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Invertible Operators on Banach Spaces

Kazuhisa Nakasho
Yamaguchi University
Yamaguchi, Japan

Summary. In this article, using the Mizar system [2], [1], we discuss inver-
tible operators on Banach spaces. In the first chapter, we formalized the theorem
that denotes any operators that are close enough to an invertible operator are
also invertible by using the property of Neumann series.

In the second chapter, we formalized the continuity of an isomorphism that
maps an invertible operator on Banach spaces to its inverse. These results are
used in the proof of the implicit function theorem. We referred to [3], [10], [6],
[7] in this formalization.
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1. Neumann Series and Invertible Operator

From now on X, Y, Z denote non trivial real Banach spaces.
Let X, Y be real normed spaces and u be a point of the real norm space of

bounded linear operators from X into Y. We say that u is invertible if and only
if

(Def. 1) u is one-to-one and rng u = the carrier of Y and u−1 is a point of the real
norm space of bounded linear operators from Y into X.

Assume u is invertible. The functor Inv u yielding a point of the real norm
space of bounded linear operators from Y into X is defined by the term

(Def. 2) u−1.
c© 2019 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)107

https://content.sciendo.com/view/journals/forma/forma-overview.xml
https://orcid.org/0000-0003-1110-4342
http://zbmath.org/classification/?q=cc:47A05
http://zbmath.org/classification/?q=cc:47J07
http://zbmath.org/classification/?q=cc:68T99
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/lopban13.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


108 kazuhisa nakasho

Now we state the propositions:

(1) Let us consider a real normed space X, a sequence s6 of X, and a natural
number k. Then ‖((

∑κ
α=0 s6(α))κ∈N)(k)‖ ¬ ((

∑κ
α=0‖s6‖(α))κ∈N)(k).

Proof: Define P[natural number] ≡ ‖((
∑κ
α=0 s6(α))κ∈N)($1)‖ ¬

((
∑κ
α=0‖s6‖(α))κ∈N)($1). For every natural number k, P[k]. �

(2) Let us consider a real Banach space X, and a sequence s of X. Suppose
s is norm-summable. Then ‖

∑
s‖ ¬

∑
‖s‖. The theorem is a consequence

of (1).

(3) Let us consider a Banach algebra, and a point z of X. Suppose ‖z‖ < 1.
Then

(i) (zκ)κ∈N is norm-summable, and

(ii) ‖
∑

(zκ)κ∈N‖ ¬ 1
1−‖z‖ .

Proof: For every natural number n, 0 ¬ ‖(zκ)κ∈N‖(n) ¬ ((‖z‖κ)κ∈N)(n).
‖
∑

(zκ)κ∈N‖ ¬
∑
‖(zκ)κ∈N‖. �

(4) Let us consider a Banach algebra, and a point w of S. Suppose ‖w‖ < 1.
Then

(i) 1S + w is invertible, and

(ii) ((−w)κ)κ∈N is norm-summable, and

(iii) (1S + w)−1 =
∑

((−w)κ)κ∈N, and

(iv) ‖(1S + w)−1‖ ¬ 1
1−‖w‖ .

The theorem is a consequence of (3).

(5) Let us consider a non trivial real Banach space X, Lipschitzian linear
operators v1, v2 fromX intoX, points w1, w2 of NormedAlgebraOfBounded-
LinearOpersR(X), and a real number a. Suppose v1 = w1 and v2 = w2.
Then

(i) v1 · v2 = w1 · w2, and

(ii) v1 + v2 = w1 + w2, and

(iii) a · v1 = a · w1.

Proof: Reconsider z1 = w1, z3 = w2 as a point of the real norm space
of bounded linear operators from X into X. Reconsider z2 = z1 + z3 as
a point of the real norm space of bounded linear operators from X into X.
For every object s such that s ∈ dom(v1 + v2) holds (v1 + v2)(s) = z2(s).
Reconsider z2 = a · z1 as a point of the real norm space of bounded linear
operators from X into X. For every object s such that s ∈ dom(a · v1)
holds (a · v1)(s) = z2(s). �
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(6) Let us consider a non trivial real Banach space X, points v1, v2 of the re-
al norm space of bounded linear operators from X into X, points w1, w2 of
NormedAlgebraOfBoundedLinearOpersR(X), and a real number a. Sup-
pose v1 = w1 and v2 = w2. Then

(i) v1 + v2 = w1 + w2, and

(ii) a · v1 = a · w1.

(7) Let us consider a non trivial real Banach space X, points v1, v2 of the real
norm space of bounded linear operators from X into X, and points w1, w2
of NormedAlgebraOfBoundedLinearOpersR(X). If v1 = w1 and v2 = w2,
then v1 · v2 = w1 · w2.

(8) Let us consider a non trivial real Banach space X, a point v of the real
norm space of bounded linear operators from X into X, and a point w of
NormedAlgebraOfBoundedLinearOpersR(X). Suppose v = w. Then

(i) v is invertible iff w is invertible, and

(ii) if w is invertible, then v−1 = w−1.

Proof: If v is invertible, then w is invertible. If w is invertible, then v is
invertible and v−1 = w−1. �

(9) Let us consider points v, I of the real norm space of bounded linear
operators from X into X. Suppose I = idX and ‖v‖ < 1. Then

(i) I + v is invertible, and

(ii) ‖Inv I + v‖ ¬ 1
1−‖v‖ , and

(iii) there exists a point w of NormedAlgebraOfBoundedLinearOpersR(X)
such that w = v and ((−w)κ)κ∈N is norm-summable and Inv I + v =∑

((−w)κ)κ∈N.

The theorem is a consequence of (4) and (8).

(10) Let us consider real normed spaces X, Y, Z, W , a point f of the real
norm space of bounded linear operators from X into Y, a point g of the real
norm space of bounded linear operators from Y into Z, and a point h of
the real norm space of bounded linear operators from Z into W . Then
h · (g · f) = (h · g) · f .

(11) Let us consider real normed spaces X, Y, and a point f of the real norm
space of bounded linear operators from X into Y. Suppose f is one-to-one
and rng f = the carrier of Y. Then

(i) f−1 · f = idX , and

(ii) f · (f−1) = idY .
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(12) Let us consider a point u of the real norm space of bounded linear ope-
rators from X into Y. Suppose u is invertible. Then

(i) 0 < ‖u‖, and

(ii) 0 < ‖Inv u‖.

(13) Let us consider points u, v of the real norm space of bounded linear
operators from X into Y. Suppose u is invertible and ‖v‖ < 1

‖Inv u‖ . Then

(i) u+ v is invertible, and

(ii) ‖Inv u+ v‖ ¬ 1
1

‖Inv u‖−‖v‖
, and

(iii) there exists a point w of NormedAlgebraOfBoundedLinearOpersR(X)
and there exist points s, I of the real norm space of bounded linear
operators from X into X such that w = (Inv u) · v and s = w and
I = idX and ‖s‖ < 1 and ((−w)κ)κ∈N is norm-summable and I + s

is invertible and ‖Inv I + s‖ ¬ 1
1−‖s‖ and Inv I + s =

∑
((−w)κ)κ∈N

and Inv u+ v = (Inv I + s) · (Inv u).

Proof: Reconsider I = idX as a point of the real norm space of bounded
linear operators from X into X. Reconsider u1 = (Inv u) · v as a point of
the real norm space of bounded linear operators from X into X. ‖Inv u‖ 6=
0 by [9, (2)]. I + u1 is invertible and ‖Inv I + u1‖ ¬ 1

1−‖u1‖ and there
exists a point w of NormedAlgebraOfBoundedLinearOpersR(X) such that
w = u1 and ((−w)κ)κ∈N is norm-summable and Inv I+u1 =

∑
((−w)κ)κ∈N.

For every element x of the carrier of X, (u + v)(x) = (u · (I + u1))(x).
PartFuncs((I + u1)−1, X,X) = PartFuncs(Inv I + u1, X,X). Consider w
being a point of NormedAlgebraOfBoundedLinearOpersR(X) such that
w = u1 and ((−w)κ)κ∈N is norm-summable and Inv I+u1 =

∑
((−w)κ)κ∈N.

�

(14) Let us consider a subset S of the real norm space of bounded linear
operators from X into Y. Suppose S = {v, where v is a point of the real
norm space of bounded linear operators from X into Y : v is invertible}.
Then S is open.
Proof: Set P = the real norm space of bounded linear operators from X

into Y. For every point u of P such that u ∈ S there exists a real number
r such that r > 0 and Ball(u, r) ⊆ S by (12), [4, (17)], (13). �

Let us consider X and Y. The functor InvertOpers(X,Y ) yielding an open
subset of the real norm space of bounded linear operators from X into Y is
defined by the term

(Def. 3) {v, where v is a point of the real norm space of bounded linear operators
from X into Y : v is invertible}.
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Now we state the propositions:

(15) Let us consider a point u of the real norm space of bounded linear ope-
rators from X into Y. Suppose u is invertible. Then

(i) Inv u is invertible, and

(ii) Inv Inv u = u.

(16) There exists a function I from InvertOpers(X,Y ) into InvertOpers(Y,X)
such that

(i) I is one-to-one and onto, and

(ii) for every point u of the real norm space of bounded linear operators
from X into Y such that u ∈ InvertOpers(X,Y ) holds I(u) = Inv u.

Proof: Set S = the real norm space of bounded linear operators from X

into Y. DefineQ[object, object] ≡ there exists a point u of S such that $1 =
u and $2 = Inv u. For every object x such that x ∈ InvertOpers(X,Y ) there
exists an object y such that y ∈ InvertOpers(Y,X) and Q[x, y]. Consider I
being a function from InvertOpers(X,Y ) into InvertOpers(Y,X) such that
for every object x such that x ∈ InvertOpers(X,Y ) holds Q[x, I(x)]. For
every point u of S such that u ∈ InvertOpers(X,Y ) holds I(u) = Inv u. If
InvertOpers(X,Y ) 6= ∅, then InvertOpers(Y,X) 6= ∅. For every objects x1,
x2 such that x1, x2 ∈ InvertOpers(X,Y ) and I(x1) = I(x2) holds x1 = x2.
�

(17) Let us consider points u, v of the real norm space of bounded linear
operators from X into Y. Suppose u is invertible and ‖v − u‖ < 1

‖Inv u‖ .
Then

(i) v is invertible, and

(ii) ‖Inv v‖ ¬ 1
1

‖Inv u‖−‖v−u‖
, and

(iii) there exists a point w of NormedAlgebraOfBoundedLinearOpersR(X)
and there exist points s, I of the real norm space of bounded linear
operators from X into X such that w = (Inv u)·(v−u) and s = w and
I = idX and ‖s‖ < 1 and ((−w)κ)κ∈N is norm-summable and I + s

is invertible and ‖Inv I + s‖ ¬ 1
1−‖s‖ and Inv I + s =

∑
((−w)κ)κ∈N

and Inv v = (Inv I + s) · (Inv u).

The theorem is a consequence of (13).
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2. Isomorphic Mapping to Inverse Operators

Now we state the propositions:

(18) Let us consider real normed spaces X, Y, Z, a point u of the real norm
space of bounded linear operators from X into Y, a point v of the real
norm space of bounded linear operators from Y into Z, and a point w of
the real norm space of bounded linear operators from X into Z. Suppose
w = v · u. Then ‖w‖ ¬ ‖v‖ · ‖u‖.

(19) Let us consider real normed spaces X, Y, Z, points u, v of the real norm
space of bounded linear operators from X into Y, and a point w of the real
norm space of bounded linear operators from Y into Z. Then

(i) w · (u− v) = w · u− w · v, and

(ii) w · (u+ v) = w · u+ w · v.

Proof: For every point x of X, (w · (u− v))(x) = (w · u)(x)− (w · v)(x).
For every point x of X, (w · (u+ v))(x) = (w · u)(x) + (w · v)(x). �

(20) Let us consider real normed spaces X, Y, Z, a point w of the real norm
space of bounded linear operators from X into Y, and points u, v of the real
norm space of bounded linear operators from Y into Z. Then

(i) (u− v) · w = u · w − v · w, and

(ii) (u+ v) · w = u · w + v · w.

Proof: For every point x of X, ((u− v) ·w)(x) = (u ·w)(x)− (v ·w)(x).
For every point x of X, ((u+ v) · w)(x) = (u · w)(x) + (v · w)(x). �

(21) Let us consider real normed spaces X, Y, and points u, v of the real norm
space of bounded linear operators from X into Y. Then u− (u+ v) = −v.

(22) Let us consider real normed spaces X, Y, and a point u of the real norm
space of bounded linear operators from X into Y. Suppose u is invertible.
Then

(i) (Inv u) · u = idX , and

(ii) u · (Inv u) = idY .

(23) Let us consider a point u of the real norm space of bounded linear opera-
tors from X into Y. Suppose u is invertible. Let us consider a real number
r. Suppose 0 < r. Then there exists a real number s such that

(i) 0 < s, and

(ii) for every point v of the real norm space of bounded linear operators
from X into Y such that ‖v − u‖ < s holds ‖Inv v − Inv u‖ < r.

The theorem is a consequence of (12), (17), (20), (18), (22), (19), and (21).
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(24) Let us consider a partial function I from the real norm space of bounded
linear operators from X into Y to the real norm space of bounded linear
operators from Y into X.

Suppose dom I = InvertOpers(X,Y ) and for every point u of the re-
al norm space of bounded linear operators from X into Y such that
u ∈ InvertOpers(X,Y ) holds I(u) = Inv u. Then I is continuous on
InvertOpers(X,Y ). The theorem is a consequence of (23).

(25) There exists a partial function I from the real norm space of bounded
linear operators from X into Y to the real norm space of bounded linear
operators from Y into X such that

(i) dom I = InvertOpers(X,Y ), and

(ii) rng I = InvertOpers(Y,X), and

(iii) I is one-to-one and continuous on InvertOpers(X,Y ), and

(iv) there exists a partial function J from the real norm space of bounded
linear operators from Y into X to the real norm space of bounded
linear operators from X into Y such that J = I−1 and J is one-to-one
and domJ = InvertOpers(Y,X) and rng J = InvertOpers(X,Y ) and
J is continuous on InvertOpers(Y,X), and

(v) for every point u of the real norm space of bounded linear operators
from X into Y such that u ∈ InvertOpers(X,Y ) holds I(u) = Inv u.

Proof: Consider J being a function from InvertOpers(X,Y ) into Invert-
Opers(Y,X) such that J is one-to-one and onto and for every point u of
the real norm space of bounded linear operators from X into Y such that
u ∈ InvertOpers(X,Y ) holds J(u) = Inv u. If InvertOpers(X,Y ) 6= ∅,
then InvertOpers(Y,X) 6= ∅. Reconsider L = J−1 as a function from
InvertOpers(Y,X) into InvertOpers(X,Y ). For every point v of the real
norm space of bounded linear operators from Y into X such that v ∈
InvertOpers(Y,X) holds L(v) = Inv v. �

Let us consider real normed spaces X, Y, Z, a point u of the real norm space
of bounded linear operators from X into Y, and a point w of the real norm space
of bounded linear operators from Y into Z. Now we state the propositions:

(26) (i) w · (−u) = −w · u, and

(ii) (−w) · u = −w · u.
Proof: For every point x of X, (w · (−u))(x) = (−1) · (w ·u)(x). For every
point x of X, ((−w) · u)(x) = (−1) · (w · u)(x). �

(27) (−w) · (−u) = w · u. The theorem is a consequence of (26).

(28) Let us consider real normed spaces X, Y, Z, a point u of the real norm
space of bounded linear operators from X into Y, a point w of the real
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norm space of bounded linear operators from Y into Z, and a real number
r. Then

(i) w · (r · u) = (r · w) · u, and

(ii) r · w · u = r · w · u, and

(iii) (r · w) · u = r · (w · u).

Proof: For every point x of X, (w · (r · u))(x) = r · (w · u)(x). For every
point x of X, (r · w · u)(x) = r · (w · u)(x). �

(29) Let us consider real normed spaces X, Y, Z. Then there exists a bilinear
operator I from the real norm space of bounded linear operators from X

into Y × the real norm space of bounded linear operators from Y into Z
into the real norm space of bounded linear operators from X into Z such
that

(i) I is continuous on the carrier of (the real norm space of bounded
linear operators from X into Y )× (the real norm space of bounded
linear operators from Y into Z), and

(ii) for every point u of the real norm space of bounded linear operators
from X into Y and for every point v of the real norm space of bounded
linear operators from Y into Z, I(u, v) = v · u.

Proof: Set E = the real norm space of bounded linear operators from
X into Y. Set F = the real norm space of bounded linear operators from
Y into Z. Set G = the real norm space of bounded linear operators from
X into Z. Define Q[object, object] ≡ there exists a point u of E and there
exists a point v of F such that $1 = 〈〈u, v〉〉 and $2 = v ·u. For every object
x such that x ∈ the carrier of E × F there exists an object y such that
y ∈ the carrier of G and Q[x, y] by [5, (18)]. Consider L being a function
from the carrier of E × F into the carrier of G such that for every object
x such that x ∈ the carrier of E × F holds Q[x, L(x)].

For every point u of the real norm space of bounded linear operators
from X into Y and for every point v of the real norm space of bounded
linear operators from Y into Z, L(u, v) = v · u. For every points x1, x2
of E and for every point y of F , L(x1 + x2, y) = L(x1, y) + L(x2, y). For
every point x of E and for every point y of F and for every real number a,
L(a ·x, y) = a ·L(x, y). For every point x of E and for every points y1, y2 of
F , L(x, y1+y2) = L(x, y1)+L(x, y2). For every point x of E and for every
point y of F and for every real number a, L(x, a·y) = a·L(x, y). Set K = 1.
For every point x of E and for every point y of F , ‖L(x, y)‖ ¬ K ·‖x‖·‖y‖.
�
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Let us consider real normed spaces X, Y, a Lipschitzian linear operator v
from X into Y, a point w of the real norm space of bounded linear operators
from X into Y, and a real number a. Now we state the propositions:

(30) If v = w, then a · w = a · v.
Proof: For every object s such that s ∈ dom(a · v) holds (a · v)(s) =
(a · w)(s) by [8, (36)]. �

(31) If v = w, then −w = −v. The theorem is a consequence of (30).
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