

Operations of Points on Elliptic Curve in Affine Coordinates¹

Yuichi Futa Tokyo University of Technology Tokyo, Japan Hiroyuki Okazaki Shinshu University Nagano, Japan

Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we formalize in Mizar [1], [2] a binary operation of points on an elliptic curve over $\mathbf{GF}(\mathbf{p})$ in affine coordinates. We show that the operation is unital, complementable and commutative. Elliptic curve cryptography [3], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.

MSC: 14H52 14K05 68T99 03B35

Keywords: elliptic curve; commutative operation MML identifier: EC_PF_3, version: 8.1.09 5.59.1363

1. Set of Points on Elliptic Curve in Affine Coordinates

From now on p denotes a 5 or greater prime number and z denotes an element of the parameters of elliptic curve p.

Now we state the propositions:

(1) Let us consider a prime number p, elements a, b of GF(p), and an element P of ProjCo(GF(p)). Suppose $P = \langle 0, 1, 0 \rangle$ or $(P)_{3,3} = 1$. Then the represent point of P = P.

 $^{^1\}mathrm{This}$ work was supported by JSPS KAKENHI Grant Numbers JP15K00183 and JP17K00182.

PROOF: If $P = \langle 0, 1, 0 \rangle$, then the represent point of P = P. If $(P)_{3,3} = 1$, then the represent point of P = P by [5, (2)], [6, (3)]. \square

- (2) Let us consider a 5 or greater prime number p, an element z of the parameters of elliptic curve p, and elements P, O of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$. Suppose $O = \langle 0, 1, 0 \rangle$. Then $(P)_{3,3} = 0$ if and only if $P \equiv O$. The theorem is a consequence of (1).
- (3) Let us consider a 5 or greater prime number p, an element z of the parameters of elliptic curve p, and an element P of $EC_{SetProjCo}((z)_1)$. If $(P)_{3,3} = 0$, then $P \equiv (compell_{ProjCo}(z,p))(P)$. The theorem is a consequence of (2).
- (4) Let us consider elements P, O of $EC_{SetProjCo}((z)_1)$. Suppose $O = \langle 0, 1, 0 \rangle$. Then $(addell_{ProjCo}(z, p))(P, (compell_{ProjCo}(z, p))(P)) \equiv O$. The theorem is a consequence of (2) and (3).

Let p be a 5 or greater prime number and z be an element of the parameters of elliptic curve p. The functor EC-SetAffCo(z, p) yielding a non empty subset of EC_{SetProiCo} $((z)_1)$ is defined by the term

(Def. 1) $\{P, \text{ where } P \text{ is an element of } \mathrm{EC}_{\mathrm{SetProjCo}}((z)_{\mathbf{1}}) : (P)_{\mathbf{3},3} = 1 \text{ or } P = \langle 0, 1, 0 \rangle \}.$

Now we state the proposition:

(5) $\langle 0, 1, 0 \rangle$ is an element of EC-SetAffCo(z, p).

Let us consider a 5 or greater prime number p, an element z of the parameters of elliptic curve p, and an element P of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_{\mathbf{1}})$. Now we state the propositions:

- (6) The represent point of P is an element of EC-SetAffCo(z, p).
- (7) If $P \in \text{EC-SetAffCo}(z, p)$, then the represent point of P = P. The theorem is a consequence of (1).

Let us consider elements P, O of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$. Now we state the propositions:

- (8) If $O = \langle 0, 1, 0 \rangle$ and $P \not\equiv O$, then (the represent point of $P)_{3,3} = 1$. The theorem is a consequence of (2).
- (9) Suppose O = (0, 1, 0) and the represent point of $P \equiv O$. Then
 - (i) the represent point of P = O, and
 - (ii) $P \equiv O$.

The theorem is a consequence of (2) and (1).

(10) Let us consider an element P of ProjCo(GF(p)). Then the represent point of the represent point of P = the represent point of P. The theorem is a consequence of (1).

(11) Let us consider elements P, Q of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$. Suppose the represent point of P is the represent point of Q. Then the represent point of P is the represent point of P. The theorem is a consequence of (10).

Let p be a 5 or greater prime number and z be an element of the parameters of elliptic curve p. The functor compell-AffCo(z,p) yielding a unary operation on EC-SetAffCo(z,p) is defined by

(Def. 2) for every element P of EC-SetAffCo(z, p), it(P) = the represent point of $(\text{compell}_{\text{ProjCo}}(z, p))(P)$.

Let F be a function from EC-SetAffCo(z,p) into EC-SetAffCo(z,p) and P be an element of EC-SetAffCo(z,p). Let us observe that the functor F(P) yields an element of EC-SetAffCo(z,p). The functor addell-AffCo(z,p) yielding a binary operation on EC-SetAffCo(z,p) is defined by

(Def. 3) for every elements P, Q of EC-SetAffCo(z, p), it(P, Q) = the represent point of $(addell_{ProjCo}(z, p))(P, Q)$.

Let F be a function from EC-SetAffCo $(z, p) \times$ EC-SetAffCo(z, p) into

EC-SetAffCo(z, p) and Q, R be elements of EC-SetAffCo(z, p). Let us observe that the functor F(Q, R) yields an element of EC-SetAffCo(z, p). Now we state the proposition:

- (12) Let us consider elements P, O of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$. Suppose $O = \langle 0, 1, 0 \rangle$. Then
 - (i) $(addell_{ProjCo}(z, p))(P, O) \equiv P$, and
 - (ii) $(addell_{ProjCo}(z, p))(O, P) \equiv P.$

Let us consider elements P, O of EC-SetAffCo(z,p). Now we state the propositions:

- (13) If $O = \langle 0, 1, 0 \rangle$, then (addell-AffCo(z, p))(O, P) = P. The theorem is a consequence of (12) and (7).
- (14) If $O = \langle 0, 1, 0 \rangle$, then (addell-AffCo(z, p))(P, O) = P. The theorem is a consequence of (12) and (7).
- (15) Let us consider an element O of EC-SetAffCo(z, p). Suppose $O = \langle 0, 1, 0 \rangle$. Then O is a unity w.r.t. addell-AffCo(z, p). The theorem is a consequence of (13) and (14).
- (16) Let us consider elements P, O of EC-SetAffCo(z, p). Suppose $O = \langle 0, 1, 0 \rangle$. Then (addell-AffCo(z, p))(P, (compell-AffCo<math>(z, p))(P)) = O. The theorem is a consequence of (7), (4), and (2).

2. Commutative Property of Operations of Points on Elliptic Curve

Now we state the propositions:

- (17) Let us consider a 5 or greater prime number p, an element z of the parameters of elliptic curve p, and elements P, Q, O, P_3 , Q_3 of $EC_{SetProjCo}((z)_1)$. Suppose $O = \langle 0, 1, 0 \rangle$ and $P \not\equiv O$ and $Q \not\equiv O$ and $P \not\equiv Q$. Suppose $P_3 = (addell_{ProjCo}(z, p))(P, Q)$ and $Q_3 = (addell_{ProjCo}(z, p))(Q, P)$. Then
 - (i) $(Q_3)_{1,3} = -(P_3)_{1,3}$, and
 - (ii) $(Q_3)_{2,3} = -(P_3)_{2,3}$, and
 - (iii) $(Q_3)_{3,3} = -(P_3)_{3,3}$.

PROOF: Reconsider $g_2 = 2 \mod p$ as an element of GF(p). Set $gf_{1PQ} = (Q)_{\mathbf{2},3} \cdot ((P)_{\mathbf{3},3}) - (P)_{\mathbf{2},3} \cdot ((Q)_{\mathbf{3},3})$. Set $gf_{2PQ} = (Q)_{\mathbf{1},3} \cdot ((P)_{\mathbf{3},3}) - (P)_{\mathbf{1},3} \cdot ((Q)_{\mathbf{3},3})$. Set $gf_{3PQ} = gf_{1PQ}^2 \cdot ((P)_{\mathbf{3},3}) \cdot ((Q)_{\mathbf{3},3}) - gf_{2PQ}^3 - g_2 \cdot (gf_{2PQ}^2) \cdot ((P)_{\mathbf{1},3}) \cdot ((Q)_{\mathbf{3},3})$. Set $gf_{1QP} = (P)_{\mathbf{2},3} \cdot ((Q)_{\mathbf{3},3}) - (Q)_{\mathbf{2},3} \cdot ((P)_{\mathbf{3},3})$. Set $gf_{2QP} = (P)_{\mathbf{1},3} \cdot ((Q)_{\mathbf{3},3}) - (Q)_{\mathbf{1},3} \cdot ((P)_{\mathbf{3},3})$. Set $gf_{3QP} = gf_{1QP}^2 \cdot ((Q)_{\mathbf{3},3}) \cdot ((P)_{\mathbf{3},3}) - gf_{2QP}^3 - g_2 \cdot (gf_{2QP}^2) \cdot ((Q)_{\mathbf{1},3}) \cdot ((P)_{\mathbf{3},3})$. $gf_{3QP} = gf_{3PQ} \cdot (Q_3)_{\mathbf{1},3} = -(P_3)_{\mathbf{1},3} \cdot (Q_3)_{\mathbf{2},3} = -(P_3)_{\mathbf{2},3} \cdot (Q_3)_{\mathbf{3},3} = -(P_3)_{\mathbf{3},3}$. \square

- (18) Let us consider elements P, Q, O, P_3 , Q_3 of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$, and an element d of $\mathrm{GF}(p)$. Suppose $O = \langle 0, 1, 0 \rangle$ and $d \neq 0_{\mathrm{GF}(p)}$ and $(Q)_{1,3} = d \cdot ((P)_{1,3})$ and $(Q)_{2,3} = d \cdot ((P)_{2,3})$ and $(Q)_{3,3} = d \cdot ((P)_{3,3})$ and $P \not\equiv O$ and $Q \not\equiv O$ and $P \equiv Q$ and $P_3 = (\mathrm{addell}_{\mathrm{ProjCo}}(z,p))(P,Q)$ and $Q_3 = (\mathrm{addell}_{\mathrm{ProjCo}}(z,p))(Q,P)$. Then
 - (i) $(Q_3)_{1,3} = d^6 \cdot ((P_3)_{1,3})$, and
 - (ii) $(Q_3)_{2,3} = d^6 \cdot ((P_3)_{2,3})$, and
 - (iii) $(Q_3)_{3,3} = d^6 \cdot ((P_3)_{3,3}).$
- (19) Let us consider elements P, Q of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_{\mathbf{1}})$. Then $(\mathrm{addell}_{\mathrm{ProjCo}}(z,p))(P,Q) \equiv (\mathrm{addell}_{\mathrm{ProjCo}}(z,p))(Q,P)$. The theorem is a consequence of (17) and (18).
- (20) Let us consider elements P, Q of EC-SetAffCo(z, p). Then (addell-AffCo(z, p))(P, Q) = (addell-AffCo(z, p))(Q, P). The theorem is a consequence of (19).

Let p be a 5 or greater prime number and z be an element of the parameters of elliptic curve p. One can verify that addell-AffCo(z,p) is non empty, commutative, and unital.

The functor 0-EC(z,p) yielding an element of EC-SetAffCo(z,p) is defined by the term

(Def. 4) (0, 1, 0).

Let us consider p and z. Let us observe that $\langle \text{EC-SetAffCo}(z,p), \text{addell-AffCo}(z,p) \rangle$ is Abelian and $\langle \text{EC-SetAffCo}(z,p), \text{addell-AffCo}(z,p), 0\text{-EC}(z,p) \rangle$ is left zeroed and right zeroed and $\langle \text{EC-SetAffCo}(z,p), \text{addell-AffCo}(z,p), 0\text{-EC}(z,p) \rangle$ is complementable.

Let p be a 5 or greater prime number and z be an element of the parameters of elliptic curve p. One can verify that $\langle \text{EC-SetAffCo}(z,p), \text{addell-AffCo}(z,p) \rangle$ is unital.

Now we state the proposition:

(21) Let us consider a 5 or greater prime number p, and an element z of the parameters of elliptic curve p. Then $\mathbf{1}_{\langle \text{EC-SetAffCo}(z,p), \text{addell-AffCo}(z,p) \rangle} = 0\text{-EC}(z,p)$. The theorem is a consequence of (15).

Let p be a 5 or greater prime number and z be an element of the parameters of elliptic curve p. One can check that $\langle \text{EC-SetAffCo}(z,p), \text{addell-AffCo}(z,p) \rangle$ is commutative, group-like, and non empty.

Now we state the propositions:

- (22) Let us consider elements P_1 , P_2 , Q of $EC_{SetProjCo}((z)_1)$. Suppose $P_1 \equiv P_2$. Then $(addell_{ProjCo}(z,p))(P_1,Q) \equiv (addell_{ProjCo}(z,p))(P_2,Q)$. The theorem is a consequence of (19).
- (23) Let us consider elements P, Q_1 , Q_2 of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$. Suppose $Q_1 \equiv Q_2$. Then $(\mathrm{addell}_{\mathrm{ProjCo}}(z,p))(P,Q_1) \equiv (\mathrm{addell}_{\mathrm{ProjCo}}(z,p))(P,Q_2)$. The theorem is a consequence of (19) and (22).
- (24) Let us consider elements P_1 , P_2 , Q_1 , Q_2 of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$. Suppose $P_1 \equiv P_2$ and $Q_1 \equiv Q_2$. Then $(\mathrm{addell}_{\mathrm{ProjCo}}(z,p))(P_1,Q_1) \equiv (\mathrm{addell}_{\mathrm{ProjCo}}(z,p))(P_2,Q_2)$. The theorem is a consequence of (22) and (23).
- (25) Let us consider elements P, O of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$. Suppose $O = \langle 0, 1, 0 \rangle$. Then $P \equiv O$ if and only if $(\mathrm{compell}_{\mathrm{ProjCo}}(z, p))(P) \equiv O$.
- (26) Let us consider elements P, Q of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$, and an element a of $\mathrm{GF}(p)$. Suppose $a \neq 0_{\mathrm{GF}(p)}$ and $(P)_{1,3} = a \cdot ((Q)_{1,3})$ and $(P)_{2,3} = a \cdot ((Q)_{2,3})$ and $(P)_{3,3} = a \cdot ((Q)_{3,3})$. Then $P \equiv Q$.
- (27) Let us consider elements P, Q of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$, and elements g_2 , gf_1 , gf_2 , gf_3 of $\mathrm{GF}(p)$. Suppose $P \not\equiv Q$ and $(P)_{3,3} = 1$ and $(Q)_{3,3} = 1$ and $g_2 = 2 \mod p$ and $gf_1 = (Q)_{2,3} (P)_{2,3}$ and $gf_2 = (Q)_{1,3} (P)_{1,3}$ and $gf_3 = gf_1^2 gf_2^3 g_2 \cdot (gf_2^2) \cdot ((P)_{1,3})$. Then $(\mathrm{addell_{ProjCo}}(z, p))(P, Q) = \langle gf_2 \cdot gf_3, gf_1 \cdot (gf_2^2 \cdot ((P)_{1,3}) gf_3) gf_2^3 \cdot ((P)_{2,3}), gf_2^3 \rangle$. The theorem is a consequence of (2).
- (28) Let us consider elements P, Q of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$, and elements g_2 , g_3 , g_4 , g_8 , gf_1 , gf_2 , gf_3 , gf_4 of $\mathrm{GF}(p)$. Suppose $P \equiv Q$ and $(P)_{3,3} = 1$ and $(Q)_{3,3} = 1$ and $g_2 = 2 \mod p$ and $g_3 = 3 \mod p$ and $g_4 = 4 \mod p$ and $g_8 = 2 \mod p$ and $g_8 =$

8 mod p and $gf_1 = (z)_1 + g_3 \cdot (((P)_{1,3})^2)$ and $gf_2 = (P)_{2,3}$ and $gf_3 = (P)_{1,3} \cdot ((P)_{2,3}) \cdot gf_2$ and $gf_4 = gf_1^2 - g_8 \cdot gf_3$. Then $(\text{addell}_{\text{ProjCo}}(z, p))(P, Q) = \langle g_2 \cdot gf_4 \cdot gf_2, gf_1 \cdot (g_4 \cdot gf_3 - gf_4) - g_8 \cdot (((P)_{2,3})^2) \cdot (gf_2^2), g_8 \cdot (gf_2^3) \rangle$. The theorem is a consequence of (2).

Let us consider elements P, Q of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$. Now we state the propositions:

- (29) Suppose $(P)_{3,3} = 1$ and $(Q)_{3,3} = 1$. Then $(\text{compell}_{\text{ProjCo}}(z, p))((\text{addell}_{\text{ProjCo}}(z, p))(P, Q)) \equiv (\text{addell}_{\text{ProjCo}}(z, p))((\text{compell}_{\text{ProjCo}}(z, p))(P), (\text{compell}_{\text{ProjCo}}(z, p))(Q))$. The theorem is a consequence of (27), (28), and (26).
- (30) $(\text{compell}_{\text{ProjCo}}(z, p))((\text{addell}_{\text{ProjCo}}(z, p))(P, Q)) \equiv (\text{addell}_{\text{ProjCo}}(z, p))$ $((\text{compell}_{\text{ProjCo}}(z, p))(P), (\text{compell}_{\text{ProjCo}}(z, p))(Q)).$ The theorem is a consequence of (25), (8), (29), (24), and (2).
- (31) Let us consider elements P, O of $\mathrm{EC}_{\mathrm{SetProjCo}}((z)_1)$. Suppose $O = \langle 0, 1, 0 \rangle$ and $P \not\equiv O$. Then $(P)_{\mathbf{2},3} = 0_{\mathrm{GF}(p)}$ if and only if $(\mathrm{addell}_{\mathrm{ProjCo}}(z,p))(P,P) \equiv O$. PROOF: Reconsider $g_8 = 8 \mod p$ as an element of $\mathrm{GF}(p)$. $((\mathrm{addell}_{\mathrm{ProjCo}}(z,p))(P,P))_{\mathbf{3},3} = 0$. $g_8 \neq 0_{\mathrm{GF}(p)}$. $(P)_{\mathbf{3},3} \neq 0$ by [4, (23)], [5, (28)]. \square

REFERENCES

- [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Čarette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [3] I. Blake, G. Seroussi, and N. Smart. *Elliptic Curves in Cryptography*. Number 265 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.
- [4] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Set of points on elliptic curve in projective coordinates. Formalized Mathematics, 19(3):131–138, 2011. doi:10.2478/v10037-011-0021-6.
- [5] Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Operations of points on elliptic curve in projective coordinates. Formalized Mathematics, 20(1):87–95, 2012. doi:10.2478/v10037-012-0012-2.
- [6] Artur Korniłowicz. Recursive definitions. Part II. Formalized Mathematics, 12(2):167–172, 2004.

Accepted August 29, 2019