O = (0,1,0) and P # O and Q # O and P # (). Suppose
P3 = (addellpyojco(2,p)) (P, Q) and Q3 = (addellpyojco(2,p))(Q, P). Then

(i) (@3)1,3=—(3)13, and

(ii) (@3)2,3 = —(P3)23, and

(ili) (@s)33 = —(Ps)33-
PROOF: Reconsider g = 2 mod p as an element of GF(p). Set gfing =
(@23 ((P)3,3) — (P)2;3- ((Q)3,3)- Set gforg = (@)1,3 - ((P)3,3) — (P)13 -
((Q)s3,3)- Set gfsro = gfirg® - (P)33) - (Q)33) — gforg® — 92 - (9forg?) -
((P)13) - ((Q)33)- Set gfigp = (P)2;3 - (Q)s,3) — (Q)23 - ((P)s,3). Set
afp = (P)13 - (Q)33) — (Q)13- (P)33). Set gfxgr = gfigr® - (Q)33) -
((P)3,3) — gfxr® — g2 - (afar®) - (Q)1,3) - (P)a3)- afxgr = dfarg- (Q3)1,3 =
—(Ps)13- (Q3)2,3 = —(P3)2,3. (Q3)33=—(3)33. U

(18) Let us consider elements P, Q, O, P3, Q3 of ECsetprojco((2)1), and
an element d of GF(p). Suppose O = (0, 1,0) and d # Ogp(p) and
(@13 =d-((P)1,3) and (Q)23 = d-((P)2,3) and (Q)s,3 = d- ((P)s;3) and
P # O and Q # O and P = Q and P3 = (addellpyojco(z,p)) (P, Q) and
Q3 = (addellpyojco(z,p))(Q, P). Then

() (Q3)1,3 =2’ ((P3)13), and
(i) (@3)23=d° ((P3)23), and
(i) (Q3)33=d°- ((P3)33).
(19) Let us consider elements P, Q of ECsetprojco((2)1)-
z

Then (addellprojco(2,p))(P, Q) = (addellprojco(2,p))(Q, P). The theorem
is a consequence of (17) and (18).

(20) Let us consider elements P, @ of EC-SetAffCo(z, p).
Then (addell-AffCo(z,p))(P,Q) = (addell-AffCo(z,p))(Q, P). The the-
orem is a consequence of (19).

Let p be a 5 or greater prime number and z be an element of the para-
meters of elliptic curve p. One can verify that addell-AffCo(z, p) is non empty,
commutative, and unital.

The functor 0-EC(z, p) yielding an element of EC-SetAffCo(z,p) is defined
by the term
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(Det. 4) (0, 1, 0).

Let us consider p and z. Let us observe that (EC-SetAffCo(z, p), addell-AffCo

(z,p)) is Abelian and (EC-SetAffCo(z,p),addell-AffCo(z, p), 0-EC(z,p)) is
left zeroed and right zeroed and (EC-SetAffCo(z, p), addell-AffCo(z, p), 0-EC(z, p))
is complementable.

Let p be a 5 or greater prime number and z be an element of the parameters
of elliptic curve p. One can verify that (EC-SetAffCo(z,p), addell-AffCo(z,p))
is unital.

Now we state the proposition:

(21) Let us consider a 5 or greater prime number p, and an element z of
the parameters of elliptic curve p. Then 1(gc-getAfiCo(z,p),addell-AffCo(z,p)) =
0-EC(z,p). The theorem is a consequence of (15).

Let p be a 5 or greater prime number and z be an element of the parameters
of elliptic curve p. One can check that (EC-SetAffCo(z, p), addell-AffCo(z, p)) is
commutative, group-like, and non empty.

Now we state the propositions:

(22) Let us consider elements P, Pa, @ of ECsetprojco((2)1). Suppose P =
P,. Then (addellprojco (2, p)) (Pr, Q) = (addellprojco(z, p)) (P2, Q). The the-
orem is a consequence of (19).

(23) Let us consider elements P, Q1, Q2 of ECsctprojco((2)1). Suppose Q1 =
Q2. Then (addellprojco (2, ) (P, Q1) = (addellprojco (2, p)) (P, Q2). The the-
orem is a consequence of (19) and (22).

(24) Let us consider elements Pi, P>, Q1, Q2 of ECsetpProjco((2)1). Suppose
P = P, and Q1 = Q2. Then (addellpyojco(z,p))(P1, Q1) =
(addellprojco (2, p)) (P2, Q2). The theorem is a consequence of (22) and (23).

(25) Let us consider elements P, O of ECgetprojco((2)1). Suppose O = (0, 1,
0). Then P = O if and only if (compellp,y;c,(2,p))(P) = O.

(26) Let us consider elements P, @ of ECgetprojco((2)1), and an element a
of GF(p). Suppose a # Ogr(p) and (P)13 = a - ((Q)13) and (P)23 =
a - ((Q)2,3) and (P)3,3 =a- ((Q)373). Then P = Q

(27) Let us consider elements P, @ of ECgetprojco((2)1), and elements go,
dgft, gf2, gfs of GF(p). Suppose P # Q and (P)33 =1 and (Q)s3;3 =1 and
g2 = 2 mod p and gfi = (Q)2,3 — (P)2,3 and gfs = (Q)13 — (P)1,3 and
afs = gfi® — gfs® — g2 - (9f2®) - ((P)1,3). Then (addellprojco(2, ) (P, Q) =
(9f2 - afs, afi - (9 - (P)1;3) — 9fs) — afo” - ((P)2,3), gf2”). The theorem is
a consequence of (2).

(28) Let us consider elements P, @ of ECsetprojco((2)1), and elements go,

93, 94, 98, 9f1, 9f2, 9fs, gfs of GF(p). Suppose P = Q and (P)s3 =1 and
(Q)3,;3 =1and g2 = 2mod p and g3 = 3 mod p and g4 = 4 mod p and gg =
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8 mod p and gfi = (2)1+93- ((P)1,3)%) and gfo = (P)a3 and gfs = (P)13-
((P)23) - gf> and gfs = gfi* — gs - gfs- Then (addellpjco(2,p))(P, Q) =

(92 9fs - afe, 9ft - (91- 9fs — 9ft) = 95 - ((P)2.3)*) - (92) g5 - (9fe”))- The
theorem is a consequence of (2).

Let us consider elements P, @ of ECgetprojco((2)1). Now we state the pro-

positions:
(29) Suppose (P)g3 =1 and (Q)s3 = 1.
(

Then (compellprojco(z,p)) (addellprojco(2, ) (P, Q)) = (addellprojco(2, p))

((CompeHProjCo(zvp))(P)a (CompellProjCo(Zap))(Q))' The theorem is a con-
sequence of (27), (28), and (26).

(30) (compellprojco(z,p))((addellprojco(z,p))(P, Q)) = (addellpyoico (2, D))

((compellp,yico (2, ) (P), (compellp,yico (2, 2))(Q)). The theorem is a con-
sequence of (25), (8), (29), (24), and (2).

(31) Let us consider elements P, O of ECgetprojco((2)1). Suppose O = (0, 1,

(1]

2]

Bl
4]

0) and P # O. Then (P)z23 = Ogr(p) if and only if
(addellpyojco(2,p)) (P, P) = O.
PROOF: Reconsider gg = 8 mod p as an element of GF(p).

((addellPrOjCo(zap))<P7 P))3,3 =0. gs 7é OGF(p)' (P)3,3 7é 0 by [47 (23)]7 [57
(28)]. OO
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