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Summary. In this article, we formalize differentiability of implicit func-
tion theorem in the Mizar system [3], [1]. In the first half section, properties of
Lipschitz continuous linear operators are discussed. Some norm properties of a
direct sum decomposition of Lipschitz continuous linear operator are mentioned
here.

In the last half section, differentiability of implicit function in implicit func-
tion theorem is formalized. The existence and uniqueness of implicit function in
[6] is cited. We referred to [10], [11], and [2] in the formalization.
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1. Properties of Lipschitz Continuous Linear Operators

From now on S, T ,W , Y denote real normed spaces, f , f1, f2 denote partial
functions from S to T , Z denotes a subset of S, and i, n denote natural numbers.

Now we state the propositions:

(1) Let us consider real normed spaces E, F , a partial function f from E to
F , a subset Z of E, and a point z of E. Suppose Z is open and z ∈ Z and
Z ⊆ dom f and f is differentiable in z. Then

(i) f�Z is differentiable in z, and

(ii) f ′(z) = (f�Z)′(z).
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Proof: Consider N being a neighbourhood of z such that N ⊆ dom f and
there exists a rest R of E, F such that for every point x of E such that
x ∈ N holds f/x − f/z = (f ′(z))(x − z) + R/x−z. Consider r being a real
number such that r > 0 and Ball(z, r) ⊆ Z. Reconsider N4 = N ∩ Z as
a neighbourhood of z. Consider R being a rest of E, F such that for every
point x of E such that x ∈ N holds f/x − f/z = (f ′(z))(x − z) + R/x−z.
For every point x of E such that x ∈ N4 holds (f�Z)/x − (f�Z)/z =
(f ′(z))(x− z) +R/x−z. �

(2) Let us consider real normed spaces E, F , G, a partial function f from
E × F to G, a subset Z of E × F , and a point z of E × F . Suppose Z is
open and z ∈ Z and Z ⊆ dom f . Then

(i) if f is partially differentiable in z w.r.t. 1, then f�Z is partially dif-
ferentiable in z w.r.t. 1 and partdiff(f, z) w.r.t. 1 =

partdiff(f�Z, z) w.r.t. 1, and

(ii) if f is partially differentiable in z w.r.t. 2, then f�Z is partially dif-
ferentiable in z w.r.t. 2 and partdiff(f, z) w.r.t. 2 =

partdiff(f�Z, z) w.r.t. 2.

Proof: If f is partially differentiable in z w.r.t. 1, then f�Z is partially dif-
ferentiable in z w.r.t. 1 and partdiff(f, z) w.r.t. 1 = partdiff(f�Z, z) w.r.t. 1.
Set g = f · (reproj2(z)). Consider N being a neighbourhood of (z)2 such
that N ⊆ dom g and there exists a rest R of F , G such that for every point
x of F such that x ∈ N holds g/x − g/(z)2 = (partdiff(f, z) w.r.t. 2)(x −
(z)2)+R/x−(z)2 . Consider R being a rest of F , G such that for every point
x of F such that x ∈ N holds g/x − g/(z)2 = (partdiff(f, z) w.r.t. 2)(x −
(z)2) +R/x−(z)2 .

Set h = (f�Z) · (reproj2(z)). Consider r1 being a real number such
that r1 > 0 and Ball(z, r1) ⊆ Z. Consider r2 being a real number such
that r2 > 0 and {y, where y is a point of F : ‖y − (z)2‖ < r2} ⊆ N . Set
r = min(r1, r2). Set M = Ball((z)2, r). M ⊆ N and for every point x of F
such that x ∈ M holds (reproj2(z))(x) ∈ Z. M ⊆ domh. For every point
x of F such that x ∈ M holds h/x − h/(z)2 = (partdiff(f, z) w.r.t. 2)(x −
(z)2) +R/x−(z)2 . �

(3) Let us consider real normed spaces X, E, G, F , a bilinear operator B
from E × F into G, a partial function f from X to E, a partial function g
from X to F , and a subset S of X. Suppose B is continuous on the carrier
of E × F and S ⊆ dom f and S ⊆ dom g and for every point s of X such
that s ∈ S holds f is continuous in s and for every point s of X such that
s ∈ S holds g is continuous in s. Then there exists a partial function H
from X to G such that
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(i) domH = S, and

(ii) for every point s of X such that s ∈ S holds H(s) = B(f(s), g(s)),
and

(iii) H is continuous on S.

Proof: Define P[object, object] ≡ there exists a point t of X such that
t = $1 and $2 = B(f(t), g(t)). For every object x such that x ∈ S there
exists an object y such that y ∈ the carrier of G and P[x, y]. Consider
H being a function from S into G such that for every object z such that
z ∈ S holds P[z,H(z)]. For every point s of X such that s ∈ S holds
H(s) = B(f(s), g(s)). For every point x0 of X and for every real number r
such that x0 ∈ S and 0 < r there exists a real number p2 such that 0 < p2
and for every point x1 of X such that x1 ∈ S and ‖x1 − x0‖ < p2 holds
‖H/x1 −H/x0‖ < r. �

(4) Let us consider real normed spaces E, F , a partial function g from E to
F , and a subset A of E. Suppose g is continuous on A and dom g = A.
Then there exists a partial function x2 from E to E × F such that

(i) domx2 = A, and

(ii) for every point x of E such that x ∈ A holds x2(x) = 〈〈x, g(x)〉〉, and

(iii) x2 is continuous on A.

Proof: Define P[object, object] ≡ there exists a point t of E such that
t = $1 and $2 = 〈〈t, g(t)〉〉. For every object x such that x ∈ S there exists
an object y such that y ∈ the carrier of E × F and P[x, y]. Consider H
being a function from S into E×F such that for every object z such that
z ∈ S holds P[z,H(z)]. For every point s of E such that s ∈ S holds
H(s) = 〈〈s, g(s)〉〉. For every point x0 of E and for every real number r
such that x0 ∈ S and 0 < r there exists a real number p2 such that 0 < p2
and for every point x1 of E such that x1 ∈ S and ‖x1 − x0‖ < p2 holds
‖H/x1 −H/x0‖ < r. �

(5) Let us consider real normed spaces S, T , V , a point x0 of V , a partial
function f1 from the carrier of V to the carrier of S, and a partial function
f2 from the carrier of S to the carrier of T . Suppose x0 ∈ dom(f2 · f1)
and f1 is continuous in x0 and f2 is continuous in f1/x0 . Then f2 · f1 is
continuous in x0.
Proof: rng(f1∗s1) ⊆ dom f2. �

(6) Let us consider real normed spaces E, F , a point z of E × F , a point x
of E, and a point y of F . Suppose z = 〈〈x, y〉〉. Then ‖z‖ ¬ ‖x‖+ ‖y‖.

(7) Let us consider real normed spaces E, F , G, and a linear operator L
from E × F into G. Then there exists a linear operator L1 from E into G
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and there exists a linear operator L2 from F into G such that for every
point x of E and for every point y of F , L(〈〈x, y〉〉) = L1(x) + L2(y) and
for every point x of E, L1(x) = L

/〈〈x, 0F 〉〉 and for every point y of F ,

L2(y) = L
/〈〈0E , y〉〉.

Proof: Define C(point of E) = L
/〈〈$1, 0F 〉〉. Consider L1 being a function

from the carrier of E into the carrier of G such that for every point x of
E, L1(x) = C(x). For every elements s, t of E, L1(s+ t) = L1(s) + L1(t).
For every element s of E and for every real number r, L1(r · s) = r ·L1(s).
Define D(point of F ) = L

/〈〈0E , $1〉〉. Consider L2 being a function from
the carrier of F into the carrier of G such that for every point x of F ,
L2(x) = D(x). For every elements s, t of F , L2(s+ t) = L2(s) +L2(t). For
every element s of F and for every real number r, L2(r · s) = r ·L2(s). For
every point x of E and for every point y of F , L(〈〈x, y〉〉) = L1(x) +L2(y).
�

(8) Let us consider real normed spaces E, F , G, a linear operator L from
E × F into G, a linear operator L11 from E into G, a linear operator L12
from F into G, a linear operator L21 from E into G, and a linear operator
L22 from F into G. Suppose for every point x of E and for every point y
of F , L(〈〈x, y〉〉) = L11(x)+L12(y) and for every point x of E and for every
point y of F , L(〈〈x, y〉〉) = L21(x) + L22(y). Then

(i) L11 = L21, and

(ii) L12 = L22.

(9) Let us consider real normed spaces E, F , G, a linear operator L1 from E
into G, and a linear operator L2 from F into G. Then there exists a linear
operator L from E × F into G such that

(i) for every point x of E and for every point y of F , L(〈〈x, y〉〉) = L1(x)+
L2(y), and

(ii) for every point x of E, L1(x) = L
/〈〈x, 0F 〉〉, and

(iii) for every point y of F , L2(y) = L
/〈〈0E , y〉〉.

Proof: Define P[object, object] ≡ there exists a point x of E and there
exists a point y of F such that $1 = 〈〈x, y〉〉 and $2 = L1(x) + L2(y).
For every element z of E × F , there exists an element y of G such that
P[z, y]. Consider L being a function from E × F into G such that for
every element z of E × F , P[z, L(z)]. For every points z, w of E × F ,
L(z +w) = L(z) +L(w). For every element z of E × F and for every real
number r, L(r · z) = r ·L(z). For every point x of E and for every point y
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of F , L(〈〈x, y〉〉) = L1(x)+L2(y). For every point x of E, L1(x) = L
/〈〈x, 0F 〉〉.

For every point y of F , L2(y) = L
/〈〈0E , y〉〉 by [9, (3)]. �

(10) Let us consider real normed spaces E, F , G, and a Lipschitzian linear
operator L from E × F into G. Then there exists a Lipschitzian linear
operator L1 from E into G and there exists a Lipschitzian linear operator
L2 from F into G such that for every point x of E and for every point y of
F , L(〈〈x, y〉〉) = L1(x)+L2(y) and for every point x of E, L1(x) = L

/〈〈x, 0F 〉〉
and for every point y of F , L2(y) = L

/〈〈0E , y〉〉. The theorem is a consequence

of (7).

(11) Let us consider real normed spaces E, F , G, a Lipschitzian linear opera-
tor L1 from E into G, and a Lipschitzian linear operator L2 from F into
G. Then there exists a Lipschitzian linear operator L from E × F into G
such that

(i) for every point x of E and for every point y of F , L(〈〈x, y〉〉) = L1(x)+
L2(y), and

(ii) for every point x of E, L1(x) = L
/〈〈x, 0F 〉〉, and

(iii) for every point y of F , L2(y) = L
/〈〈0E , y〉〉.

The theorem is a consequence of (9).

(12) Let us consider real normed spaces E, F , G, and a point L of the real
norm space of bounded linear operators from E × F into G. Then there
exists a point L1 of the real norm space of bounded linear operators from
E into G and there exists a point L2 of the real norm space of bounded
linear operators from F into G such that for every point x of E and for
every point y of F , L(〈〈x, y〉〉) = L1(x) +L2(y) and for every point x of E,
L1(x) = L(〈〈x, 0F 〉〉) and for every point y of F , L2(y) = L(〈〈0E , y〉〉) and
‖L‖ ¬ ‖L1‖+ ‖L2‖ and ‖L1‖ ¬ ‖L‖ and ‖L2‖ ¬ ‖L‖.
Proof: Reconsider L = L4 as a Lipschitzian linear operator from E ×
F into G. Consider L1 being a Lipschitzian linear operator from E into
G, L2 being a Lipschitzian linear operator from F into G such that for
every point x of E and for every point y of F , L(〈〈x, y〉〉) = L1(x) + L2(y)
and for every point x of E, L1(x) = L

/〈〈x, 0F 〉〉 and for every point y of F ,

L2(y) = L
/〈〈0E , y〉〉.

Reconsider L5 = L1 as a point of the real norm space of bounded
linear operators from E into G. Reconsider L3 = L2 as a point of the real
norm space of bounded linear operators from F into G. For every point x
of E, L5(x) = L4(〈〈x, 0F 〉〉). For every point y of F , L3(y) = L4(〈〈0E , y〉〉).
For every real number t such that t ∈ PreNorms(L) holds t ¬ ‖L5‖+‖L3‖.
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For every real number t such that t ∈ PreNorms(L1) holds t ¬ ‖L4‖. For
every real number t such that t ∈ PreNorms(L2) holds t ¬ ‖L4‖. �

(13) Let us consider real normed spaces E, F , G, a point L of the real norm
space of bounded linear operators from E × F into G, points L11, L12
of the real norm space of bounded linear operators from E into G, and
points L21, L22 of the real norm space of bounded linear operators from F
into G. Suppose for every point x of E and for every point y of F , L(〈〈x,
y〉〉) = L11(x) +L21(y) and for every point x of E and for every point y of
F , L(〈〈x, y〉〉) = L12(x) + L22(y). Then

(i) L11 = L12, and

(ii) L21 = L22.

The theorem is a consequence of (8).

2. Differentiability of Implicit Function

Now we state the propositions:

(14) Let us consider real normed spaces E, G, F , a subset Z of E × F ,
a partial function f from E × F to G, and a point z of E × F . Suppose f
is differentiable in z. Then

(i) f is partially differentiable in z w.r.t. 1, and

(ii) f is partially differentiable in z w.r.t. 2, and

(iii) for every point d7 of E and for every point d8 of F , (f ′(z))(〈〈d7,
d8〉〉) = (partdiff(f, z) w.r.t. 1)(d7) + (partdiff(f, z) w.r.t. 2)(d8).

Proof: Reconsider y = (IsoCPNrSP(E,F ))(z) as a point of
∏
〈E,F 〉.

Consider N being a neighbourhood of z such that N ⊆ dom f and there
exists a rest R of E×F , G such that for every point w of E×F such that
w ∈ N holds f/w − f/z = (f ′(z))(w− z) +R/w−z. Consider R being a rest
of E × F , G such that for every point w of E × F such that w ∈ N holds
f/w−f/z = (f ′(z))(w−z)+R/w−z. Reconsider L = f ′(z) as a Lipschitzian
linear operator from E×F into G. Consider L1 being a Lipschitzian linear
operator from E into G, L2 being a Lipschitzian linear operator from F
into G such that for every point d7 of E and for every point d8 of F , L(〈〈d7,
d8〉〉) = L1(d7) + L2(d8) and for every point d7 of E, L1(d7) = L

/〈〈d7, 0F 〉〉
and for every point d8 of F , L2(d8) = L

/〈〈0E , d8〉〉.
Reconsider L3 = L1 as a point of the real norm space of bounded linear

operators from E into G. Reconsider L4 = L2 as a point of the real norm
space of bounded linear operators from F into G. Set g1 = f ·(reproj1(z)).
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Set g2 = f · (reproj2(z)). Reconsider x = (z)1 as a point of E. Reconsider
y = (z)2 as a point of F . Consider r0 being a real number such that
0 < r0 and {y, where y is a point of E ×F : ‖y− z‖ < r0} ⊆ N . Consider
r being a real number such that 0 < r < r0 and Ball(x, r) × Ball(y, r) ⊆
Ball(z, r0). Define C(point of E) = R

/〈〈$1, 0F 〉〉. Consider R1 being a function
from the carrier of E into the carrier of G such that for every point p of
E, R1(p) = C(p). Define D(point of F ) = R

/〈〈0E , $1〉〉. Consider R2 being
a function from the carrier of F into the carrier of G such that for every
point p of F , R2(p) = D(p).

For every real number r such that r > 0 there exists a real number d
such that d > 0 and for every point z of E such that z 6= 0E and ‖z‖ < d
holds ‖z‖−1 · ‖R1/z‖ < r. For every real number r such that r > 0 there
exists a real number d such that d > 0 and for every point z of F such that
z 6= 0F and ‖z‖ < d holds ‖z‖−1 · ‖R2/z‖ < r. Reconsider N1 = Ball(x, r)
as a neighbourhood of x. Reconsider N2 = Ball(y, r) as a neighbourhood of
y. N1 ⊆ dom g1. N2 ⊆ dom g2. For every point x1 of E such that x1 ∈ N1
holds g1/x1 − g1/x = L3(x1 − x) + R1/x1−x. For every point y1 of F such
that y1 ∈ N2 holds g2/y1 − g2/y = L4(y1 − y) +R2/y1−y. �

(15) Let us consider real normed spaces E, G, F , a subset Z of E×F , a partial
function f from E × F to G, a point a of E, a point b of F , a point c of
G, a point z of E × F , real numbers r1, r2, a partial function g from E
to F , a Lipschitzian linear operator P from E into G, and a Lipschitzian
linear operator Q from G into F .

Suppose Z is open and dom f = Z and z = 〈〈a, b〉〉 and z ∈ Z and
f(a, b) = c and f is differentiable in z and 0 < r1 and 0 < r2 and dom g =
Ball(a, r1) and rng g ⊆ Ball(b, r2) and g(a) = b and g is continuous in a
and for every point x of E such that x ∈ Ball(a, r1) holds f(x, g(x)) = c
and partdiff(f, z) w.r.t. 2 is one-to-one and Q = (partdiff(f, z) w.r.t. 2)−1

and P = partdiff(f, z) w.r.t. 1. Then

(i) g is differentiable in a, and

(ii) g′(a) = −Q · P .

Proof: Reconsider L = Q ·P as a point of the real norm space of bounded
linear operators from E into F . Consider N0 being a neighbourhood of z
such that N0 ⊆ dom f and there exists a rest R of E ×F , G such that for
every point w of E × F such that w ∈ N0 holds f/w − f/z = (f ′(z))(w −
z) +R/w−z. Consider R being a rest of E×F , G such that for every point
w of E × F such that w ∈ N0 holds f/w − f/z = (f ′(z))(w − z) + R/w−z.
Consider r0 being a real number such that 0 < r0 and {y, where y is
a point of E × F : ‖y − z‖ < r0} ⊆ N0. Consider r3 being a real number
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such that 0 < r3 < r0 and Ball(a, r3)×Ball(b, r3) ⊆ Ball(z, r0). Reconsider
r4 = min(r1, r3) as a real number.

Consider r5 being a real number such that 0 < r5 and for every point
x1 of E such that x1 ∈ dom g and ‖x1 − a‖ < r5 holds ‖g/x1 − g/a‖ < r3.
Reconsider r6 = min(r4, r5) as a real number. Reconsider N = Ball(a, r6)
as a neighbourhood of a. Define C(point of E) = −Q(R

/〈〈$1, g/a+$1−g/a〉〉
).

Consider R1 being a function from the carrier of E into the carrier of F
such that for every point p of E, R1(p) = C(p). For every point x of E
such that x ∈ N holds g/x − g/a = (−L)(x− a) +R1/x−a. Define D[point
of E, object] ≡ $2 = 〈〈$1, g/a+$1 − g/a〉〉. For every element d7 of the carrier
of E, there exists an element d8 of the carrier of E×F such that D[d7, d8].

Consider V being a function from the carrier of E into the carrier of
E × F such that for every element d7 of the carrier of E, D[d7, V (d7)].
Reconsider Q1 = Q as a point of the real norm space of bounded linear
operators from G into F . Set Q2 = ‖Q1‖. Consider d0 being a real number
such that d0 > 0 and for every point d9 of E × F such that d9 6= 0E×F
and ‖d9‖ < d0 holds ‖d9‖−1 · ‖R/d9‖ <

1
2·(Q2+1) . Consider d1 being a real

number such that 0 < d1 < d0 and Ball(a, d1)×Ball(g/a, d1) ⊆ Ball(z, d0).
Consider d2 being a real number such that 0 < d2 and for every point x1
of E such that x1 ∈ dom g and ‖x1 − a‖ < d2 holds ‖g/x1 − g/a‖ < d1.
Reconsider d3 = min(d1, d2) as a real number. Reconsider d4 = min(d3, r1)
as a real number.

For every point d7 of E such that d7 6= 0E and ‖d7‖ < d4 holds
‖R/V (d7)‖ ¬

1
2·(Q2+1) · (‖d7‖+‖g/a+d7−g/a‖). For every point d7 of E such

that d7 6= 0E and ‖d7‖ < d4 holds ‖R1/d7‖ ¬
1
2 · (‖d7‖ + ‖g/a+d7 − g/a‖).

Set Q3 = ‖L‖. Reconsider d5 = min(r6, d4) as a real number. For every
point d7 of E such that d7 6= 0E and ‖d7‖ < d5 holds ‖g/a+d7 − g/a‖ ¬
(2 · Q3 + 1) · ‖d7‖. For every real number r such that r > 0 there exists
a real number d such that d > 0 and for every point d7 of E such that
d7 6= 0E and ‖d7‖ < d holds ‖d7‖−1 · ‖R1/d7‖ < r by [4, (23)], [7, (7)], [8,
(18)]. �

From now on X, Y, Z denote non trivial real Banach spaces.
Now we state the propositions:

(16) Let us consider a point u of the real norm space of bounded linear opera-
tors from X into Y. Suppose u is invertible. Then there exist real numbers
K, s such that

(i) 0 ¬ K, and

(ii) 0 < s, and

(iii) for every point d6 of the real norm space of bounded linear operators
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from X into Y such that ‖d6‖ < s holds u + d6 is invertible and
‖Inv u+ d6 − Inv u−−(Inv u) · d6 · (Inv u)‖ ¬ K · (‖d6‖ · ‖d6‖).

(17) Let us consider a partial function I from the real norm space of bounded
linear operators from X into Y to the real norm space of bounded linear
operators from Y into X. Suppose dom I = InvertOpers(X,Y ) and for
every point u of the real norm space of bounded linear operators from
X into Y such that u ∈ InvertOpers(X,Y ) holds I(u) = Inv u. Let us
consider a point u of the real norm space of bounded linear operators
from X into Y. Suppose u ∈ InvertOpers(X,Y ). Then

(i) I is differentiable in u, and

(ii) for every point d6 of the real norm space of bounded linear operators
from X into Y, (I ′(u))(d6) = −(Inv u) · d6 · (Inv u).

Proof: Set S = the real norm space of bounded linear operators from
X into Y. Set W = the real norm space of bounded linear operators
from Y into X. Set N = InvertOpers(X,Y ). Define C(point of S) =
−(Inv u) · $1 · (Inv u). Consider L being a function from the carrier of S
into the carrier of W such that for every point x of S, L(x) = C(x). For
every elements s, t of S, L(s+ t) = L(s) + L(t). For every element s of S
and for every real number r, L(r · s) = r · L(s). Define D(point of S) =
Inv u+ $1 − Inv u− L($1).

Consider R being a function from the carrier of S into the carrier of
W such that for every point x of S, R(x) = D(x). For every point x of
S, R(x) = Inv u+ x− Inv u−−(Inv u) · x · (Inv u). Reconsider L0 = L as
a point of the real norm space of bounded linear operators from S into
W . For every real number r such that r > 0 there exists a real number d
such that d > 0 and for every point z of S such that z 6= 0S and ‖z‖ < d
holds ‖z‖−1 · ‖R/z‖ < r. Reconsider R0 = R as a rest of S, W . For every
point v of S such that v ∈ N holds I/v − I/u = L0(v − u) +R0/v−u. �

(18) There exists a partial function I from the real norm space of bounded
linear operators from X into Y to the real norm space of bounded linear
operators from Y into X such that

(i) dom I = InvertOpers(X,Y ), and

(ii) rng I = InvertOpers(Y,X), and

(iii) I is one-to-one and differentiable on InvertOpers(X,Y ), and

(iv) there exists a partial function J from the real norm space of bounded
linear operators from Y into X to the real norm space of bounded
linear operators from X into Y such that J = I−1 and J is one-to-one



126 kazuhisa nakasho and yasunari shidama

and dom J = InvertOpers(Y,X) and rng J = InvertOpers(X,Y ) and
J is differentiable on InvertOpers(Y,X), and

(v) for every point u of the real norm space of bounded linear operators
from X into Y such that u ∈ InvertOpers(X,Y ) holds I(u) = Inv u,
and

(vi) for every points u, d6 of the real norm space of bounded linear
operators from X into Y such that u ∈ InvertOpers(X,Y ) holds
(I ′(u))(d6) = −(Inv u) · d6 · (Inv u).

Proof: Consider I being a partial function from the real norm space of
bounded linear operators fromX into Y to the real norm space of bounded
linear operators from Y into X such that dom I = InvertOpers(X,Y )
and rng I = InvertOpers(Y,X) and I is one-to-one and continuous on
InvertOpers(X,Y ) and there exists a partial function J from the real norm
space of bounded linear operators from Y into X to the real norm space of
bounded linear operators from X into Y such that J = I−1 and J is one-
to-one and dom J = InvertOpers(Y,X) and rng J = InvertOpers(X,Y )
and J is continuous on InvertOpers(Y,X) and for every point u of the real
norm space of bounded linear operators from X into Y such that u ∈
InvertOpers(X,Y ) holds I(u) = Inv u.

Consider J being a partial function from the real norm space of bo-
unded linear operators from Y into X to the real norm space of bounded
linear operators from X into Y such that J = I−1 and J is one-to-one and
dom J = InvertOpers(Y,X) and rng J = InvertOpers(X,Y ) and J is con-
tinuous on InvertOpers(Y,X). For every point u of the real norm space of
bounded linear operators from X into Y such that u ∈ InvertOpers(X,Y )
holds I is differentiable in u. For every point v of the real norm space of
bounded linear operators from Y into X such that v ∈ InvertOpers(Y,X)
holds J(v) = Inv v by [5, (15)]. For every point v of the real norm space of
bounded linear operators from Y into X such that v ∈ InvertOpers(Y,X)
holds J is differentiable in v. �

(19) Let us consider real normed spaces E, G, F , a subset Z of E×F , a partial
function f from E × F to G, a point a of E, a point b of F , a point c of
G, a point z of E × F , a subset A of E, a subset B of F , and a partial
function g from E to F . Suppose Z is open and dom f = Z and A is open
and B is open and A × B ⊆ Z and z = 〈〈a, b〉〉 and f(a, b) = c and f is
differentiable in z and dom g = A and rng g ⊆ B and a ∈ A and g(a) = b
and g is continuous in a and for every point x of E such that x ∈ A holds
f(x, g(x)) = c and partdiff(f, z) w.r.t. 2 is invertible. Then

(i) g is differentiable in a, and
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(ii) g′(a) = −(Inv partdiff(f, z) w.r.t. 2) · (partdiff(f, z) w.r.t. 1).

Proof: Consider r2 being a real number such that 0 < r2 and Ball(b, r2) ⊆
B. Consider r3 being a real number such that 0 < r3 and for every point
x1 of E such that x1 ∈ dom g and ‖x1 − a‖ < r3 holds ‖g/x1 − g/a‖ < r2.
Consider r4 being a real number such that 0 < r4 and Ball(a, r4) ⊆ A. Set
r1 = min(r3, r4). Set g1 = g� Ball(a, r1). For every real number r such that
0 < r there exists a real number s such that 0 < s and for every point x1
of E such that x1 ∈ dom g1 and ‖x1 − a‖ < s holds ‖g1/x1 − g1/a‖ < r.
For every point x of E such that x ∈ Ball(a, r1) holds f(x, g1(x)) = c.

Reconsider Q = (partdiff(f, z) w.r.t. 2)−1 as a Lipschitzian linear ope-
rator from G into F . Reconsider P = partdiff(f, z) w.r.t. 1 as a Lipschit-
zian linear operator from E into G. g1 is differentiable in a and g1′(a) =
−Q · P . Consider N being a neighbourhood of a such that N ⊆ dom g1
and there exists a rest R of E, F such that for every point x of E such
that x ∈ N holds g1/x− g1/a = (g1′(a))(x− a) +R/x−a. Consider R being
a rest of E, F such that for every point x of E such that x ∈ N holds
g1/x − g1/a = (g1′(a))(x − a) + R/x−a. For every point x of E such that
x ∈ N holds g/x − g/a = (g1′(a))(x− a) +R/x−a. �

(20) Let us consider a real normed space E, non trivial real Banach spaces
G, F , a subset Z of E ×F , a partial function f from E ×F to G, a point
c of G, a subset A of E, a subset B of F , and a partial function g from E
to F . Suppose Z is open and dom f = Z and A is open and B is open and
A × B ⊆ Z and f is differentiable on Z and f ′�Z is continuous on Z and
dom g = A and rng g ⊆ B and g is continuous on A and for every point
x of E such that x ∈ A holds f(x, g(x)) = c and for every point x of E
and for every point z of E × F such that x ∈ A and z = 〈〈x, g(x)〉〉 holds
partdiff(f, z) w.r.t. 2 is invertible. Then

(i) g is differentiable on A, and

(ii) g′�A is continuous on A, and

(iii) for every point x of E and for every point z of E×F such that x ∈ A
and z = 〈〈x, g(x)〉〉 holds g′(x) = −(Inv partdiff(f, z) w.r.t. 2)·
(partdiff(f, z) w.r.t. 1).

Proof: For every point x of E and for every point z of E × F such
that x ∈ A and z = 〈〈x, g(x)〉〉 holds g is differentiable in x and g′(x) =
−(Inv partdiff(f, z) w.r.t. 2) · (partdiff(f, z) w.r.t. 1). For every point x of
E such that x ∈ A holds g is differentiable in x. Consider x2 being a par-
tial function from E to E×F such that domx2 = A and for every point x
of E such that x ∈ A holds x2(x) = 〈〈x, g(x)〉〉 and x2 is continuous on A.
Consider B being a bilinear operator from the real norm space of bounded
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linear operators from E into G × the real norm space of bounded linear
operators from G into F into the real norm space of bounded linear ope-
rators from E into F such that B is continuous on the carrier of (the real
norm space of bounded linear operators from E into G)× (the real norm
space of bounded linear operators from G into F ) and for every point u
of the real norm space of bounded linear operators from E into G and for
every point v of the real norm space of bounded linear operators from G
into F , B(u, v) = v · u.

Consider I being a partial function from the real norm space of bo-
unded linear operators from F into G to the real norm space of boun-
ded linear operators from G into F such that dom I = InvertOpers(F,G)
and rng I = InvertOpers(G,F ) and I is one-to-one and continuous on
InvertOpers(F,G) and there exists a partial function J from the real norm
space of bounded linear operators from G into F to the real norm space of
bounded linear operators from F into G such that J = I−1 and J is one-to-
one and dom J = InvertOpers(G,F ) and rng J = InvertOpers(F,G) and
J is continuous on InvertOpers(G,F ) and for every point u of the re-
al norm space of bounded linear operators from F into G such that
u ∈ InvertOpers(F,G) holds I(u) = Inv u. For every point x of E such
that x ∈ A holds (g′�A)/x = −B

/〈〈((f�1Z)·x2)(x), (I·(f�2Z)·x2)(x)〉〉.
For every point x of E such that x ∈ A holds x ∈ dom((f �1 Z)·x2) and

(f �1 Z)·x2 is continuous in x. For every point x of E such that x ∈ A holds
x ∈ dom(I · (f �2 Z) · x2) and I · (f �2 Z) · x2 is continuous in x. Consider
H being a partial function from E to the real norm space of bounded
linear operators from E into F such that domH = A and for every point
x of E such that x ∈ A holds H(x) = B(((f �1 Z) · x2)(x), (I · (f �2

Z) · x2)(x)) and H is continuous on A. For every point x0 of E such
that x0 ∈ A holds B(〈〈((f �1 Z) · x2)(x0), (I · (f �2 Z) · x2)(x0)〉〉) =
B
/〈〈((f�1Z)·x2)(x0), (I·(f�2Z)·x2)(x0)〉〉. For every point x0 of E such that x0 ∈ A

holds g′�A�A is continuous in x0. �

(21) Let us consider a real normed space E, non trivial real Banach spaces
G, F , a subset Z of E×F , a partial function f from E×F to G, a point a
of E, a point b of F , a point c of G, and a point z of E ×F . Suppose Z is
open and dom f = Z and f is differentiable on Z and f ′�Z is continuous on
Z and 〈〈a, b〉〉 ∈ Z and f(a, b) = c and z = 〈〈a, b〉〉 and partdiff(f, z) w.r.t. 2
is invertible. Then there exist real numbers r1, r2 such that

(i) 0 < r1, and

(ii) 0 < r2, and

(iii) Ball(a, r1)× Ball(b, r2) ⊆ Z, and
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(iv) for every point x of E such that x ∈ Ball(a, r1) there exists a point
y of F such that y ∈ Ball(b, r2) and f(x, y) = c, and

(v) for every point x of E such that x ∈ Ball(a, r1) for every points y1, y2
of F such that y1, y2 ∈ Ball(b, r2) and f(x, y1) = c and f(x, y2) = c
holds y1 = y2, and

(vi) there exists a partial function g from E to F such that dom g =
Ball(a, r1) and rng g ⊆ Ball(b, r2) and g is continuous on Ball(a, r1)
and g(a) = b and for every point x of E such that x ∈ Ball(a, r1) holds
f(x, g(x)) = c and g is differentiable on Ball(a, r1) and g′�Ball(a,r1) is
continuous on Ball(a, r1) and for every point x of E and for every
point z of E × F such that x ∈ Ball(a, r1) and z = 〈〈x, g(x)〉〉 holds
g′(x) = −(Inv partdiff(f, z) w.r.t. 2) · (partdiff(f, z) w.r.t. 1) and for
every point x of E and for every point z of E × F such that x ∈
Ball(a, r1) and z = 〈〈x, g(x)〉〉 holds partdiff(f, z) w.r.t. 2 is invertible,
and

(vii) for every partial functions g1, g2 from E to F such that dom g1 =
Ball(a, r1) and rng g1 ⊆ Ball(b, r2) and for every point x of E such
that x ∈ Ball(a, r1) holds f(x, g1(x)) = c and dom g2 = Ball(a, r1)
and rng g2 ⊆ Ball(b, r2) and for every point x of E such that x ∈
Ball(a, r1) holds f(x, g2(x)) = c holds g1 = g2.

Proof: Set P = f0 �2 Z0. Consider p1 being a real number such that
0 < p1 and Ball(P/z, p1) ⊆ InvertOpers(F,G). Consider s1 being a real
number such that 0 < s1 and for every point z1 of E × F such that
z1 ∈ Z0 and ‖z1 − z‖ < s1 holds ‖P/z1 − P/z‖ < p1. Consider s2 being
a real number such that 0 < s2 and Ball(z, s2) ⊆ Z0. Set s = min(s1, s2).
Set Z = Ball(z, s). Set f = f0�Z. Set D = f ′�Z . For every point z of E ×
F such that z ∈ Z holds f0′(z) = f ′(z). For every point x0 of E × F and
for every real number r such that x0 ∈ Z and 0 < r there exists a real
number s such that 0 < s and for every point x1 of E×F such that x1 ∈ Z
and ‖x1 − x0‖ < s holds ‖D/x1 −D/x0‖ < r. For every point z of E × F
such that z ∈ Z holds partdiff(f0, z) w.r.t. 1 = partdiff(f, z) w.r.t. 1 and
partdiff(f0, z) w.r.t. 2 = partdiff(f, z) w.r.t. 2.

Consider r1, r2 being real numbers such that 0 < r1 and 0 < r2
and Ball(a, r1) × Ball(b, r2) ⊆ Z and for every point x of E such that
x ∈ Ball(a, r1) there exists a point y of F such that y ∈ Ball(b, r2) and
f(x, y) = c and for every point x of E such that x ∈ Ball(a, r1) for every
points y1, y2 of F such that y1, y2 ∈ Ball(b, r2) and f(x, y1) = c and
f(x, y2) = c holds y1 = y2 and there exists a partial function g from E
to F such that g is continuous on Ball(a, r1) and dom g = Ball(a, r1) and
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rng g ⊆ Ball(b, r2) and g(a) = b and for every point x of E such that
x ∈ Ball(a, r1) holds f(x, g(x)) = c and for every partial functions g1, g2
from E to F such that dom g1 = Ball(a, r1) and rng g1 ⊆ Ball(b, r2) and
for every point x of E such that x ∈ Ball(a, r1) holds f(x, g1(x)) = c and
dom g2 = Ball(a, r1) and rng g2 ⊆ Ball(b, r2) and for every point x of E
such that x ∈ Ball(a, r1) holds f(x, g2(x)) = c holds g1 = g2.

For every point x of E and for every point y of F such that x ∈
Ball(a, r1) and y ∈ Ball(b, r2) holds f0(x, y) = f(x, y). For every point x
of E such that x ∈ Ball(a, r1) there exists a point y of F such that y ∈
Ball(b, r2) and f0(x, y) = c. For every point x of E such that x ∈ Ball(a, r1)
for every points y1, y2 of F such that y1, y2 ∈ Ball(b, r2) and f0(x, y1) = c
and f0(x, y2) = c holds y1 = y2. Consider g being a partial function from
E to F such that g is continuous on Ball(a, r1) and dom g = Ball(a, r1)
and rng g ⊆ Ball(b, r2) and g(a) = b and for every point x of E such
that x ∈ Ball(a, r1) holds f(x, g(x)) = c. For every point x of E and
for every point w of E × F such that x ∈ Ball(a, r1) and w = 〈〈x, g(x)〉〉
holds partdiff(f0, w) w.r.t. 2 is invertible. For every point x of E and for
every point w of E × F such that x ∈ Ball(a, r1) and w = 〈〈x, g(x)〉〉 holds
partdiff(f, w) w.r.t. 2 is invertible.

For every point x of E such that x ∈ Ball(a, r1) holds f0(x, g(x)) = c.
g is differentiable on Ball(a, r1) and g′�Ball(a,r1) is continuous on Ball(a, r1)
and for every point x of E and for every point z of E × F such that x ∈
Ball(a, r1) and z = 〈〈x, g(x)〉〉 holds g′(x) = −(Inv partdiff(f0, z) w.r.t. 2)·
(partdiff(f0, z) w.r.t. 1). For every partial functions g1, g2 from E to F such
that dom g1 = Ball(a, r1) and rng g1 ⊆ Ball(b, r2) and for every point x of
E such that x ∈ Ball(a, r1) holds f0(x, g1(x)) = c and dom g2 = Ball(a, r1)
and rng g2 ⊆ Ball(b, r2) and for every point x of E such that x ∈ Ball(a, r1)
holds f0(x, g2(x)) = c holds g1 = g2. �

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[2] Bruce K. Driver. Analysis Tools with Applications. Springer, Berlin, 2003.
[3] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar.

Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.
[4] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on

normed linear spaces. Formalized Mathematics, 12(3):321–327, 2004.
[5] Kazuhisa Nakasho. Invertible operators on Banach spaces. Formalized Mathematics, 27

(2):107–115, 2019. doi:10.2478/forma-2019-0012.
[6] Kazuhisa Nakasho, Yuichi Futa, and Yasunari Shidama. Implicit function theorem. Part

I. Formalized Mathematics, 25(4):269–281, 2017. doi:10.1515/forma-2017-0026.

https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-015-9345-1
http://fm.mizar.org/2004-12/pdf12-3/ndiff_1.pdf
http://fm.mizar.org/2004-12/pdf12-3/ndiff_1.pdf
http://dx.doi.org/10.2478/forma-2019-0012
http://dx.doi.org/10.1515/forma-2017-0026


Implicit function theorem. Part II 131

[7] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on
normed linear spaces. Formalized Mathematics, 12(3):269–275, 2004.

[8] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family
of real linear spaces. Formalized Mathematics, 19(1):51–59, 2011. doi:10.2478/v10037-
011-0009-2.

[9] Hideki Sakurai, Hiroyuki Okazaki, and Yasunari Shidama. Banach’s continuous inver-
se theorem and closed graph theorem. Formalized Mathematics, 20(4):271–274, 2012.
doi:10.2478/v10037-012-0032-y.
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