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Summary. The article is the next in a series aiming to formalize the
MDPR-theorem using the Mizar proof assistant [3], [6], [4]. We analyze four equ-
ations from the Diophantine standpoint that are crucial in the bounded quantifier
theorem, that is used in one of the approaches to solve the problem.

Based on our previous work [1], we prove that the value of a given binomial
coefficient and factorial can be determined by its arguments in a Diophantine
way. Then we prove that two products

z =
x∏
i=1

(1 + i · y), z =
x∏
i=1

(y + 1− j), (0.1)

where y > x are Diophantine.
The formalization follows [10], Z. Adamowicz, P. Zbierski [2] as well as M. Da-

vis [5].
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1. Product of Zero Based Finite Sequences

From now on i, j, n, n1, n2,m, k, l, u denote natural numbers, r, r1, r2 denote
real numbers, x, y denote integers, a, b denote non trivial natural numbers, F
denotes a finite 0-sequence, F , F1, F2 denote complex-valued finite 0-sequences,
and c, c1, c2 denote complex numbers.

Let us consider c1 and c2. Let us note that 〈c1, c2〉 is complex-valued.
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Let F be a finite 0-sequence. The functor
∏
F yielding an element of C is

defined by the term

(Def. 1) ·C �F .

Now we state the propositions:

(1) If F is real-valued, then
∏
F = ·R �F .

(2) If F is Z-valued, then
∏
F = ·Z �F .

(3) If F is natural-valued, then
∏
F = ·N �F .

Let F be a real-valued finite 0-sequence. One can check that
∏
F is real.

Let F be a natural-valued finite 0-sequence. One can verify that
∏
F is

natural.
Now we state the propositions:

(4) If F = ∅, then
∏
F = 1.

(5)
∏
〈c〉 = c.

(6)
∏
〈c1, c2〉 = c1 · c2.

(7)
∏

(F1 a F2) = (
∏
F1) · (

∏
F2).

(8) c+ F1 a F2 = (c+ F1) a (c+ F2).
Proof: For every object x such that x ∈ dom(c+F1aF2) holds (c+F1a
F2)(x) = ((c+ F1) a (c+ F2))(x). �

(9) c1 + 〈c2〉 = 〈c1 + c2〉.
(10) Let us consider finite 0-sequences f1, f2, and n. Suppose n ¬ len f1.

Then (f1 a f2)�n = f1�n
a f2.

Let us consider n. One can verify that there exists a finite 0-sequence which
is n-element and natural-valued and there exists a finite 0-sequence which is
natural-valued and positive yielding.

Let R be a positive yielding binary relation and X be a set. Observe that
R�X is positive yielding.

Let X be a positive yielding, real-valued finite 0-sequence. One can verify
that

∏
X is positive.

Now we state the proposition:

(11) Let us consider a natural-valued, positive yielding finite 0-sequence X.
If i ∈ domX, then X(i) ¬

∏
X.

Proof: Define P[natural number] ≡ for every natural-valued, positive
yielding finite 0-sequence X for every natural number i such that lenX =
$1 and i ∈ domX holds X(i) ¬

∏
X. If P[n], then P[n+ 1]. P[n]. �

Let X be a natural-valued finite 0-sequence and n be a positive natural
number. Let us observe that n+X is positive yielding.

Now we state the proposition:
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(12) Let us consider natural-valued finite 0-sequences X1, X2. Suppose lenX1
= lenX2 and for every n such that n ∈ domX1 holds X1(n) ¬ X2(n).
Then

∏
X1 ¬

∏
X2.

Proof: Define P[natural number] ≡ for every natural-valued finite 0-
sequences X1, X2 such that lenX1 = $1 = lenX2 and for every n such
that n ∈ domX1 holds X1(n) ¬ X2(n) holds

∏
X1 ¬

∏
X2. P[0]. If P[n],

then P[n+ 1]. P[n]. �

2. Binomial is Diophantine

Now we state the propositions:

(13) If k ¬ n, then
(n
k

)
¬ nk.

Proof: Define P[natural number] ≡ if $1 ¬ n, then
( n
$1

)
¬ n$1 . If P[m],

then P[m+ 1]. P[m]. �

(14) If u > nk and n ­ k > i, then
(n
i

)
· (ui) < ukn . The theorem is a consequ-

ence of (13).

(15) If u > nk and n ­ k, then b (u+1)
n

uk
c mod u =

(n
k

)
.

Proof: Set I = 〈
(n
0

)
10un, . . . ,

(n
n

)
1nu0〉. Set k1 = k + 1. Consider q be-

ing a finite sequence such that I = (I�k1) a q. Reconsider I1 = I as
a finite sequence of elements of N. Set k2 = k 7→ uk

n . For every natural
number i such that i ∈ Seg k holds (I1�k)(i) < k2(i). Define P[natural
number, object] ≡ $2 ∈ N and for every natural number i such that i = $2
holds q($1) = uk · u · i. For every natural number j such that j ∈ Seg len q
there exists an object x such that P[j, x]. Consider Q being a finite se-
quence such that domQ = Seg len q and for every natural number j such
that j ∈ Seg len q holds P[j,Q(j)]. rngQ ⊆ N. For every natural number i

such that 1 ¬ i ¬ len q holds q(i) = (uk ·u ·Q)(i). b
∑
I1
uk
c =

(n
k

)
+u ·(

∑
Q).(n

k

)
¬ nk. �

(16) Let us consider natural numbers x, y, z. Then x ­ z and y =
(x
z

)
if and

only if there exist natural numbers u, v, y1, y2, y3 such that y1 = xz and
y2 = (u+ 1)x and y3 = uz and u > y1 and v = by2y3 c and y ≡ v (modu)
and y < u and x ­ z.
Proof: If x ­ z and y =

(x
z

)
, then there exist natural numbers u, v, y1,

y2, y3 such that y1 = xz and y2 = (u+ 1)x and y3 = uz and u > y1 and
v = by2y3 c and y ≡ v (modu) and y < u and x ­ z. y mod u =

(x
z

)
. �
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3. Factorial is Diophantine

Now we state the propositions:

(17) If k > 0 and n > 2 · kk+1, then k! = b nk(nk)
c.

(18) Let us consider natural numbers x, y. Then y = x! if and only if there
exist natural numbers n, y1, y2, y3 such that y1 = 2 · xx+1 and y2 = nx

and y3 =
(n
x

)
and n > y1 and y = by2y3 c.

Proof: If y = x!, then there exist natural numbers n, y1, y2, y3 such that
y1 = 2 · xx+1 and y2 = nx and y3 =

(n
x

)
and n > y1 and y = by2y3 c. �

4. Diophanticity of Selected Products

In the sequel x, y, x1, u, w denote natural numbers.
Now we state the propositions:

(19) Let us consider natural numbers x1, w, u. Suppose x1 · w ≡ 1 (modu).
Let us consider a natural number x. Then

∏
(1 + x1 · (idseq(x))) ≡ x1x ·

(x!) ·
(w+x
x

)
(modu).

Proof: Consider b being an integer such that u · b = x1 · w − 1. Define
P[natural number] ≡

∏
(1 +x1 · (idseq($1))) ≡ x1$1 · ($1!) ·

(w+$1
$1

)
(modu).

If P[n], then P[n+ 1] by [12, (43)]. P[n]. �

(20) Let us consider natural numbers x, y, x1. Suppose x1 ­ 1. Then y =∏
(1 + x1 · (idseq(x))) if and only if there exist natural numbers u, w, y1,
y2, y3, y4, y5 such that u > y and x1 · w ≡ 1 (modu) and y1 = x1x and
y2 = x! and y3 =

(w+x
x

)
and y1 · y2 · y3 ≡ y (modu) and y4 = 1 +x1 ·x and

y5 = y4x and u > y5.
Proof: Define P[natural number] ≡ (1 + x1 · $1)$1 ­

∏
(1+x1·(idseq($1))).

If P[n], then P[n+1]. P[n]. If y =
∏

(1+x1·(idseq(x))), then there exist na-
tural numbers u, w, y1, y2, y3, y4, y5 such that u > y and x1 ·w ≡ 1 (modu)
and y1 = x1x and y2 = x! and y3 =

(w+x
x

)
and y1 · y2 · y3 ≡ y (modu) and

y4 = 1+x1 ·x and y5 = y4x and u > y5 by [8, (16)]. Set U = x1x ·(x!)·
(w+x
x

)
.∏

(1 + x1 · (idseq(x))) ≡ U (modu). �

(21) c1 + n 7→ c2 = n 7→ (c1 + c2).

(22) Let us consider natural numbers x, y, x1. If x1 = 0, then y =
∏

(1 + x1 ·
(idseq(x))) iff y = 1. The theorem is a consequence of (21).

(23) If n ­ k, then
∏

(n+ 1 +−idseq(k)) = k! ·
(n
k

)
.

Proof: Define P[natural number] ≡ if $1 ¬ n, then
∏

(n+1+−idseq($1))
= $1! ·

( n
$1

)
. If P[i], then P[i+ 1] by [7, (3), (2)]. P[i]. �
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(24) Let us consider natural numbers y, x1, x2. Then y =
∏

(x2 + 1 +
−idseq(x1)) and x2 > x1 if and only if y = x1! ·

(x2
x1

)
and x2 > x1.

5. Selected Subsets of Zero Based Finite Sequences of N
as Diophantine Sets

From now on n, m, k denote natural numbers, p, q denote n-element finite
0-sequences of N, i1, i2, i3, i4, i5, i6 denote elements of n, and a, b, d, f denote
integers.

Now we state the propositions:

(25) Let us consider natural numbers a, b, i1, i2, and i3. Then {p : p(i1) =
(a · p(i2) + b) · p(i3)} is a Diophantine subset of the n-xtuples of N.
Proof: Define R(natural number,natural number,natural number) = a ·
$1+ b. Define P1[natural number,natural number, natural object,natural
number, natural number,natural number] ≡ 1·$1 = 1·$3·$2. For every n, i1,
i2, i3, i4, and i5, {p : P1[p(i1), p(i2),R(p(i3), p(i4), p(i5)), p(i3), p(i4), p(i5)]}
is a Diophantine subset of the n-xtuples of N. Define Q1[finite 0-sequence
of N] ≡ P1[$1(i1), $1(i3), a·$1(i2)+b, $1(i3), $1(i3), $1(i3)]. Define Q2[finite
0-sequence of N] ≡ $1(i1) = (a·$1(i2)+b)·$1(i3). {p : Q1[p]} = {q : Q2[q]}.
�

(26) {p : p(i1) = a · p(i2) · p(i3)} is a Diophantine subset of the n-xtuples of
N.
Proof: Define Q1[finite 0-sequence of N] ≡ 1 · $1(i1) = a · $1(i2) · $1(i3).
Define Q2[finite 0-sequence of N] ≡ $1(i1) = a ·$1(i2) ·$1(i3). {p : Q1[p]} =
{q : Q2[q]}. �

(27) Let us consider a Diophantine subset A of the n-xtuples of N, and natural
numbers k, n4. Suppose k+n4 = n. Then {p�n4 : p ∈ A} is a Diophantine
subset of the k-xtuples of N.
Proof: Consider n3 being a natural number, p1 being a Z-valued poly-
nomial of n + n3,RF such that for every object s, s ∈ A iff there exists
an n-element finite 0-sequence x of N and there exists an n3-element finite
0-sequence y of N such that s = x and eval(p1,@(x a y)) = 0. Reconsider
I = idn+n3 as a finite 0-sequence. Set I1 = I�n4. Set I2 = (I�n)�n4 . Set
I3 = I�n. Reconsider J = (I2aI1)aI3 as a function from n+n3 into n+n3.
Set h = the p1 permuted by J−1. Reconsider H = h as a polynomial of
k + (n4 + n3),RF. Set Y = {p�n4 : p ∈ A}. Y ⊆ the k-xtuples of N. For
every object s, s ∈ Y iff there exists a k-element finite 0-sequence x of N
and there exists an (n4 + n3)-element finite 0-sequence y of N such that
s = x and eval(H,@(x a y)) = 0 by [9, (25)], [11, (27)]. �
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(28) Let us consider integers a, b, a natural number c, i1, i2, and i3. Then
{p : a · p(i1) = b b·p(i2)c·p(i3)c and c · p(i3) 6= 0} is a Diophantine subset of
the n-xtuples of N.
Proof: Define F2(natural number,natural number,natural number) =
c·$3+a·c·$1·$3. For every n, i1, i2, i3, i4, and d, {p : F2(p(i1), p(i2), p(i3)) =
d · p(i4)} is a Diophantine subset of the n-xtuples of N. Define P2[natural
number, natural number, integer] ≡ b · $1 + 0 < $3. For every n, i1, i2,
i3, i4, and i5, {p : P2[p(i1), p(i2),F2(p(i3), p(i4), p(i5))]} is a Diophan-
tine subset of the n-xtuples of N. Define P3[natural number,natural
number, integer] ≡ b · $1 ­ $3 + 0. Define F3(natural number, natural
number,natural number) = a · c · $1 · $3. For every n, i1, i2, i3, i4, and
i5, {p : P3[p(i1), p(i2),F3(p(i3), p(i4), p(i5))]} is a Diophantine subset of
the n-xtuples of N.

Define Q1[finite 0-sequence of N] ≡ P2[$1(i2), $1(i2),F2($1(i1), $1(i1),
$1(i3))]. Define Q2[finite 0-sequence of N] ≡ P3[$1(i2), $1(i2),F3($1(i1),
$1(i1), $1(i3))]. DefineQ12[finite 0-sequence of N] ≡Q1[$1] andQ2[$1]. De-
fine Q3[finite 0-sequence of N] ≡ c·$1(i3) 6= 0·$1(i3)+0. Define Q123[finite
0-sequence of N] ≡ Q12[$1] and Q3[$1]. Define T [finite 0-sequence of N] ≡
a ·$1(i1) = b b·$1(i2)c·$1(i3)c and c ·$1(i3) 6= 0. {p : Q1[p] and Q2[p]} is a Diophan-
tine subset of the n-xtuples of N. {p : Q12[p] and Q3[p]} is a Diophantine
subset of the n-xtuples of N. For every p, T [p] iff Q123[p]. {p : T [p]} = {q
: Q123[q]}. �

Let us consider i1, i2, and i3. Now we state the propositions:

(29) If n 6= 0, then {p : p(i1) ­ p(i3) and p(i2) =
(p(i1)
p(i3)

)
} is a Diophantine

subset of the n-xtuples of N.
Proof: Set n6 = n+ 6. Define R[finite 0-sequence of N] ≡ $1(i1) ­ $1(i3)
and $1(i2) =

($1(i1)
$1(i3)

)
. Set RR = {p : R[p]}. Reconsider X = i1, Y = i2,

Z = i3, U = n, V = n+ 1, Y1 = n+ 2, Y2 = n+ 3, Y3 = n+ 4, U1 = n+ 5
as an element of n + 6. Define P1[finite 0-sequence of N] ≡ $1(Y1) =
$1(X)$1(Z). Define P2[finite 0-sequence of N] ≡ $1(Y2) = $1(U1)

$1(X). De-
fine P3[finite 0-sequence of N] ≡ $1(Y3) = $1(U)$1(Z). Define P4[finite
0-sequence of N] ≡ 1 ·$1(U) > 1 ·$1(Y1)+0. Define P5[finite 0-sequence of
N] ≡ 1 · $1(V ) = b1·$1(Y2)1·$1(Y3)c and 1 · $1(Y3) 6= 0. {p, where p is an n6-element
finite 0-sequence of N : P5[p]} is a Diophantine subset of the n6-xtuples of
N.

Define P6[finite 0-sequence of N] ≡ 1 ·$1(Y ) ≡ 1 ·$1(V ) (mod 1 ·$1(U)).
Define P7[finite 0-sequence of N] ≡ 1·$1(U) > 1·$1(Y )+0. Define P8[finite
0-sequence of N] ≡ 1 · $1(X) ­ 1 · $1(Z) + 0. Define P9[finite 0-sequence
of N] ≡ 1 · $1(U1) = 1 · $1(U) + 1. Define P12[finite 0-sequence of N] ≡
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P1[$1] and P2[$1]. {p, where p is an n6-element finite 0-sequence of N :
P12[p]} is a Diophantine subset of the n6-xtuples of N. Define P123[finite
0-sequence of N] ≡ P12[$1] and P3[$1]. {p, where p is an n6-element finite
0-sequence of N : P123[p]} is a Diophantine subset of the n6-xtuples of N.
Define P1234[finite 0-sequence of N] ≡ P123[$1] and P4[$1]. {p, where p is
an n6-element finite 0-sequence of N : P1234[p]} is a Diophantine subset of
the n6-xtuples of N. Define P12345[finite 0-sequence of N] ≡ P1234[$1] and
P5[$1]. {p, where p is an n6-element finite 0-sequence of N : P12345[p]} is
a Diophantine subset of the n6-xtuples of N.

Define P123456[finite 0-sequence of N] ≡ P12345[$1] and P6[$1]. {p, where
p is an n6-element finite 0-sequence of N : P123456[p]} is a Diophantine
subset of the n6-xtuples of N. Define P1234567[finite 0-sequence of N] ≡
P123456[$1] and P7[$1]. {p, where p is an n6-element finite 0-sequence of
N : P1234567[p]} is a Diophantine subset of the n6-xtuples of N. Define
P12345678[finite 0-sequence of N] ≡ P1234567[$1] and P8[$1]. {p, where p
is an n6-element finite 0-sequence of N : P12345678[p]} is a Diophantine
subset of the n6-xtuples of N. Define P123456789[finite 0-sequence of N] ≡
P12345678[$1] and P9[$1]. Set PP = {p, where p is an n6-element finite
0-sequence of N : P123456789[p]}. PP is a Diophantine subset of the n6-
xtuples of N. Reconsider PPn = {p�n, where p is an n6-element finite
0-sequence of N : p ∈ PP} as a Diophantine subset of the n-xtuples of N.
PPn ⊆ RR. RR ⊆ PPn. �

(30) {p : p(i1) ­ p(i3) and p(i2) =
(p(i1)
p(i3)

)
} is a Diophantine subset of the n-

xtuples of N. The theorem is a consequence of (29).

Let us consider i1 and i2. Now we state the propositions:

(31) If n 6= 0, then {p : p(i1) = p(i2)!} is a Diophantine subset of the n-xtuples
of N.
Proof: Set n6 = n+6. Define R[finite 0-sequence of N] ≡ $1(i1) = $1(i2)!.
Set RR = {p : R[p]}. Reconsider Y = i1, X = i2, N = n, Y1 = n + 1,
Y2 = n + 2, Y3 = n + 3, X1 = n + 4, X2 = n + 5 as an element of n + 6.
Define P1[finite 0-sequence of N] ≡ $1(Y1) = $1(X2)

$1(X1). Define P2[finite
0-sequence of N] ≡ $1(Y2) = $1(N)$1(X). Define P3[finite 0-sequence of
N] ≡ $1(N) ­ $1(X) and $1(Y3) =

($1(N)
$1(X)

)
. {p, where p is an n6-element

finite 0-sequence of N : P3[p]} is a Diophantine subset of the n6-xtuples
of N. Define P4[finite 0-sequence of N] ≡ 1 · $1(Y ) = b1·$1(Y2)1·$1(Y3)c and 1 ·
$1(Y3) 6= 0. {p, where p is an n6-element finite 0-sequence of N : P4[p]} is
a Diophantine subset of the n6-xtuples of N. Define P5[finite 0-sequence
of N] ≡ 1 · $1(X2) = 2 · $1(X) + 0. Define P6[finite 0-sequence of N] ≡
1 · $1(X1) = 1 · $1(X) + 1. Define P7[finite 0-sequence of N] ≡ 1 · $1(N) >
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1 · $1(Y1) + 0. Define P12[finite 0-sequence of N] ≡ P1[$1] and P2[$1]. {p,
where p is an n6-element finite 0-sequence of N : P12[p]} is a Diophantine
subset of the n6-xtuples of N.

Define P123[finite 0-sequence of N] ≡ P12[$1] and P3[$1]. {p, where p
is an n6-element finite 0-sequence of N : P123[p]} is a Diophantine sub-
set of the n6-xtuples of N. Define P1234[finite 0-sequence of N] ≡ P123[$1]
and P4[$1]. {p, where p is an n6-element finite 0-sequence of N : P1234[p]} is
a Diophantine subset of the n6-xtuples of N. Define P12345[finite 0-sequence
of N] ≡ P1234[$1] and P5[$1]. {p, where p is an n6-element finite 0-sequence
of N : P12345[p]} is a Diophantine subset of the n6-xtuples of N. Defi-
ne P123456[finite 0-sequence of N] ≡ P12345[$1] and P6[$1]. {p, where p is
an n6-element finite 0-sequence of N : P123456[p]} is a Diophantine subset of
the n6-xtuples of N. Define P1234567[finite 0-sequence of N] ≡ P123456[$1]
and P7[$1]. Set PP = {p, where p is an n6-element finite 0-sequence of
N : P1234567[p]}. PP is a Diophantine subset of the n6-xtuples of N.
Reconsider PPn = {p�n, where p is an n6-element finite 0-sequence of
N : p ∈ PP} as a Diophantine subset of the n-xtuples of N. PPn ⊆ RR.
RR ⊆ PPn. �

(32) {p : p(i1) = p(i2)!} is a Diophantine subset of the n-xtuples of N. The
theorem is a consequence of (31).

(33) {p : 1 + (p(i1) + 1) · (p(i2)!) = p(i3)} is a Diophantine subset of the n-
xtuples of N.
Proof: Define R(natural number,natural number,natural number) = 1 ·
$1+−1. Define P1[natural number,natural number, integer] ≡ 1 · $1 · $2 =
$3. For every i1, i2, i3, i4, and i5, {p : P1[p(i1), p(i2),R(p(i3), p(i4), p(i5))]}
is a Diophantine subset of the n-xtuples of N. Define F2(natural number,
natural number, natural number) = $1!. For every i1, i2, i3, and i4, {p
: F2(p(i1), p(i2), p(i3)) = p(i4)} is a Diophantine subset of the n-xtuples
of N. Define P2[natural number, natural number, natural object,natural
number,natural number, natural number] ≡ 1 · $1 · $3 = 1 · $2 − 1.

For every i1, i2, i3, i4, and i5, {p : P2[p(i1), p(i2),F2(p(i3), p(i4), p(i5)),
p(i3), p(i4), p(i5)]} is a Diophantine subset of the n-xtuples of N. Define
P3[natural number, natural number,natural object, natural number,natural
number,natural number] ≡ 1 · $3 · ($1!) = 1 · $2 − 1. Define F3(natural
number,natural number,natural number) = 1 · $1 + 1. For every n, i1, i2,
i3, i4, and i5, {p : P3[p(i1), p(i2),F3(p(i3), p(i4), p(i5)), p(i3), p(i4), p(i5)]}
is a Diophantine subset of the n-xtuples of N. Define Q1[finite 0-sequence
of N] ≡ P3[$1(i2), $1(i3), 1·$1(i1)+1, $1(i3), $1(i3), $1(i3)]. Define Q2[finite
0-sequence of N] ≡ 1 + ($1(i1) + 1) · ($1(i2)!) = $1(i3). {p : Q1[p]} = {q
: Q2[q]}. �
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Let us consider i1, i2, and i3. Now we state the propositions:

(34) If n 6= 0, then {p : p(i3) =
∏

(1 + p(i1) · (idseq(p(i2)))) and p(i1) ­ 1} is
a Diophantine subset of the n-xtuples of N.
Proof: Set n12 = n+13. DefineR[finite 0-sequence of N] ≡ $1(i3) =

∏
(1+

$1(i1) · (idseq($1(i2)))) and $1(i1) ­ 1. Set RR = {p : R[p]}. Reconsider
X1 = i1, X = i2, Y = i3, U = n, W = n + 1, Y1 = n + 2, Y2 = n + 3,
Y3 = n+ 4, Y4 = n+ 5, Y5 = n+ 6, X3 = n+ 7, W1 = n+ 8, Y6 = n+ 9,
Y7 = n + 10, X4 = n + 11, O = n + 12 as an element of n12. Define
Q[finite 0-sequence of N] ≡ 1 · $1(X1) ­ 0 · $1(Y ) + 1. Define P1[finite
0-sequence of N] ≡ 1 · $1(U) > 1 · $1(Y ) + 0. Define P2[finite 0-sequence
of N] ≡ 1 · $1(X3) = 1 · $1(X1) · $1(W ).

Define P3[finite 0-sequence of N] ≡ $1(O) = 1. Define P4[finite
0-sequence of N] ≡ 1 · $1(X3) ≡ 1 · $1(O) (mod 1 · $1(U)). Define P5[finite
0-sequence of N] ≡ $1(Y1) = $1(X1)

$1(X). Define P6[finite 0-sequence of
N] ≡ $1(Y2) = $1(X)!. {p, where p is an n12-element finite 0-sequence
of N : P6[p]} is a Diophantine subset of the n12-xtuples of N. Define
P7[finite 0-sequence of N] ≡ 1 · $1(W1) = 1 · $1(W ) + 1 · $1(X) + 0. De-
fine P8[finite 0-sequence of N] ≡ $1(W1) ­ $1(X) and $1(Y3) =

($1(W1)
$1(X)

)
.

{p, where p is an n12-element finite 0-sequence of N : P8[p]} is a Dio-
phantine subset of the n12-xtuples of N. Define P9[finite 0-sequence of
N] ≡ 1 · $1(Y6) = 1 · $1(Y1) · $1(Y2). Define PA[finite 0-sequence of
N] ≡ 1 · $1(Y7) = 1 · $1(Y6) · $1(Y3). Define PB[finite 0-sequence of N] ≡
1 · $1(Y7) ≡ 1 · $1(Y ) (mod 1 · $1(U)). Define PC[finite 0-sequence of
N] ≡ 1 · $1(X4) = 1 · $1(X1) · $1(X). Define PD[finite 0-sequence of N] ≡
1 · $1(Y4) = 1 · $1(X4) + 1. Define PE [finite 0-sequence of N] ≡ $1(Y5) =
$1(Y4)

$1(X). Define PF [finite 0-sequence of N] ≡ 1 · $1(U) > 1 · $1(Y5) + 0.
Define C1[finite 0-sequence of N] ≡ Q[$1] and P1[$1]. {p, where p is

an n12-element finite 0-sequence of N : C1[p]} is a Diophantine subset of
the n12-xtuples of N. Define C2[finite 0-sequence of N] ≡ C1[$1] and P2[$1].
{p, where p is an n12-element finite 0-sequence of N : C2[p]} is a Diophantine
subset of the n12-xtuples of N. Define C3[finite 0-sequence of N] ≡ C2[$1]
and P3[$1]. {p, where p is an n12-element finite 0-sequence of N : C3[p]} is
a Diophantine subset of the n12-xtuples of N. Define C4[finite 0-sequence
of N] ≡ C3[$1] and P4[$1]. {p, where p is an n12-element finite 0-sequence of
N : C4[p]} is a Diophantine subset of the n12-xtuples of N. Define C5[finite
0-sequence of N] ≡ C4[$1] and P5[$1]. {p, where p is an n12-element finite
0-sequence of N : C5[p]} is a Diophantine subset of the n12-xtuples of N.
Define C6[finite 0-sequence of N] ≡ C5[$1] and P6[$1]. {p, where p is an n12-
element finite 0-sequence of N : C6[p]} is a Diophantine subset of the n12-
xtuples of N. Define C7[finite 0-sequence of N] ≡ C6[$1] and P7[$1]. {p,
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where p is an n12-element finite 0-sequence of N : C7[p]} is a Diophantine
subset of the n12-xtuples of N. Define C8[finite 0-sequence of N] ≡ C7[$1]
and P8[$1]. {p, where p is an n12-element finite 0-sequence of N : C8[p]} is
a Diophantine subset of the n12-xtuples of N. Define C9[finite 0-sequence
of N] ≡ C8[$1] and P9[$1]. {p, where p is an n12-element finite 0-sequence
of N : C9[p]} is a Diophantine subset of the n12-xtuples of N.

Define CA[finite 0-sequence of N] ≡ C9[$1] and PA[$1]. {p, where p
is an n12-element finite 0-sequence of N : CA[p]} is a Diophantine subset
of the n12-xtuples of N. Define CB[finite 0-sequence of N] ≡ CA[$1] and
PB[$1]. {p, where p is an n12-element finite 0-sequence of N : CB[p]} is
a Diophantine subset of the n12-xtuples of N. Define CC[finite 0-sequence
of N] ≡ CB[$1] and PC[$1]. {p, where p is an n12-element finite 0-sequence of
N : CC[p]} is a Diophantine subset of the n12-xtuples of N. Define CD[finite
0-sequence of N] ≡ CC[$1] and PD[$1]. {p, where p is an n12-element finite
0-sequence of N : CD[p]} is a Diophantine subset of the n12-xtuples of
N. Define CE [finite 0-sequence of N] ≡ CD[$1] and PE [$1]. {p, where p
is an n12-element finite 0-sequence of N : CE [p]} is a Diophantine subset
of the n12-xtuples of N. Define CF [finite 0-sequence of N] ≡ CE [$1] and
PF [$1]. Set PP = {p, where p is an n12-element finite 0-sequence of N :
CF [p]}. PP is a Diophantine subset of the n12-xtuples of N. Reconsider
PPn = {p�n, where p is an n12-element finite 0-sequence of N : p ∈ PP}
as a Diophantine subset of the n-xtuples of N. PPn ⊆ RR. RR ⊆ PPn. �

(35) {p : p(i3) =
∏

(1 + p(i1) · (idseq(p(i2)))) and p(i1) ­ 1} is a Diophantine
subset of the n-xtuples of N. The theorem is a consequence of (34).

(36) {p : p(i3) =
∏

(1 + p(i1)! · (idseq(1 + p(i2))))} is a Diophantine subset of
the n-xtuples of N.
Proof: DefineR(natural number,natural number, natural number) = $1!.
For every i1, i2, i3, and i4, {p : R(p(i1), p(i2), p(i3)) = p(i4)} is a Dio-
phantine subset of the n-xtuples of N. Define P1[natural number,natural
number, natural object,natural number, natural number,natural number]
≡ $1 =

∏
(1 + $3 · (idseq($2))) and $3 ­ 1. For every i1, i2, i3, i4, i5, and

i6, {p : P1[p(i1), p(i2), p(i3), p(i4), p(i5), p(i6)]} is a Diophantine subset of
the n-xtuples of N.

For every i1, i2, i3, i4, and i5, {p : P1[p(i1), p(i2),R(p(i3), p(i4), p(i5)),
p(i3), p(i4), p(i5)]} is a Diophantine subset of the n-xtuples of N. Define
F2(natural number,natural number,natural number) = 1 · $1 + 1. Define
P2[natural number,natural number,natural object, natural number,natural
number,natural number] ≡ $1 =

∏
(1 + $2! · (idseq($3))) and $2! ­ 1. For

every i1, i2, i3, i4, and i5, {p : P2[p(i1), p(i2),F2(p(i3), p(i4), p(i5)), p(i3),
p(i4), p(i5)]} is a Diophantine subset of the n-xtuples of N. DefineQ1[finite
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0-sequence of N] ≡ P2[$1(i3), $1(i1), 1 · $1(i2) + 1, 1 · $1(i3), $1(i3), $1(i3)].
Define Q2[finite 0-sequence of N] ≡ $1(i3) =

∏
(1 + $1(i1)! · (idseq(1 +

$1(i2)))). {p : Q1[p]} = {q : Q2[q]}. �

Let us consider i1, i2, and i3. Now we state the propositions:

(37) If n 6= 0, then {p : p(i3) =
∏

(p(i2)+1+−idseq(p(i1))) and p(i2) > p(i1)}
is a Diophantine subset of the n-xtuples of N.
Proof: Set n2 = n + 2. Define R[finite 0-sequence of N] ≡ $1(i3) =∏

($1(i2) + 1 + −idseq($1(i1))) and $1(i2) > $1(i1). Set RR = {p : R[p]}.
Reconsider Y = i3, X2 = i2, X1 = i1, C = n, F = n + 1 as an element
of n2. Define P1[finite 0-sequence of N] ≡ $1(X2) ­ $1(X1) and $1(C) =($1(X2)
$1(X1)

)
. {p, where p is an n2-element finite 0-sequence of N : P1[p]} is

a Diophantine subset of the n2-xtuples of N. Define P2[finite 0-sequence
of N] ≡ $1(F ) = $1(X1)!. {p, where p is an n2-element finite 0-sequence of
N : P2[p]} is a Diophantine subset of the n2-xtuples of N. Define P3[finite
0-sequence of N] ≡ 1 · $1(X2) > 1 · $1(X1) + 0. Define P4[finite 0-sequence
of N] ≡ 1 · $1(Y ) = 1 · $1(F ) · $1(C).

Define P12[finite 0-sequence of N] ≡ P1[$1] and P2[$1]. {p, where p
is an n2-element finite 0-sequence of N : P12[p]} is a Diophantine subset
of the n2-xtuples of N. Define P123[finite 0-sequence of N] ≡ P12[$1] and
P3[$1]. {p, where p is an n2-element finite 0-sequence of N : P123[p]} is
a Diophantine subset of the n2-xtuples of N. Define P1234[finite 0-sequence
of N] ≡ P123[$1] and P4[$1]. Set PP = {p, where p is an n2-element finite
0-sequence of N : P1234[p]}. PP is a Diophantine subset of the n2-xtuples
of N. Reconsider PPn = {p�n, where p is an n2-element finite 0-sequence
of N : p ∈ PP} as a Diophantine subset of the n-xtuples of N. PPn ⊆ RR.
RR ⊆ PPn. �

(38) {p : p(i3) =
∏

(p(i2) + 1 + −idseq(p(i1))) and p(i2) > p(i1)} is a Dio-
phantine subset of the n-xtuples of N. The theorem is a consequence of
(37).

(39) {p : p(i1) =
∏

(i+ p�n1�n2)} is a Diophantine subset of the n-xtuples of
N.
Proof: Define P[natural number] ≡ for every n such that $1 + n1 ¬ n
for every i1, {p : p(i1) =

∏
(i+ p�n1�$1)} is a Diophantine subset of the n-

xtuples of N. P[0]. If P[m], then P[m+ 1]. P[m]. �
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