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Summary. This article is the final step of our attempts to formalize the
negative solution of Hilbert’s tenth problem.

In our approach, we work with the Pell’s Equation defined in [2]. We analyzed
this equation in the general case to show its solvability as well as the cardinality
and shape of all possible solutions. Then we focus on a special case of the equ-
ation, which has the form x2 − (a2 − 1)y2 = 1 [8] and its solutions considered as
two sequences {xi(a)}∞i=0, {yi(a)}∞i=0. We showed in [1] that the n-th element of
these sequences can be obtained from lists of several basic Diophantine relations
as linear equations, finite products, congruences and inequalities, or more preci-
sely that the equation x = yi(a) is Diophantine. Following the post-Matiyasevich
results we show that the equality determined by the value of the power func-
tion y = xz is Diophantine, and analogously property in cases of the binomial
coefficient, factorial and several product [9].

In this article, we combine analyzed so far Diophantine relation using con-
junctions, alternatives as well as substitution to prove the bounded quantifier
theorem. Based on this theorem we prove MDPR-theorem that every recursive-
ly enumerable set is Diophantine, where recursively enumerable sets have been
defined by the Martin Davis normal form.

The formalization by means of Mizar system [5], [7], [4] follows [10], Z. Ada-
mowicz, P. Zbierski [3] as well as M. Davis [6].
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1. Preliminaries

From now on i, j, n, n1, n2, m, k, l, u denote natural numbers, i1, i2, i3, i4,
i5, i6 denote elements of n, p, q denote n-element finite 0-sequences of N, and
a, b, c, d, e, f denote integers.

Let n be a natural number. Let us note that idseq(n) is Z-valued.
Let x be an n-element, natural-valued finite 0-sequence and p be a Z-valued

polynomial of n,RF. One can check that eval(p,@x) is integer.
Now we state the proposition:

(1) Let us consider a Z-valued polynomial p of n,RF, and n-element finite
0-sequences x, y of N. Suppose k 6= 0 and for every i such that i ∈ n holds
k | x(i)−y(i). Then k | (eval(p,@x) qua integer)−(eval(p,@y) qua integer).
Proof: Reconsider f1 = RF as a field. Reconsider p1 = p as a polynomial
of n,f1. Reconsider x2 = @x, y2 = @y as a function from n into the carrier
of f1. Set s3 = SgmX(BagOrdern, Support p1). Consider X being a finite
sequence of elements of the carrier of f1 such that lenX = len s3 and
eval(p1, x2) =

∑
X and for every element i of N such that 1 ¬ i ¬ lenX

holds X/i = p1 · s3/i · (eval(s3/i, x2)).
Consider Y being a finite sequence of elements of the carrier of f1 such

that lenY = len s3 and eval(p1, y2) =
∑
Y and for every element i of N

such that 1 ¬ i ¬ lenY holds Y/i = p1 · s3/i · (eval(s3/i, y2)). Reconsider
Y2 = Y, X4 = X as a finite sequence of elements of R. Define P[natural
number] ≡ if $1 ¬ lenX, then

∑
(X4�$1)−

∑
(Y2�$1) is an integer and for

every integer d such that d =
∑

(X4�$1)−
∑

(Y2�$1) holds k | d. For every
natural number i such that P[i] holds P[i+ 1]. P[i]. �

Let f be a Z-valued function. Let us note that −f is Z-valued.
The scheme SCH1 deals with a binary predicate P and a finite-0-sequence-

yielding finite 0-sequence f and states that

(Sch. 1) {f(i)(j), where i, j are natural numbers : P[i, j]} is finite.

Now we state the propositions:

(2) If m ­ n > 0, then 1 +m! · (idseq(n)) is a CR-sequence.
Proof: Set h = 1+m!·(idseq(n)). Define F(natural number) =m!·$1+1.
For every i such that i ∈ domh holds h(i) = F(i). h is positive yielding.
For every natural numbers i, j such that i, j ∈ domh and i < j holds h(i)
and h(j) are relatively prime. h is Chinese remainder. �

(3) Let us consider a prime number p, and a finite sequence f of elements
of N. Suppose f is positive yielding and p |

∏
f . Then there exists i such

that

(i) i ∈ dom f , and
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(ii) p | f(i).
Proof: Define P[natural number] ≡ for every finite sequence f of elements
of N such that len f = $1 and f is positive yielding and p |

∏
f there exists

i such that i ∈ dom f and p | f(i). P[0]. If P[n], then P[n+ 1]. P[n]. �

2. Selected Operations on Polynomials

Let n be a set and p be a series of n, RF. The functor |p| yielding a series of
n, RF is defined by

(Def. 1) for every bag b of n, it(b) = |p(b)|.
Now we state the proposition:

(4) Let us consider a set n, and a series p of n, RF. Then Support p =
Support |p|.

Let n be an ordinal number and p be a polynomial of n,RF. Let us note that
|p| is finite-Support.

Let n be a set, S be a non empty zero structure, and p be a finite-Support
series of n, S. One can check that Support p is finite.

Let n be an ordinal number, L be an add-associative, right zeroed, right
complementable, non empty additive loop structure, and p be a polynomial of
n,L. The functor

∑
coeff(p) yielding an element of L is defined by the term

(Def. 2)
∑
p · (SgmX(BagOrdern, Support p)).

The functor degree(p) yielding a natural number is defined by

(Def. 3) (i) there exists a bag s of n such that s ∈ Support p and it = degree(s)
and for every bag s1 of n such that s1 ∈ Support p holds degree(s1) ¬
it , if p 6= 0nL,

(ii) it = 0, otherwise.

Now we state the propositions:

(5) Let us consider an ordinal number n, and a bag b of n. Then degree(b) =∑
b · (SgmX(⊆n, support b)).

(6) Let us consider an ordinal number n, an add-associative, right zero-
ed, right complementable, non empty additive loop structure L, and
a polynomial p of n,L. Then degree(p) = 0 if and only if Support p ⊆
{EmptyBag n}.
Proof: If degree(p) = 0, then Support p ⊆ {EmptyBag n}. Consider s
being a bag of n such that s ∈ Support p and degree(p) = degree(s). �

(7) Let us consider an ordinal number n, an add-associative, right zeroed,
right complementable, non empty additive loop structure L, a polynomial
p of n,L, and a bag b of n. If b ∈ Support p, then degree(p) ­ degree(b).
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(8) Let us consider an ordinal number n, and a polynomial p of n,RF. If
|p| = 0n(RF), then p = 0n(RF).

Let n be a set. One can verify that |0n(RF)| reduces to 0n(RF). Now we state
the propositions:

(9) Let us consider an ordinal number n, and a polynomial p of n,RF. Then
degree(p) = degree(|p|). The theorem is a consequence of (8) and (4).

(10) Let us consider an ordinal number n, a bag b of n, and a real number
r. Suppose r ­ 1. Let us consider a function x from n into the carrier of
RF. Suppose for every object i such that i ∈ domx holds |x(i)| ¬ r. Then
| eval(b, x)| ¬ rdegree(b).
Proof: Reconsider f1 = RF as a field. Set s2 = SgmX(⊆n, support b). Set
B = b · s2. Consider y being a finite sequence of elements of f1 such that
len y = len s2 and eval(b, x) =

∏
y and for every element i of N such that

1 ¬ i ¬ len y holds y/i = powerRF(x · s2/i, B/i).
Define P[natural number] ≡ if $1 ¬ len y, then

∏
(y�$1) is a real

number and for every real number P such that P =
∏

(y�$1) holds |P | ¬
r
∑
(B�$1). For every i such that P[i] holds P[i+ 1]. For every i, P[i]. �

(11) Let us consider an ordinal number n, a polynomial p of n,RF, and a real
number r. Suppose r ­ 1. Let us consider a function x from n into the car-
rier of RF. Suppose for every object i such that i ∈ domx holds |x(i)| ¬ r.
Then | eval(p, x)| ¬ (

∑
coeff(|p|)) · (rdegree(p)).

Proof: Reconsider f1 = RF as a field. Reconsider p1 = p, A1 = |p| as a po-
lynomial of n,f1. Reconsider x2 = x as a function from n into the carrier
of f1. Set S1 = SgmX(BagOrdern,Support p1). Reconsider H = A1 ·S1 as
a finite sequence of elements of the carrier of RF.

∑
coeff(|p|) =

∑
A1 ·S1.

Consider y being a finite sequence of elements of the carrier of f1 such
that len y = lenS1 and eval(p, x) =

∑
y and for every element i of N

such that 1 ¬ i ¬ len y holds y/i = p1 · S1/i · (eval(S1/i, x2)). Reconsider
Y = y as a finite sequence of elements of R. Define P[natural number] ≡
if $1 ¬ len y, then |

∑
(Y �$1)| ¬ (

∑
(H�$1)) · (rdegree(p)). For every natural

number i such that P[i] holds P[i+ 1]. For every natural number i, P[i].
�

Let n be an ordinal number and p be a Z-valued polynomial of n,RF. Let us
note that |p| is natural-valued and there exists a polynomial of n,RF which is
natural-valued.

Let O be an ordinal number and p be a natural-valued polynomial of O,RF.
Let us observe that

∑
coeff(p) is natural.
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3. Selected Subsets of Zero Based Finite Sequences of N
as Diophantine Sets

The scheme SubsetDioph deals with a natural number n and a 4-ary predicate
P and a set S and states that

(Sch. 2) For every elements i2, i3, i4 of n, {p, where p is an n-element fini-
te 0-sequence of N : for every natural number i such that i ∈ S holds
P[p(i), p(i2), p(i3), p(i4)]} is a Diophantine subset of the n-xtuples of N

provided

• for every elements i1, i2, i3, i4 of n, {p, where p is an n-element finite
0-sequence of N : P[p(i1), p(i2), p(i3), p(i4)]} is a Diophantine subset of
the n-xtuples of N and

• S ⊆ Zn.

Now we state the propositions:

(12) Suppose n1 + n2 ¬ n.
Then {p : p(i1) ­ k·((p(i2)2 + 1) · (

∏
(1 + p�n1�n2)) · (l · p(i3) +m)i·p(i4)+j)}

is a Diophantine subset of the n-xtuples of N.
Proof: Define F0(natural number,natural number, natural number) =
$1
$2 . Define P0[natural number, natural number,natural object,natural

number, natural number,natural number] ≡ 1 ·$1 ­ k ·$3+0. For every i1,
i2, i3, i4, and i5, {p : P0[p(i1), p(i2),F0(p(i3), p(i4), p(i5)), p(i3), p(i4), p(i5)]}
is a Diophantine subset of the n-xtuples of N. Define F1(natural number,
natural number, natural number) = i·$1+j. Define P1[natural number, na-
tural number,natural object, natural number,natural number, natural num-
ber] ≡ $1 ­ k·($2$3). For every i1, i2, i3, i4, and i5, {p : P1[p(i1), p(i2),F1(p
(i3), p(i4), p(i5)), p(i3), p(i4), p(i5)]} is a Diophantine subset of the n-xtuples
of N. Define F2(natural number, natural number,natural number) = 1 ·$1 ·
$2.

Define P2[natural number,natural number,natural object, natural
number,natural number,natural number] ≡ $1 ­ k·($3i·$2+j). For every i1,
i2, i3, i4, and i5, {p : P2[p(i1), p(i2),F2(p(i3), p(i4), p(i5)), p(i3), p(i4), p(i5)]}
is a Diophantine subset of the n-xtuples of N. Define P3[natural number,
natural number,natural object, natural number, natural number,natural
number] ≡ $1 ­ k · ($6 · $3i·$2+j). For every i1, i2, i3, i4, and i5, {p
: P3[p(i1), p(i2),F2(p(i3), p(i4), p(i5)), p(i3), p(i4), p(i5)]} is a Diophantine
subset of the n-xtuples of N. Define F5(natural number,natural number, na-
tural number) = 1·$1+1. Define P5[natural number,natural number,natur-
al object,natural number, natural number, natural number] ≡ $1 ­ k ·
($3 · $5 · $6i·$2+j). For every i1, i2, i3, i4, and i5, {p : P5[p(i1), p(i2),F5(p(i3),



214 karol pąk

p(i4), p(i5)), p(i3), p(i4), p(i5)]} is a Diophantine subset of the n-xtuples
of N. Define G(natural number,natural number, natural number) = l ·
$1+m. DefineR1[natural number, natural number, natural object, natural
number, natural number,natural number] ≡ $1 ­ k·($3 · $5 · ($6 + 1)i·$2+j).
For every i1, i2, i3, i4, and i5, {p :R1[p(i1), p(i2),G(p(i3), p(i4), p(i5)), p(i3),
p(i4), p(i5)]} is a Diophantine subset of the n-xtuples of N.

Define P6[natural number,natural number, natural object,natural
number, natural number, natural number] ≡ $1 ­ k · (($3 + 1) · $5 · (l · $6+
m)i·$2+j). Define F6(natural number,natural number,natural number) =
1·$1 ·$1. For every n, i1, i2, i3, i4, and i5, {p : P6[p(i1), p(i2),F6(p(i3), p(i4),
p(i5)), p(i3), p(i4), p(i5)]} is a Diophantine subset of the n-xtuples of N.
Set X = n + 1. Reconsider N = n, I1 = i1, I2 = i2, I3 = i3, I4 = i4
as an element of X. Define P7[finite 0-sequence of N] ≡ $1(I1) ­ k ·
((1 · $1(I2) · $1(I2) + 1) · $1(N) · (l · $1(I3) +m)i·$1(I4)+j). DefineQ7[finite
0-sequence of N] ≡ $1(N) =

∏
(1 + $1�n1�n2). Set P1 = {p, where p is

an X-element finite 0-sequence of N : P7[p] and Q7[p]}. P1 is a Diophan-
tine subset of the X-xtuples of N. Define S[finite 0-sequence of N] ≡
$1(i1) ­ k·(($1(i2)2 + 1) · (

∏
(1 + $1�n1�n2)) · (l · $1(i3) +m)i·$1(i4)+j). Set

S = {p : S[p]}. S ⊆ the n-xtuples of N. �

(13) Let us consider a Z-valued polynomial P of k,RF, an integer a, a permu-
tation p2 of n, and i1. Suppose k ¬ n. Then {p : for every k-element finite
0-sequence q of N such that q = p · p2�k holds a · p(i1) = eval(P,@q)} is
a Diophantine subset of the n-xtuples of N.

(14) Let us consider a Z-valued polynomial P of k+ 1,RF, an integer a, n, i1,
and i2. Suppose k+ 1 ¬ n and k ∈ i2. Then {p : for every (k+ 1)-element
finite 0-sequence q of N such that q = 〈p(i2)〉 a (p�k) holds a · p(i1) =
eval(P,@q)} is a Diophantine subset of the n-xtuples of N.
Proof: Set k1 = k + 1. Reconsider I5 = idk as a finite 0-sequence. Set
f = 〈i2〉 a I5. Set R = rng f . Consider g being a function such that g
is one-to-one and dom g = n \ k1 and rng g = n \ R. Reconsider f1 =
f+·g as a function from n into n. Define Q[finite 0-sequence of N] ≡
for every k1-element finite 0-sequence q of N such that q = $1 · f1�k1
holds a · $1(i1) = eval(P,@q). Define R[finite 0-sequence of N] ≡ for every
(k + 1)-element finite 0-sequence q of N such that q = 〈$1(i2)〉 a ($1�k)
holds a · $1(i1) = eval(P,@q). For every n-element finite 0-sequence p of N,
Q[p] iff R[p]. {p : Q[p]} = {q : R[q]}. �

(15) Let us consider a Z-valued polynomial P of k+1,RF, n, i1, and i2. Suppose
k+ 1 ¬ n and k ∈ i1. Then {p : for every (k+ 1)-element finite 0-sequence
q of N such that q = 〈p(i1)〉 a (p�k) holds eval(P,@q) ≡ 0 (mod p(i2))} is
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a Diophantine subset of the n-xtuples of N.
Proof: Set k1 = k + 1. Set X = n + 1. Reconsider N = n, I1 = i1,
I2 = i2 as an element of X. Define P[finite 0-sequence of N] ≡ 1 · $1(N) ≡
0 · $1(I1) (mod 1 · $1(I2)). Define O[finite 0-sequence of N] ≡ for every
k1-element finite 0-sequence q of N such that q = 〈$1(I1)〉 a ($1�k) holds
1 · $1(N) = eval(P,@q). Define M[finite 0-sequence of N] ≡ for every k1-
element finite 0-sequence q of N such that q = 〈$1(I1)〉a ($1�k) holds (−1) ·
$1(N) = eval(P,@q). Define Q[finite 0-sequence of N] ≡ O[$1] or M[$1].
{p, where p is an X-element finite 0-sequence of N : O[p]} is a Diophantine
subset of the X-xtuples of N. {p, where p is an X-element finite 0-sequence
of N : M[p]} is a Diophantine subset of the X-xtuples of N. {p, where p
is an X-element finite 0-sequence of N : O[p] or M[p]} is a Diophantine
subset of the X-xtuples of N. Set P1 = {p, where p is an X-element finite
0-sequence of N : P[p] and Q[p]}. P1 is a Diophantine subset of the X-
xtuples of N.

Set P2 = {p�n, where p is an X-element finite 0-sequence of N : p ∈
P1}. Define S[finite 0-sequence of N] ≡ for every k1-element finite 0-
sequence q of N such that q = 〈$1(i1)〉a($1�k) holds eval(P,@q) ≡ 0 (mod $1
(i2)). Set S = {p : S[p]}. S ⊆ P2. P2 ⊆ S. �

4. Bounded Quantifier Theorem and its Variant

Let us consider a Z-valued polynomial p of 2 +n+ k,RF, an n-element finite
0-sequence X of N, and an element x of N. Now we state the propositions:

(16) For every element z of N such that z ¬ x there exists a k-element finite
0-sequence y of N such that eval(p,@((〈z, x〉 a X) a y)) = 0 if and on-
ly if there exists a k-element finite 0-sequence Y of N and there exist
elements Z, e, K of N such that K > x and K ­ (

∑
coeff(|p|)) ·

((x2 + 1) · (
∏

(1 +X)) · edegree(p)) and for every natural number i such that
i ∈ k holds Y (i) > e and e > x and 1+(Z+1)·(K!) =

∏
(1+K!·(idseq(x+

1))) and eval(p,@((〈Z, x〉 a X) a Y )) ≡ 0 (mod 1 + (Z + 1) · (K!)) and for
every natural number i such that i ∈ k holds

∏
(Y (i) + 1 + −idseq(e)) ≡

0 (mod 1 + (Z + 1) · (K!)).
Proof: If for every element z of N such that z ¬ x there exists a k-
element finite 0-sequence y of N such that eval(p,@((〈z, x〉 aX) a y)) = 0,
then there exists a k-element finite 0-sequence Y of N and there exist
elements Z, e, K of N such that K > x and K ­ (

∑
coeff(|p|)) ·

((x2 + 1) · (
∏

(1 +X)) · edegree(p)) and for every natural number i such that
i ∈ k holds Y (i) > e and e > x and 1+(Z+1)·(K!) =

∏
(1+K!·(idseq(x+
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1))) and eval(p,@((〈Z, x〉 a X) a Y )) ≡ 0 (mod 1 + (Z + 1) · (K!)) and for
every natural number i such that i ∈ k holds

∏
(Y (i) + 1 + −idseq(e)) ≡

0 (mod 1 + (Z+ 1) · (K!)). Set K1 = K!. Set z1 = 1+ (z+ 1) ·K1. Consider
p3 being an element of N such that p3 | z1 and p3 ¬ z1 and p3 is prime.
Define P(object) = Y ($1) mod p3.

Consider Y3 being a finite 0-sequence such that lenY3 = k and for
every natural number i such that i ∈ k holds Y3(i) = P(i). rng Y3 ⊆ N.
Reconsider E1 = eval(p,@((〈Z, x〉 a X) a Y )) as an integer. K < p3. For
every i such that i ∈ 2+k+n holds p3 | ((〈Z, x〉aX)aY )(i)−((〈z, x〉aX)a

Y3)(i). p3 | E1 − eval(p,@((〈z, x〉 a X) a Y3)). Consider m being a natural
number such that | eval(p,@((〈z, x〉 aX) a Y3))| = p3 ·m. For every object
i such that i ∈ dom(@((〈z, x〉aX)a Y3)) holds |(@((〈z, x〉aX)a Y3))(i)| ¬
(x2 + 1) · (

∏
(1 +X)) · e. | eval(p,@((〈z, x〉 a X) a Y3))| ¬ (

∑
coeff(|p|)) ·

((x2 + 1) · (
∏

(1 +X)) · edegree(p)). �

(17) For every element z of N such that z ¬ x there exists a k-element finite
0-sequence y of N such that for every i such that i ∈ k holds y(i) ¬
x and eval(p,@((〈z, x〉 a X) a y)) = 0 if and only if there exists a k-
element finite 0-sequence Y of N and there exist elements Z, K of N
such that K > x and K ­ (

∑
coeff(|p|)) · ((x2 + 1) · (

∏
(1 +X))degree(p))

and for every natural number i such that i ∈ k holds Y (i) > x + 1 and
1+(Z+1)·(K!) =

∏
(1+K!·(idseq(x+1))) and eval(p,@((〈Z, x〉aX)aY )) ≡

0 (mod 1 + (Z + 1) · (K!)) and for every natural number i such that i ∈ k
holds

∏
(Y (i) + 1 +−idseq(x+ 1)) ≡ 0 (mod 1 + (Z + 1) · (K!)).

Proof: Set x1 = x+ 1. If for every element z of N such that z ¬ x there
exists a k-element finite 0-sequence y of N such that for every i such that
i ∈ k holds y(i) ¬ x and eval(p,@((〈z, x〉 a X) a y)) = 0, then there exists
a k-element finite 0-sequence Y of N and there exist elements Z, K of N
such that K > x and K ­ (

∑
coeff(|p|)) · ((x2 + 1) · (

∏
(1 +X))degree(p))

and for every natural number i such that i ∈ k holds Y (i) > x1 and
1+(Z+1)·(K!) =

∏
(1+K!·(idseq(x+1))) and eval(p,@((〈Z, x〉aX)aY )) ≡

0 (mod 1 + (Z + 1) · (K!)) and for every natural number i such that i ∈ k
holds

∏
(Y (i) + 1 +−idseq(x1)) ≡ 0 (mod 1 + (Z+ 1) · (K!)). Set K1 = K!.

Set z1 = 1 + (z + 1) ·K1.
Consider p3 being an element of N such that p3 | z1 and p3 ¬ z1 and

p3 is prime. Define P(object) = Y ($1) mod p3. Consider Y3 being a finite
0-sequence such that lenY3 = k and for every natural number i such that
i ∈ k holds Y3(i) = P(i). rng Y3 ⊆ N. Reconsider E1 = eval(p,@((〈Z, x〉 a
X)aY )) as an integer. K < p3. For every natural number i such that i ∈ k
holds Y3(i) ¬ x. For every i such that i ∈ 2+k+n holds p3 | ((〈Z, x〉aX)a

Y )(i)−((〈z, x〉aX)aY3)(i). p3 | E1−eval(p,@((〈z, x〉aX)aY3)). Consider
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m being a natural number such that | eval(p,@((〈z, x〉aX)aY3))| = p3 ·m.
For every object i such that i ∈ dom(@((〈z, x〉aX)aY3)) holds |(@((〈z, x〉a
X) a Y3))(i)| ¬ (x2 + 1) · (

∏
(1 + X)). | eval(p,@((〈z, x〉 a X) a Y3))| ¬

(
∑
coeff(|p|)) · ((x2 + 1) · (

∏
(1 +X))degree(p)). �

Let us consider a Z-valued polynomial p of 2 + n+ k,RF. Now we state the
propositions:

(18) {X, where X is an n-element finite 0-sequence of N : there exists an ele-
ment x of N such that for every element z of N such that z ¬ x there exists
a k-element finite 0-sequence y of N such that eval(p,@((〈z, x〉aX)a y)) =
0} is a Diophantine subset of the n-xtuples of N.

Proof: Set X0 = {X, where X is an n-element finite 0-sequence of N :
there exists an element x of N such that for every element z of N such

that z ¬ x there exists a k-element finite 0-sequence y of N such that
eval(p,@((〈z, x〉aX)a y)) = 0}. Set n1 = 1+n+k. Set s4 =

∑
coeff(|p|).

Set D = degree(p). Reconsider Z0 = 0, i0 = n1, i1 = n1 + 1, i2 = n1 + 2,
i3 = n1 + 3 as an element of n1 + 4. Define P2[finite 0-sequence of N] ≡
1 · $1(i1) > 1 · $1(Z0) + 0. Define P3[finite 0-sequence of N] ≡ $1(i1) ­
s4 · (($1(Z0)2 + 1) · (

∏
(1 + $1�1�n)) · (1 · $1(i0) + 0)0·$1(i0)+D). {q, where q

is an (n1 + 4)-element finite 0-sequence of N : P3[q]} is a Diophantine
subset of the n1 + 4-xtuples of N.

Define P4[finite 0-sequence of N] ≡ for every natural number i such that
i ∈ k holds $1(1+n+i) > $1(i0) and

∏
($1(1+n+i)+1+−idseq($1(i0))) ≡

0 (mod $1(i2)). {q, where q is an (n1 + 4)-element finite 0-sequence of N :
P4[q]} is a Diophantine subset of the n1+ 4-xtuples of N. Define P5[finite
0-sequence of N] ≡ 1 ·$1(i0) > 1 ·$1(Z0)+0. Define P6[finite 0-sequence of
N] ≡ 1+($1(i3)+1) ·($1(i1)!) = $1(i2). Define P7[finite 0-sequence of N] ≡
$1(i2) =

∏
(1+$1(i1)!·(idseq(1+$1(Z0)))). Reconsider R = p as a Z-valued

polynomial of 1 + n1,RF. Define P8[finite 0-sequence of N] ≡ for every
(1 +n1)-element finite 0-sequence Y of N such that Y = 〈$1(i3)〉a ($1�n1)
holds eval(R,@Y ) ≡ 0 (mod $1(i2)). {q, where q is an (n1+4)-element finite
0-sequence of N : P8[q]} is a Diophantine subset of the n1 + 4-xtuples of
N.

Define P123[finite 0-sequence of N] ≡ P2[$1] and P3[$1]. {q, where q
is an (n1 + 4)-element finite 0-sequence of N : P123[q]} is a Diophantine
subset of the n1 + 4-xtuples of N. Define P1234[finite 0-sequence of N] ≡
P123[$1] and P4[$1]. {q, where q is an (n1 + 4)-element finite 0-sequence
of N : P1234[q]} is a Diophantine subset of the n1 + 4-xtuples of N. Define
P12345[finite 0-sequence of N] ≡ P1234[$1] and P5[$1]. {q, where q is an (n1+
4)-element finite 0-sequence of N : P12345[q]} is a Diophantine subset of
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the n1+ 4-xtuples of N. Define P123456[finite 0-sequence of N] ≡ P12345[$1]
and P6[$1]. {q, where q is an (n1 + 4)-element finite 0-sequence of N :
P123456[q]} is a Diophantine subset of the n1 + 4-xtuples of N. Define
P1234567[finite 0-sequence of N] ≡ P123456[$1] and P7[$1]. {q, where q is
an (n1 + 4)-element finite 0-sequence of N : P1234567[q]} is a Diophantine
subset of the n1 + 4-xtuples of N.

Define P12345678[finite 0-sequence of N] ≡ P1234567[$1] and P8[$1]. Set
X3 = {q, where q is an (n1+4)-element finite 0-sequence of N : P12345678[q]}.
X3 is a Diophantine subset of the n1 + 4-xtuples of N. Set X2 = {X�(n+
1), where X is an (n1 + 4)-element finite 0-sequence of N : X ∈ X3}.
Define S[finite 0-sequence of N] ≡ for every element z of N such that
z ¬ $1(0) there exists a k-element finite 0-sequence y of N such that
for every n-element finite 0-sequence X1 of N such that X1 = $1�1 holds
eval(p,@((〈z, $1(0)〉 a X1) a y)) = 0. Set X1 = {X, where X is an (n +
1)-element finite 0-sequence of N : S[X]}. For every object s, s ∈ X1 iff
s ∈ X2. Set Y1 = {X�1, where X is an (n + 1)-element finite 0-sequence
of N : X ∈ X1}. For every object s, s ∈ Y1 iff s ∈ X0. �

(19) {X, where X is an n-element finite 0-sequence of N : there exists an ele-
ment x of N such that for every element z of N such that z ¬ x there exists
a k-element finite 0-sequence y of N such that for every natural number
i such that i ∈ k holds y(i) ¬ x and eval(p,@((〈z, x〉 a X) a y)) = 0} is
a Diophantine subset of the n-xtuples of N.
Proof: Set X0 = {X, where X is an n-element finite 0-sequence of N :
there exists an element x of N such that for every element z of N such

that z ¬ x there exists a k-element finite 0-sequence y of N such that
for every natural number i such that i ∈ k holds y(i) ¬ x and eval(p,
@((〈z, x〉 a X) a y)) = 0}. Set n1 = 1 + n + k. Set s4 =

∑
coeff(|p|). Set

D = degree(p). Reconsider Z0 = 0, i0 = n1, i1 = n1 + 1, i2 = n1 + 2,
i3 = n1 + 3 as an element of n1 + 4. Define P2[finite 0-sequence of N] ≡
1 · $1(i1) > 1 · $1(Z0) + 0. Define P3[finite 0-sequence of N] ≡ $1(i1) ­
s4 · (($1(Z0)2 + 1) · (

∏
(1 + $1�1�n)) · (0 · $1(i0) + 1)0·$1(i0)+D). {q, where q

is an (n1 + 4)-element finite 0-sequence of N : P3[q]} is a Diophantine
subset of the n1 + 4-xtuples of N.

Define P4[finite 0-sequence of N] ≡ for every natural number i such that
i ∈ k holds $1(1+n+i) > $1(i0) and

∏
($1(1+n+i)+1+−idseq($1(i0))) ≡

0 (mod $1(i2)). {q, where q is an (n1 + 4)-element finite 0-sequence of N :
P4[q]} is a Diophantine subset of the n1+ 4-xtuples of N. Define P5[finite
0-sequence of N] ≡ $1(i0) = 1 · $1(Z0) + 1. Define P6[finite 0-sequence of
N] ≡ 1+($1(i3)+1) ·($1(i1)!) = $1(i2). Define P7[finite 0-sequence of N] ≡
$1(i2) =

∏
(1+$1(i1)!·(idseq(1+$1(Z0)))). Reconsider R = p as a Z-valued
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polynomial of 1 + n1,RF. Define P8[finite 0-sequence of N] ≡ for every
(1 +n1)-element finite 0-sequence Y of N such that Y = 〈$1(i3)〉a ($1�n1)
holds eval(R,@Y ) ≡ 0 (mod $1(i2)). {q, where q is an (n1+4)-element finite
0-sequence of N : P8[q]} is a Diophantine subset of the n1 + 4-xtuples of
N.

Define P123[finite 0-sequence of N] ≡ P2[$1] and P3[$1]. {q, where q
is an (n1 + 4)-element finite 0-sequence of N : P123[q]} is a Diophantine
subset of the n1 + 4-xtuples of N. Define P1234[finite 0-sequence of N] ≡
P123[$1] and P4[$1]. {q, where q is an (n1 + 4)-element finite 0-sequence
of N : P1234[q]} is a Diophantine subset of the n1 + 4-xtuples of N. Define
P12345[finite 0-sequence of N] ≡ P1234[$1] and P5[$1]. {q, where q is an (n1+
4)-element finite 0-sequence of N : P12345[q]} is a Diophantine subset of
the n1+ 4-xtuples of N. Define P123456[finite 0-sequence of N] ≡ P12345[$1]
and P6[$1]. {q, where q is an (n1 + 4)-element finite 0-sequence of N :
P123456[q]} is a Diophantine subset of the n1 + 4-xtuples of N. Define
P1234567[finite 0-sequence of N] ≡ P123456[$1] and P7[$1]. {q, where q is
an (n1 + 4)-element finite 0-sequence of N : P1234567[q]} is a Diophantine
subset of the n1+4-xtuples of N. Define P12345678[finite 0-sequence of N] ≡
P1234567[$1] and P8[$1]. Set X3 = {q, where q is an (n1+4)-element finite
0-sequence of N : P12345678[q]}. X3 is a Diophantine subset of the n1 + 4-
xtuples of N. Set X2 = {X�(n+ 1), where X is an (n1+ 4)-element finite
0-sequence of N : X ∈ X3}.

Define S[finite 0-sequence of N] ≡ for every element z of N such that
z ¬ $1(0) there exists a k-element finite 0-sequence y of N such that for
every n-element finite 0-sequence X1 of N such that X1 = $1�1 holds for
every i such that i ∈ k holds y(i) ¬ $1(0) and eval(p,@((〈z, $1(0)〉 a X1) a
y)) = 0. Set X1 = {X, where X is an (n + 1)-element finite 0-sequence
of N : S[X]}. For every object s, s ∈ X1 iff s ∈ X2. Set Y1 = {X�1, where
X is an (n+1)-element finite 0-sequence of N : X ∈ X1}. For every object
s, s ∈ Y1 iff s ∈ X0. �

Let n be a natural number and A be a subset of the n-xtuples of N. We say
that A is recursively enumerable if and only if

(Def. 4) there exists a natural number m and there exists a Z-valued polynomial
P of 2 + n +m,RF such that for every n-element finite 0-sequence X of
N, X ∈ A iff there exists an element x of N such that for every element
z of N such that z ¬ x there exists an m-element finite 0-sequence Y of
N such that for every object i such that i ∈ domY holds Y (i) ¬ x and
eval(P,@((〈z, x〉 a X) a Y )) = 0.

Now we state the proposition:
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(20) Let us consider a natural number n, and a subset A of the n-xtuples of
N. If A is Diophantine, then A is recursively enumerable.
Proof: Consider m being a natural number, P being a Z-valued poly-
nomial of n + m,RF such that for every object s, s ∈ A iff there exists
an n-element finite 0-sequence x of N and there exists an m-element finite
0-sequence y of N such that s = x and eval(P,@(xay)) = 0. Set n4 = n+m.
Reconsider P0 = P as a Z-valued polynomial of 0 + n4,RF. Consider q be-
ing a polynomial of 0 + 2 + n4,RF such that rng q ⊆ rng P0 ∪ {0RF} and
for every function x1 from 0 + n4 into RF and for every function X1 from
0 + 2 + n4 into RF such that x1�0 = X1�0 and (@x1)�0 = (@X1)�0+2 holds
eval(P0, x1) = eval(q,X1).

Reconsider Q = q as a Z-valued polynomial of 2 +n+m,RF. If X ∈ A,
then there exists an element x of N such that for every element z of
N such that z ¬ x there exists an m-element finite 0-sequence Y of N
such that for every object i such that i ∈ domY holds Y (i) ¬ x and
eval(Q,@((〈z, x〉 a X) a Y )) = 0. Consider y being an m-element finite
0-sequence of N such that for every object i such that i ∈ dom y holds
y(i) ¬ a and eval(Q,@((〈a, a〉 a X) a y)) = 0. �

5. MRDP Theorem

Now we state the proposition:

(21) Yuri Matiyasevich, Julia Robinson, Martin Davis, Hilary Put-
nam Theorem:
Let us consider a natural number n, and a subset A of the n-xtuples of
N. If A is recursively enumerable, then A is Diophantine. The theorem is
a consequence of (19).
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