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Isomorphisms from the Space of Multilinear
Operators
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Summary. In this article, using the Mizar system [5], [2], the isomorphisms
from the space of multilinear operators are discussed. In the first chapter, two
isomorphisms are formalized. The former isomorphism shows the correspondence
between the space of multilinear operators and the space of bilinear operators.

The latter shows the correspondence between the space of multilinear ope-
rators and the space of the composition of linear operators. In the last chapter,
the above isomorphisms are extended to isometric mappings between the normed
spaces. We referred to [6], [11], [9], [3], [10] in this formalization.
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1. Plain Isomorphisms
from the Space of Multilinear Operators

From now on X, Y, Z, E, F , G, S, T denote real linear spaces.
Let G be a real linear space sequence. Note that

∏
G is constituted finite

sequences. Now we state the propositions:

(1) Let us consider an element s of
∏
〈E,F 〉, an element i of dom〈E,F 〉, and

an object x1. Then len(s+· (i, x1)) = 2.

(2) Let us consider a real linear space sequence G, an element i of domG,
an element x of

∏
G, and an element r of G(i). Then (reproj(i, x))(r) =

x+· (i, r).
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Let X, Y be real linear spaces. The functor IsoCPRLSP(X,Y ) yielding a li-
near operator from X × Y into

∏
〈X,Y 〉 is defined by

(Def. 1) for every point x of X and for every point y of Y, it(x, y) = 〈x, y〉.
Now we state the proposition:

(3) Let us consider real linear spacesX, Y. Then 0∏〈X,Y 〉 = (IsoCPRLSP(X,
Y ))(0X×Y ).

Let X, Y be real linear spaces. One can check that IsoCPRLSP(X,Y ) is
bijective and there exists a linear operator from X × Y into

∏
〈X,Y 〉 which is

bijective. Now we state the proposition:

(4) Let us consider a linear operator I from S into T . Suppose I is bijective.
Then there exists a linear operator J from T into S such that

(i) J = I−1, and

(ii) J is bijective.

Proof: Reconsider J = I−1 as a function from T into S. For every points
v, w of T , J(v + w) = J(v) + J(w). For every point v of T and for every
real number r, J(r · v) = r · J(v). �

Let X, Y be real linear spaces and f be a bijective linear operator from X×
Y into

∏
〈X,Y 〉. One can verify that the functor f−1 yields a linear operator

from
∏
〈X,Y 〉 intoX×Y. One can check that f−1 is bijective as a linear operator

from
∏
〈X,Y 〉 into X × Y and there exists a linear operator from

∏
〈X,Y 〉 into

X × Y which is bijective. Now we state the propositions:

(5) Let us consider real linear spaces X, Y, a point x of X, and a point y of
Y. Then ((IsoCPRLSP(X,Y ))−1)(〈x, y〉) = 〈〈x, y〉〉.

(6) Let us consider real linear spaces X, Y. Then ((IsoCPRLSP(X,Y ))−1)
(0∏〈X,Y 〉) = 0X×Y . The theorem is a consequence of (3).

(7) Let us consider a multilinear operator u from 〈E,F 〉 into G. Then u ·
(IsoCPRLSP(E,F )) is a bilinear operator from E × F into G.
Proof: Reconsider L = u · (IsoCPRLSP(E,F )) as a function from E×F
into G. For every points x1, x2 of E and for every point y of F , L(x1 +
x2, y) = L(x1, y)+L(x2, y). For every point x of E and for every point y of
F and for every real number a, L(a ·x, y) = a ·L(x, y). For every point x of
E and for every points y1, y2 of F , L(x, y1+ y2) = L(x, y1) +L(x, y2). For
every point x of E and for every point y of F and for every real number
a, L(x, a · y) = a · L(x, y) by [1, (31)]. �

(8) Let us consider a bilinear operator u from E × F into G. Then u ·
((IsoCPRLSP(E,F ))−1) is a multilinear operator from 〈E,F 〉 into G.
Proof: Reconsider M = u · ((IsoCPRLSP(E,F ))−1) as a function from∏
〈E,F 〉 into G. For every element i of dom〈E,F 〉 and for every element
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s of
∏
〈E,F 〉, M · (reproj(i, s)) is a linear operator from 〈E,F 〉(i) into G.

�

(9) There exists a linear operator I from VectorSpaceOfBilinOpersR(X,Y, Z)
into VectorSpaceOfMultOpersR(〈X,Y 〉, Z) such that

(i) I is bijective, and

(ii) for every point u of VectorSpaceOfBilinOpersR(X,Y, Z), I(u) = u ·
((IsoCPRLSP(X,Y ))−1).

Proof: Set F1 = the carrier of VectorSpaceOfBilinOpersR(X,Y, Z). Set
F2 = the carrier of VectorSpaceOfMultOpersR(〈X,Y 〉, Z).
Define P[function, function] ≡ $2 = $1·((IsoCPRLSP(X,Y ))−1). For every
element x of F1, there exists an element y of F2 such that P[x, y]. Consider
I being a function from F1 into F2 such that for every element x of F1,
P[x, I(x)]. For every objects x1, x2 such that x1, x2 ∈ F1 and I(x1) =
I(x2) holds x1 = x2. For every object y such that y ∈ F2 there exists
an object x such that x ∈ F1 and y = I(x). For every points x, y of
VectorSpaceOfBilinOpersR(X,Y, Z), I(x + y) = I(x) + I(y). For every
point x of VectorSpaceOfBilinOpersR(X,Y, Z) and for every real number
a, I(a · x) = a · I(x). �

(10) There exists a linear operator I from VectorSpaceOfLinearOpersR(X,
VectorSpaceOfLinearOpersR(Y, Z)) into VectorSpaceOfMultOpersR(〈X,Y 〉,
Z) such that

(i) I is bijective, and

(ii) for every point u of VectorSpaceOfLinearOpersR(X,VectorSpaceOf-
LinearOpersR(Y,Z)) and for every point x of X and for every point
y of Y, I(u)(〈x, y〉) = u(x)(y).

The theorem is a consequence of (9) and (5).

2. Extensions to Isometric Isomorphism
from the Normed Space of Multilinear Operators

In the sequel X, Y, Z, E, F , G denote real normed spaces and S, T denote
real norm space sequences. Now we state the propositions:

(11) Let us consider a point s of
∏
〈E,F 〉, an element i of dom〈E,F 〉, and

an object x1. Then len(s+· (i, x1)) = 2.

(12) Let us consider a Lipschitzian multilinear operator u from 〈E,F 〉 into
G. Then u · (IsoCPNrSP(E,F )) is a Lipschitzian bilinear operator from E
× F into G.
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Proof: Reconsider L = u · (IsoCPNrSP(E,F )) as a function from E × F
into G. For every points x1, x2 of E and for every point y of F , L(x1 +
x2, y) = L(x1, y)+L(x2, y). For every point x of E and for every point y of
F and for every real number a, L(a ·x, y) = a ·L(x, y). For every point x of
E and for every points y1, y2 of F , L(x, y1+ y2) = L(x, y1) +L(x, y2). For
every point x of E and for every point y of F and for every real number a,
L(x, a ·y) = a ·L(x, y). There exists a real number K such that 0 ¬ K and
for every vector x of E and for every vector y of F , ‖L(x, y)‖ ¬ K ·‖x‖·‖y‖.
�

(13) Let us consider a Lipschitzian bilinear operator u from E × F into G.
Then u · ((IsoCPNrSP(E,F ))−1) is a Lipschitzian multilinear operator
from 〈E,F 〉 into G.
Proof: Reconsider M = u · ((IsoCPNrSP(E,F ))−1) as a function from∏
〈E,F 〉 into G. For every element i of dom〈E,F 〉 and for every element
s of
∏
〈E,F 〉, M · (reproj(i, s)) is a linear operator from 〈E,F 〉(i) into G.

There exists a real number K such that 0 ¬ K and for every point s of∏
〈E,F 〉, ‖M(s)‖ ¬ K · (NrProduct s). �

(14) There exists a linear operator I from NormSpaceOfBoundedBilinOpersR
(X,Y, Z) into NormSpaceOfBoundedMultOpersR(〈X,Y 〉, Z) such that

(i) I is bijective and isometric, and

(ii) for every point u of NormSpaceOfBoundedBilinOpersR(X,Y, Z), I(u)

= u · ((IsoCPNrSP(X,Y ))−1).

Proof: Set F1 = the carrier of NormSpaceOfBoundedBilinOpersR(X,Y,
Z). Set F2 = the carrier of NormSpaceOfBoundedMultOpersR(〈X,Y 〉, Z).
Define P[function, function] ≡ $2 = $1 ·((IsoCPNrSP(X,Y ))−1). For every
element x of F1, there exists an element y of F2 such that P[x, y]. Consider
I being a function from F1 into F2 such that for every element x of F1,
P[x, I(x)]. For every objects x1, x2 such that x1, x2 ∈ F1 and I(x1) =
I(x2) holds x1 = x2. For every object y such that y ∈ F2 there exists
an object x such that x ∈ F1 and y = I(x). For every points x, y of
NormSpaceOfBoundedBilinOpersR(X,Y, Z), I(x + y) = I(x) + I(y). For
every point x of NormSpaceOfBoundedBilinOpersR(X,Y, Z) and for every
real number a, I(a · x) = a · I(x) by [8, (19)], [4, (18)], [7, (20)]. For every
element u of NormSpaceOfBoundedBilinOpersR(X,Y, Z), ‖I(u)‖ = ‖u‖.
�

(15) There exists a linear operator I from the real norm space of bounded
linear operators from X into the real norm space of bounded linear ope-
rators from Y into Z into NormSpaceOfBoundedMultOpersR(〈X,Y 〉, Z)
such that
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(i) I is bijective and isometric, and

(ii) for every point u of the real norm space of bounded linear operators
from X into the real norm space of bounded linear operators from Y
into Z, ‖u‖ = ‖I(u)‖ and for every point x of X and for every point
y of Y, I(u)(〈x, y〉) = u(x)(y).

Proof: Consider I being a linear operator from the real norm space of bo-
unded linear operators from X into the real norm space of bounded linear
operators from Y into Z into NormSpaceOfBoundedBilinOpersR(X,Y, Z)
such that I is bijective and for every point u of the real norm space of
bounded linear operators from X into the real norm space of bounded
linear operators from Y into Z, ‖u‖ = ‖I(u)‖ and for every point x of
X and for every point y of Y, I(u)(x, y) = u(x)(y). Consider J being
a linear operator from NormSpaceOfBoundedBilinOpersR(X,Y, Z) into
NormSpaceOfBoundedMultOpersR(〈X,Y 〉, Z) such that J is bijective and
isometric and for every point u of NormSpaceOfBoundedBilinOpersR(X,Y,
Z), J(u) = u · ((IsoCPNrSP(X,Y ))−1).

Reconsider K = J · I as a linear operator from the real norm space of
bounded linear operators from X into the real norm space of bounded li-
near operators from Y into Z into NormSpaceOfBoundedMultOpersR(〈X,
Y 〉, Z). For every element x of the real norm space of bounded linear ope-
rators from X into the real norm space of bounded linear operators from
Y into Z, ‖K(x)‖ = ‖x‖. �

(16) Let us consider real norm space sequences X, Y, and a real normed space
Z. Then there exists a linear operator I from the real norm space of boun-
ded linear operators from

∏
X into the real norm space of bounded linear

operators from
∏
Y into Z into NormSpaceOfBoundedMultOpersR(〈

∏
X,∏

Y 〉, Z) such that

(i) I is bijective and isometric, and

(ii) for every point u of the real norm space of bounded linear operators
from

∏
X into the real norm space of bounded linear operators from∏

Y into Z, ‖u‖ = ‖I(u)‖ and for every point x of
∏
X and for every

point y of
∏
Y, I(u)(〈x, y〉) = u(x)(y).
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