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Summary. The article is the next in a series aiming to formalize the
MDPR-theorem using the Mizar proof assistant [3], [6], [4]. We analyze four equ-
ations from the Diophantine standpoint that are crucial in the bounded quantifier
theorem, that is used in one of the approaches to solve the problem.

Based on our previous work [I], we prove that the value of a given binomial
coefficient and factorial can be determined by its arguments in a Diophantine
way. Then we prove that two products

z=Ja+i-w, z=[Jw+1-4), (0.1)

where y > x are Diophantine.
The formalization follows [10], Z. Adamowicz, P. Zbierski [2] as well as M. Da-
vis [5].
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1. PRODUCT OF ZERO BASED FINITE SEQUENCES

From now on i, j, n, n1, ng, m, k, I, u denote natural numbers, r, r1, 72 denote
real numbers, x, y denote integers, a, b denote non trivial natural numbers, F’
denotes a finite 0-sequence, F, F1, F2 denote complex-valued finite 0-sequences,
and ¢, ¢1, co denote complex numbers.

Let us consider ¢ and co. Let us note that (c1, co) is complex-valued.
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Let F be a finite O-sequence. The functor [[ F yielding an element of C is
defined by the term

(Def. 1) -c®F.
Now we state the propositions:
(1) If F is real-valued, then [[F = g ©® F.
(2) If Fis Zvalued, then [[F =z ® F.
(3) If F is natural-valued, then [[F = .y © F.
Let F be a real-valued finite 0-sequence. One can check that [] F' is real.
Let F' be a natural-valued finite 0-sequence. One can verify that [[F' is

natural.
Now we state the propositions:
(4) U F =0, then [[F=1.
(5) II{e) =
(6) Tl{c1,c2) =c1-ca.
(M) IR~ F2) =1 F) - (1 F2)-
8) c+Fi~Fa=(c+F1)" (c+ Fo).
PROOF: For every object x such that z € dom(c+ F; = F) holds (¢+F; ™
Fo)(@) = ((c+F1) ™ (c+ Fo)) (). O
(9) c1 + <CQ> = <01 + C2>.
(10) Let us consider finite 0-sequences fi, f2, and n. Suppose n < len fi.
Then (f1 7 f2)jn = fijn ™ fo
Let us consider n. One can verify that there exists a finite 0-sequence which
is m-element and natural-valued and there exists a finite 0-sequence which is
natural-valued and positive yielding.
Let R be a positive yielding binary relation and X be a set. Observe that
R[X is positive yielding.
Let X be a positive yielding, real-valued finite O-sequence. One can verify
that J[] X is positive.
Now we state the proposition:

(11) Let us consider a natural-valued, positive yielding finite 0-sequence X.

If i € dom X, then X (i) <[] X.
PROOF: Define Plnatural number] = for every natural-valued, positive
yielding finite 0-sequence X for every natural number ¢ such that len X =
$1 and ¢ € dom X holds X (7) < [[ X. If P[n], then P[n + 1]. P[n]. O

Let X be a natural-valued finite 0-sequence and n be a positive natural

number. Let us observe that n 4+ X is positive yielding.
Now we state the proposition:



(12)
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Let us consider natural-valued finite O-sequences X1, Xo. Suppose len X7
= len X5 and for every n such that n € dom X; holds X;(n) < Xa(n).
Then HX1 < HX2
PROOF: Define P[natural number| = for every natural-valued finite 0-
sequences X1, X5 such that len X1 = $; = len X, and for every n such
that n € dom X holds Xj(n) < Xa(n) holds [T X1 < [[ Xa. P[0]. If P[n],
then Pn + 1]. Pn]. O

2. BINOMIAL 1S DIOPHANTINE

Now we state the propositions:

(13)

(14)

(15)

If k < n, then (}) < nk.
PROOF: Define P[natural number] = if $; < n, then () < nSt. If Pml,
then Plm + 1]. P[m]. O

If u>n*and n >k > i, then (}) - (u') < % The theorem is a consequ-
ence of (13).

If u > n* and n > k, then L(uzi,})nj mod u = (}).

ProOF: Set I = ((3)1%",..., (})1"u"). Set ki = k + 1. Consider ¢ be-
ing a finite sequence such that I = (I[k1) ~ q. Reconsider I} = I as
a finite sequence of elements of N. Set ko = k — % For every natural
number i such that i € Segk holds (I [k)(i) < ka(7). Define P[natural
number, object] = $2 € N and for every natural number i such that i = $5
holds ¢($;) = u* - u - 4. For every natural number j such that j € Seglen g
there exists an object = such that P[j,z]. Consider @) being a finite se-
quence such that dom @) = Seglen ¢ and for every natural number j such
that j € Seglen ¢ holds P[j, Q(j)]. rng @ C N. For every natural number i
such that 1 < 4 < len ¢ holds ¢(i) = (u*-u-Q)(4). L%khj = () +u- Q).
(7) < n¥. O

(16) Let us consider natural numbers x, y, z. Then z > z and y = (%) if and

only if there exist natural numbers u, v, y1, yo, y3 such that y; = x* and
y2 = (u+1)" and y3 = u* and v > y; and v = [ 2] and y = v (mod u)
and y < u and =z > z.

ProOOF: If z > z and y = (;E), then there exist natural numbers u, v, y1,
Y2, y3 such that y; = 2% and y2 = (u+1)" and y3 = v* and u > y; and
v=|£]andy =0 (modu) and y <uwand 2>z y mod u= (7). O
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3. FACTORIAL IS DIOPHANTINE

Now we state the propositions:

(17) Ifk>0and n>2-k* then k! = L%J.
k

(18) Let us consider natural numbers z, y. Then y = z! if and only if there
exist natural numbers n, yi, y2, y3 such that y; = 2- 2! and yy = n®
and y3 = () and n > y; and y = Lz—ij
PRrROOF: If y = !, then there exist natural numbers n, y1, y2, y3 such that

y1=2-z"" and yp = n” and y3 = () and n > y1 and y = [2]. O

4. DIOPHANTICITY OF SELECTED PRODUCTS

In the sequel z, y, x1, u, w denote natural numbers.
Now we state the propositions:

(19) Let us consider natural numbers z1, w, u. Suppose 1 - w = 1 (mod u).
Let us consider a natural number x. Then [](1 + z; - (idseq(z))) = 1* -
(1) - (“I7) (modu).
ProOF: Consider b being an integer such that w-b = 1 - w — 1. Define
Plnatural number] = [T(1 4z - (idseq($1))) = 1% - ($1!) - (’LU;—I$1) (mod u).
If P[n], then P[n + 1] by [12}, (43)]. P[n]. O

(20) Let us consider natural numbers x, y, z1. Suppose x1 > 1. Then y =
[T(1 4 21 - (idseq(x))) if and only if there exist natural numbers u, w, yi,
Y2, Y3, Y4, Y5 such that v > y and 21 - w = 1 (modwu) and y; = z1* and

yo =zl and y3 = (“}*) and y1 - y2 - y3 =y (modu) and y4 = 1421 -2 and

Y5 = ya* and u > ys.

PROOF: Define P[natural number] = (1 + z; - $1)$1 > [1(1+z1-(idseq($1))).

If P[n], then P[n+1]. P[n]. If y = [[(1+x1-(idseq(z))), then there exist na-

tural numbers w, w, Y1, Y2, Y3, Y4, Y5 such that u > y and z1-w = 1 (mod u)

and y; = 1% and yo = z! and y3 = (w;“x) and y1 - y2 - y3 =y (mod u) and
ys = 14212 and y5 = y4” and u > ys by [8] (16)]. Set U = 217+ (z!)- (V7).
[1(1 + 21 - (idseq(x))) = U (modu). O

(21) c1+n—co=nr (c1 +c2).

(22) Let us consider natural numbers x, y, 1. If 21 =0, then y = [](1 4+ 21 -
(idseq(x))) iff y = 1. The theorem is a consequence of (21).

(23) If n >k, then [J(n+ 14 —idseq(k)) = k!- (7).
PROOF: Define P[natural number] = if $; < n, then [[(n+14 —idseq($1))
=$!- ($"1) If P[i], then P[i + 1] by [T, (3), (2)]. P[i]. O
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(24) Let us consider natural numbers y, z1, x2. Then y = [[(x2 + 1 +
—idseq(z1)) and w9 > 27 if and only if y = x1! - (ﬁ) and z9 > 7.

5. SELECTED SUBSETS OF ZERO BASED FINITE SEQUENCES OF N
AS DIOPHANTINE SETS

From now on n, m, k denote natural numbers, p, ¢ denote n-element finite
0-sequences of N| iy, io, i3, i4, 15, i denote elements of n, and a, b, d, f denote
integers.

Now we state the propositions:

(25) Let us consider natural numbers a, b, i1, i3, and i3. Then {p : p(i1) =
(a-p(i2) +b) - p(iz)} is a Diophantine subset of the n-xtuples of N.
PROOF: Define R(natural number, natural number, natural number) = a -
$1 + b. Define P;[natural number, natural number, natural object, natural
number, natural number, natural number] = 1-$; = 1-$3-$5. For every n, i1,
02,13, 14, and i5, {p 1P Lp(il)7p(i2)v R(p(ig),p(i4),p(i5)),p(i3),p(i4),p(i5)]}
is a Diophantine subset of the n-xtuples of N. Define Q;[finite 0-sequence
of N| = P1[81(41), $1(43), a-$1(32) +b, $1(i3), $1(i3), $1(i3)]. Define Qo[finite
0-sequence of N = §;(i1) = (a-$1(i2) +b)-$1(i3). {p : Qi[p|} = {q: Qa[g]}-
O

(26) {p:p(i1) = a-p(iz) - p(iz)} is a Diophantine subset of the n-xtuples of
N.

PROOF: Define Q[finite 0-sequence of N] = 1-$1(i1) = a - $1(42) - $1(43).
Define Qylfinite O-sequence of N] = $;(i1) = a-$1(i2)-$1(i3). {p: Q1[p]} =
{g: Q[q]}. O

(27) Let us consider a Diophantine subset A of the n-xtuples of N, and natural

numbers k, ng. Suppose k +nyg = n. Then {p,, : p € A} is a Diophantine
subset of the k-xtuples of N.
PRrOOF: Consider ng being a natural number, p; being a Z-valued poly-
nomial of n + n3,Rp such that for every object s, s € A iff there exists
an n-element finite 0-sequence x of N and there exists an ng-element finite
0-sequence y of N such that s = z and eval(p;, %(z " y)) = 0. Reconsider
I = idy4n, as a finite O-sequence. Set Iy = I[ny4. Set Iy = (I[n),,. Set
I3 = I},,. Reconsider J = (I;" 1) " I3 as a function from n+n3 into n+ns.
Set h = the p; permuted by J~'. Reconsider H = h as a polynomial of
k+ (n4a +n3),Rp. Set Y = {pp, : p € A}. Y C the k-xtuples of N. For
every object s, s € Y iff there exists a k-element finite 0-sequence = of N
and there exists an (n4 + n3)-element finite 0-sequence y of N such that
s = and eval(H, %z ~y)) = 0 by [9, (25)], [IT} (27)]. O
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(28) Let us consider integers a, b, a natural number ¢, i1, i2, and i3. Then
{p:a-pliy) = ingzgj and ¢ - p(i3) # 0} is a Diophantine subset of

the n-xtuples of N.

PROOF: Define Fy(natural number, natural number, natural number) =
c-$3+a-c-$1-$3. For every n, i1, ig, i3, i1, and d, {p : Fa(p(i1), p(i2), p(i3)) =
d-p(is)} is a Diophantine subset of the n-xtuples of N. Define Py[natural
number, natural number, integer] = b - $; + 0 < $3. For every n, i1, i,
i3, 14, and is, {p : Pa[p(i1),p(i2), F2(p(i3), p(ia), p(i5))]} is a Diophan-
tine subset of the n-xtuples of N. Define Ps[natural number, natural
number, integer] = b-$; > $3 + 0. Define Fz(natural number, natural
number, natural number) = a - ¢ - $; - $3. For every n, i, i9, i3, i4, and
is, {p : Polp(in), plia), Fa(plis), p(ia), plis))]} is a Diophantine subset of
the n-xtuples of N.

Define Q;[finite 0-sequence of N] = P2[$1(Z2),$1(22), Fo($1(41), $1(41),
$1(i3))] Define Qslfinite 0-sequence of N] = P3[$1(42), $1(i2), F3($1(41),
$1(71), $1(i3))]. Define Q1o[finite O-sequence of N] = Q1[$1] and Q2[$;]. De-
fine Qslfinite 0-sequence of N] = ¢-$(i3) # 0-$1(i3) +0. Define Q193[finite
0-sequence of N| = Q19[$;] and Q3[$1]. Define 7 [finite 0-sequence of N] =
a-$1(i1) = Liii(ggj and c¢-$1(i3) # 0. {p : Q1[p] and Qz[p]} is a Diophan-
tine subset of the n-xtuples of N. {p : Q12[p] and Qz[p]} is a Diophantine
subset of the n-xtuples of N. For every p, T [p] iff Q1a3[p]. {p: T[p]} = {¢

: Quaslq]}. O

Let us consider 71, i3, and i3. Now we state the propositions:

(29) If n # 0, then {p : p(i1) > p(is) and p(iz) = (7 “))} is a Diophantine
subset of the n-xtuples of N.
PROOF: Set ng = n+ 6. Define R/[finite 0-sequence of N] = $;(i1) > $1(i3)
and $;(iz) = ($1§“§) Set RR = {p : R[p|}. Reconsider X = i;, Y = i,
Z=1i3,U=n,V=n+1Y1=n4+2,Yo=n+3,Ys=n+4,U;=n+5
as an element of n + 6. Define P;[finite 0-sequence of N] = $;(Y;) =
$1(X)*1 ). Define Py[finite 0-sequence of N] = $;(V2) = $1(U7)** ). De-
fine Psfinite O-sequence of N| = $;(Y3) = $,(U)*19) | Define Py[finite
0-sequence of N] = 1-$;(U) > 1-$1(Y7) 4 0. Define P5[finite 0-sequence of
Nl=1-$(V) = Hgigﬁgj and 1-3%1(Y3) # 0. {p, where p is an ng-element
finite 0-sequence of N : P5[p]} is a Diophantine subset of the ng-xtuples of
N.

Define Pglfinite 0-sequence of N] = 1-$1(Y) = 1-$1(V) (mod 1-$,(U)).
Define P [finite 0-sequence of N| = 1-$;(U) > 1-$1(Y")+0. Define Pg|[finite
0-sequence of N] = 1-8$1(X) > 1-$1(Z) + 0. Define Py|[finite 0-sequence
of Nj =1-8%1(U1) =1-8%1(U) + 1. Define Pislfinite 0-sequence of N| =
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P1[$1] and P2[$1]. {p, where p is an ng-element finite O-sequence of N :
P12[p]} is a Diophantine subset of the ng-xtuples of N. Define Pjoslfinite
0-sequence of N|] = P2[$;1] and Ps[$1]. {p, where p is an ng-clement finite
0-sequence of N : Pjas[p]} is a Diophantine subset of the ng-xtuples of N.
Define Pjos4[finite 0-sequence of N] = Pio3[$1] and Py[$1]. {p, where p is
an ng-element finite 0-sequence of N : Pja34[p]} is a Diophantine subset of
the ng-xtuples of N. Define Pj9345[finite 0-sequence of N| = Pja34[$1] and
P5[$1]. {p, where p is an ng-element finite 0-sequence of N : Pioss5[p]} is
a Diophantine subset of the ng-xtuples of N.

Define P1a3456[finite 0-sequence of N| = P1a345[$1] and Pg[$1]. {p, where
p is an ng-element finite 0-sequence of N : Pjo3456[p]} is a Diophantine
subset of the ng-xtuples of N. Define Pia34567|[finite 0-sequence of N| =
Piosas6[31] and P7[$1]. {p, where p is an ng-element finite 0-sequence of
N : Piasaser[p]} is a Diophantine subset of the ng-xtuples of N. Define
P1asasers[finite O-sequence of N| = Piossser[$1] and Ps[$1]. {p, where p
is an ng-element finite O-sequence of N : Piasss678[p]} is a Diophantine
subset of the ng-xtuples of N. Define Pj93456789]finite 0-sequence of N| =
Prasasers|[$1] and Pg[$1]. Set PP = {p, where p is an ng-element finite
0-sequence of N : Piossse7s9[p|}. PP is a Diophantine subset of the ng-
xtuples of N. Reconsider PP,, = {p[n, where p is an ng-element finite
0-sequence of N : p € PP} as a Diophantine subset of the n-xtuples of N.
PP, C RR. RR C PP,,.

(30) {p: p(i1) > p(iz) and p(iz) = (gg:;;)} is a Diophantine subset of the n-

xtuples of N. The theorem is a consequence of (29).

Let us consider 7; and 7. Now we state the propositions:

(31) Ifn #0,then {p:p(i1) = p(i2)'} is a Diophantine subset of the n-xtuples
of N.
PROOF: Set ng = n+6. Define R[finite O-sequence of N| = $;(i1) = $1(i2)!.
Set RR = {p : R[p|}. Reconsider ¥ = i1, X =iy, N =n, Y1 =n+1,
Yo=n+2,Ys=n+3, X1 =n+4, Xo =n+5 as an element of n + 6.
Define P [finite O-sequence of N] = $1 (V1) = $1(X2)* %) Define P;[finite
0-sequence of N] = §;(Y2) = $1(N)$1(X). Define Pjs[finite 0-sequence of
N] = $1(N) > $1(X) and $1(Y3) = (gig%) {p, where p is an ng-element
finite 0-sequence of N : Ps[p]} is a Diophantine subset of the ng-xtuples
of N. Define Py[finite 0-sequence of N] = 1-$1(Y) = H%E%J and 1 -
$1(Y3) # 0. {p, where p is an ng-element finite 0-sequence of N : Py[p]} is
a Diophantine subset of the ng-xtuples of N. Define Ps[finite 0-sequence
of N =1-%1(X2) = 2-3%1(X) + 0. Define Pg[finite 0-sequence of N] =
1-%1(X1) =1-%$1(X) + 1. Define Pr[finite 0-sequence of N] = 1-$;(N) >
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1-$1(Y1) + 0. Define Pyolfinite O-sequence of N|] = P;[$1] and P2[$1]. {p,
where p is an ng-element finite O-sequence of N : Pja[p]} is a Diophantine
subset of the ng-xtuples of N.

Define Pjo3[finite 0-sequence of N| = Pio[$1] and P3[$1]. {p, where p
is an ng-element finite 0-sequence of N : Pjo3[p|} is a Diophantine sub-
set of the ng-xtuples of N. Define Pj234[finite 0-sequence of N| = Pja3[$1]
and Py[$1]. {p, where p is an ng-element finite O-sequence of N : Pya34[p|} is
a Diophantine subset of the ng-xtuples of N. Define Pj9345[finite 0-sequence
of N] = P1234[$1] and P5[$1]. {p, where p is an ng-element finite 0-sequence
of N : Piasas[p]} is a Diophantine subset of the ng-xtuples of N. Defi-
ne Piasqse[finite 0-sequence of N] = Piagqs[$1] and Pg[$1]. {p, where p is
an ng-element finite 0-sequence of N : Pya3456[p]} is a Diophantine subset of
the ng-xtuples of N. Define Pja34567[finite 0-sequence of N| = Pia3456[%1]
and Pr[$1]. Set PP = {p, where p is an ng-element finite 0-sequence of
N : Piasaser[p]}. PP is a Diophantine subset of the mg-xtuples of N.

Reconsider PP,, = {p[n, where p is an ng-element finite 0-sequence of
N : p € PP} as a Diophantine subset of the n-xtuples of N. PP,, C RR.
RR C PP,. O

(32) {p: p(i1) = p(i2)!} is a Diophantine subset of the n-xtuples of N. The
theorem is a consequence of (31).

(33) {p:1+(p(i1)+1)-(p(i2)!) = p(i3)} is a Diophantine subset of the n-
xtuples of N.
PROOF: Define R(natural number, natural number, natural number) = 1 -
$1 + —1. Define P;[natural number, natural number, integer] = 1-$; - $2 =
$3. For every iy, ia, i3, i4, and i5, {p : P1[p(i1), p(iz), R(p(i3), p(is), p(is))]}
is a Diophantine subset of the n-xtuples of N. Define F»(natural number,
natural number, natural number) = $;!. For every i;, is, i3, and i4, {p
: Fa(p(in), p(i2), p(iz)) = p(ia)} is a Diophantine subset of the n-xtuples
of N. Define Py[natural number, natural number, natural object, natural
number, natural number, natural number] = 1-8$; - $3=1-%5 — 1.

For every i1, i2, i3, 14, and i5, {p : Pa[p(i1), p(i2), F2(p(i3), p(ia), p(i5)),
p(i3),p(i4), p(i5)]} is a Diophantine subset of the n-xtuples of N. Define
Ps[natural number, natural number, natural object, natural number, natural
number, natural number] = 1-$3-($;!) = 1-9$, — 1. Define F3(natural
number, natural number, natural number) = 1-$; + 1. For every n, i1, i,
is, 44, and is, {p : P3[p(i1), piz), F3(p(is), p(ia), p(is)), p(is), p(ia), p(i5)]}
is a Diophantine subset of the n-xtuples of N. Define Q;[finite 0-sequence
of N] = 7)3[$1(i2), $1(i3), 1'$1(i1)+1, $1(i3), $1(i3), $1(23)] Define Q9 [ﬁnite
0-sequence of N] = 14 ($1(i1) + 1) - ($1(d2)!) = $1(33). {p : Qi[p]} = {¢
: Qofq]}. O
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Let us consider 71, 72, and i3. Now we state the propositions:

(34) Ifn#0, then {p : p(i3) = [I(1 + p(i1) - (idseq(p(i2)))) and p(i1) > 1} is
a Diophantine subset of the n-xtuples of N.
PROOF: Set nj2 = n+13. Define R[finite O-sequence of N] = $; (i3) = [[(1+
$1(i1) - (idseq($1(i2)))) and $1(i1) > 1. Set RR = {p : R[p]}. Reconsider
Xi=4,X=14,Y=i3,U=nW=n+1Y =n+4+2 Yy, =n+3,
Ys=n+4,Y,=n+5Ys5=n+6,Xs=n+7, Wi =n+8, Yg=n+9,
Y =n+4+10, X4 = n—+ 11, O = n+ 12 as an element of nqs. Define
Q[finite 0-sequence of N] = 1-$;(X1) > 0-$1(Y) + 1. Define P [finite
O-sequence of N = 1-$;(U) > 1-$;(Y) + 0. Define Ps|finite O-sequence
of NJ=1-8$1(X3) =1 81(X1) - $.(W).

Define Pslfinite 0-sequence of N] = $;(0O) = 1. Define Pylfinite
0-sequence of N = 1-$1(X3) =1-%$1(O) (mod1-$;(U)). Define Ps|finite
0-sequence of N = $1(¥1) = $1(X1)%X). Define Pg|finite 0-sequence of
N] = $1(Y2) = $1(X)!. {p, where p is an njs-element finite 0-sequence
of N : Pg[p]} is a Diophantine subset of the njs-xtuples of N. Define
Pr[finite 0-sequence of N] = 1-$;(W7) =1-$ (W) +1-$;(X) + 0. De-
fine Pg[finite O-sequence of N] = §;(W;) > $1(X) and $;(Y3) = ($$11((I§/<1)))‘
{p, where p is an mjs-element finite 0-sequence of N : Pg[p|} is a Dio-
phantine subset of the nq9- Xtuples of N. Define Pylfinite 0-sequence of
Nl =1-8%(Ys) = 1 $1(Y1 $1(Y2). Define PAlfinite 0-sequence of

] 1-%1(Y7) = 1-%1(Ys) - $1(Y3). Define PB|[finite 0-sequence of N| =

(Y7) = 1-81(Y) (modl $1(U)). Define PClfinite 0-sequence of

] 1-81(X ) =1-%1(X1) - $1(X). Define PDlfinite 0-sequence of N| =

1- $1(Y4) =1-%1(X4) + 1. Define PE[finite 0-sequence of N| = §;(Y5) =

$, (v Deﬁne PF|finite O-sequence of N] = 1-$;(U) > 1-$;(Y5) +0.
Define C;[finite O-sequence of N] = Q[$;] and P1[$1]. {p, where p is

an njg-element finite 0-sequence of N : Ci[p]} is a Diophantine subset of
the nio-xtuples of N. Define Cs[finite 0-sequence of N|] = C;[$;] and P2[$1].
{p, where p is an njs-element finite 0-sequence of N : Co[p|} is a Diophantine
subset of the nis-xtuples of N. Define Cs|finite O-sequence of N|] = Co[$1]
and Ps[$1]. {p, where p is an njs-element finite O-sequence of N : C3[p|} is
a Diophantine subset of the njo-xtuples of N. Define Cy4lfinite 0-sequence
of N] = C3[$1] and P4[$1]. {p, where p is an nis-element finite 0-sequence of
N : C4[p]} is a Diophantine subset of the nja-xtuples of N. Define Cs[finite
0-sequence of N] = C4[$;1] and P5[$1]. {p, where p is an njs-element finite
0-sequence of N : Cs[p]} is a Diophantine subset of the njs-xtuples of N.
Define Cg[finite 0-sequence of N| = C5[$:1] and Pg[$1]. {p, where p is an njo-
element finite 0-sequence of N : Cg[p]} is a Diophantine subset of the njo-
xtuples of N. Define Cr[finite 0-sequence of N| = Cg[$1] and P7[$:1]. {p,

& |
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where p is an njz-element finite 0-sequence of N : C7[p|} is a Diophantine
subset of the njg-xtuples of N. Define Cg[finite 0-sequence of N|] = C7[$1]
and Pg[$1]. {p, where p is an njs-element finite O-sequence of N : Cg[p|} is
a Diophantine subset of the njo-xtuples of N. Define Cylfinite 0-sequence
of N] = Cg[$1] and Pg[$1]. {p, where p is an njs-element finite 0-sequence
of N : Cg[p]} is a Diophantine subset of the njs-xtuples of N.

Define CAlfinite O-sequence of N| = Cy[$1] and PA[$;1]. {p, where p
is an mjg-element finite 0-sequence of N : CA[p]} is a Diophantine subset
of the nja-xtuples of N. Define CBlfinite 0-sequence of N] = CA[$;] and
PB[$1]. {p, where p is an nis-element finite 0-sequence of N : CB[p]} is
a Diophantine subset of the njs-xtuples of N. Define (C|finite 0-sequence
of N] = CB[$1] and RC[$1]. {p, where p is an ni2-element finite O-sequence of
N : C[p]} is a Diophantine subset of the nja-xtuples of N. Define CD/[finite
0-sequence of N] = (C[$1] and PD[$1]. {p, where p is an njs-element finite
0-sequence of N : CD[p]} is a Diophantine subset of the njs-xtuples of
N. Define C€[finite 0-sequence of N] = CD[$1] and PE[$1]. {p, where p
is an njz-element finite 0-sequence of N : C€[p]} is a Diophantine subset
of the nja-xtuples of N. Define CF|[finite 0-sequence of N| = C£[$;] and
PF[$1]. Set PP = {p, where p is an njs-element finite 0-sequence of N :
CFp]}. PP is a Diophantine subset of the nja-xtuples of N. Reconsider
PP,, = {p[n, where p is an njs-element finite 0-sequence of N : p € PP}
as a Diophantine subset of the n-xtuples of N. PP, C RR. RR C PP,,. [J

(35) {p:p(iz) =[1(1+p(i1) - (idseq(p(i2)))) and p(i1) > 1} is a Diophantine
subset of the n-xtuples of N. The theorem is a consequence of (34).

(36) {p:p(is) =T1(1+ p(i1)! - (idseq(1 + p(i2))))} is a Diophantine subset of
the n-xtuples of N.
PROOF: Define R (natural number, natural number, natural number) = $;!.
For every i1, ig, i3, and i4, {p : R(p(i1),p(i2),p(i3)) = p(is)} is a Dio-
phantine subset of the n-xtuples of N. Define P; [natural number, natural
number, natural object, natural number, natural number, natural number]
=% =TI(1 + $3 - (idseq($2))) and $3 > 1. For every i1, i2, i3, i4, i5, and
i6, {p : Pilp(i1), p(i2), p(is),p(is), p(is), p(i6)]} is a Diophantine subset of
the n-xtuples of N.

For every i1, i2, i3, 14, and is, {p : P1[p(i1), p(i2), R(p(i3), p(ia), p(i5)),
p(i3),p(i4), p(i5)]} is a Diophantine subset of the n-xtuples of N. Define
Fa(natural number, natural number, natural number) = 1 - $; 4+ 1. Define
Py [natural number, natural number, natural object, natural number, natural
number, natural number] = $; = [](1 + $2! - (idseq($3))) and $3! > 1. For
every i1, 12, 3, i4, and 15, {p : PQ[p(il)vp(i2)7f2(p(i3)7p(i4))p(i5))vp(i?))v
p(i4), p(is)]} is a Diophantine subset of the n-xtuples of N. Define Q; [finite
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0-sequence of N| = Pa[$1(43),$1(41),1 - $1(i2) + 1,1 - $1(i3), $1(i3), $1(i3)]-
Define Qp[finite 0-sequence of N] = $1(i3) = [I(1 + $1(é1)! - (idseq(1 +
$1(i2))))- {p : Qulpl} = {q: Qlg]}. O

Let us consider 71, 72, and i3. Now we state the propositions:

(37) Ifn #0, then {p: p(iz) = [1(p(i2) +1+—idseq(p(i1))) and p(iz) > p(i1)}

is a Diophantine subset of the n-xtuples of N.
PROOF: Set na = n + 2. Define Rlfinite 0-sequence of N] = $;(i3) =
H($1(22) + 1+ —idseq($1(i1))) and $1(i2) > $1(i1). Set RR = {p : R[p]}
Reconsider Y = i3, Xo = i9, X7 = i1, C = n, F = n+ 1 as an element
of ng. Define P [finite O-sequence of N] = $1(X3) > $1(X;) and $,(C) =
(gigi;) {p, where p is an ng-element finite O-sequence of N : Py[p|} is
a Diophantine subset of the no-xtuples of N. Define Ps[finite 0-sequence
of N] = $1(F) = $1(X1)!. {p, where p is an ng-element finite 0-sequence of
N : Pa[p]} is a Diophantine subset of the ng-xtuples of N. Define Ps|finite
0-sequence of N] = 1-$1(X2) > 1-3$1(X1) +0. Define Py[finite 0-sequence
of Nl =1-$1(Y)=1-$1(F)-$:(0).

Define Pyo[finite O-sequence of N] = Py[$;] and Po[$1]. {p, where p
is an ng-element finite 0-sequence of N : Py3[p]} is a Diophantine subset
of the no-xtuples of N. Define P;o3[finite 0-sequence of N| = Pj2[$1] and
P3[$1]. {p, where p is an ng-element finite 0-sequence of N : Pyog[p]} is
a Diophantine subset of the na-xtuples of N. Define P;934[finite 0-sequence
of N] = P123[8$1] and P4[$:1]. Set PP = {p, where p is an ns-element finite
0-sequence of N : Pya34[p|}. PP is a Diophantine subset of the na-xtuples
of N. Reconsider PP,, = {p[n, where p is an ng-element finite 0-sequence
of N: p € PP} as a Diophantine subset of the n-xtuples of N. PP,, C RR.
RR C PP,,. [

(38) {p: plis) = [I(p(i2) + 1 + —idseq(p(i1))) and p(i2) > p(i1)} is a Dio-
phantine subset of the n-xtuples of N. The theorem is a consequence of
(37).

(39) {p:p(i1) =II( + pin, In2)} is a Diophantine subset of the n-xtuples of
N.

PROOF: Define P[natural number| = for every n such that $; +n; < n
for every i1, {p : p(i1) = [1(¢ + pn, [$1)} is a Diophantine subset of the n-
xtuples of N. P[0]. If P[m], then P[m + 1]. P[m]. O
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