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Summary. This is the first part of a four-article series containing a Mizar
[3], [, [2] formalization of Kronecker’s construction about roots of polynomials in
field extensions, i.e. that for every field F' and every polynomial p € F[X]\F there
exists a field extension E of F' such that p has a root over E. The formalization
follows Kronecker’s classical proof using F[X]/<p> as the desired field extension
E [, @, 6

In this first part we show that an irreducible polynomial p € F[X]\F has
a root over F[X]/<p>. Note, however, that this statement cannot be true in
a rigid formal sense: We do not have FF C F[X]/<p> as sets, so F is not
a subfield of F[X]/<p>, and hence formally p is not even a polynomial over
F[X]/<p>. Consequently, we translate p along the canonical monomorphism
¢ : F — F[X]/<p> and show that the translated polynomial ¢(p) has a root
over F[X]/<p>.

Because F' is not a subfield of F'[X]/<p> we construct in the second part the
field (E'\ ¢F)UF for a given monomorphism ¢ : FF — E and show that this field
both is isomorphic to F' and includes F as a subfield. In the literature this part of
the proof usually consists of saying that “one can identify F' with its image ¢F' in
F[X]/<p> and therefore consider F as a subfield of F[X]/<p>". Interestingly, to
do so we need to assume that F N E = (), in particular Kronecker’s construction
can be formalized for fields F' with F'N F[X] = 0.

Surprisingly, as we show in the third part, this condition is not automatically
true for arbitray fields F: With the exception of Zs we construct for every field F
an isomorphic copy F’ of F with F' N F'[X] # (). We also prove that for Mizar’s
representations of Z,, Q and R we have Z, N Z,[X] = 0, Q N Q[X] = @ and
RNR[X] = 0, respectively.

In the fourth part we finally define field extensions: F is a field extension
of F'iff F' is a subfield of E. Note, that in this case we have F' C FE as sets,
and thus a polynomial p over F' is also a polynomial over F£. We then apply the

construction of the second part to F[X]/<p> with the canonical monomorphism
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¢ : F — F[X]/<p>. Together with the first part this gives - for fields F' with
FNF[X]=0- a field extension E of F in which p € F[X]\F has a root.
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1. PRELIMINARIES

From now on n denotes a natural number.

Let L be a non empty zero structure and p be a polynomial over L. We
introduce the notation LM(p) as a synonym of Leading-Monomial p.

Now we state the proposition:

(1) Let us consider a non empty zero structure L, and a polynomial p over
L. Then degp is an element of N if and only if p # 0.L.

Let R be a non degenerated ring and p be a non zero polynomial over R.
Note that the functor deg p yields an element of N. Let R be an add-associative,
right zeroed, right complementable, right distributive, non empty double loop
structure and f be an additive function from R into R. One can check that
f(0R) reduces to Og.

Now we state the proposition:

(2) Let us consider a ring R, an ideal I of R, an element x of R/I, and
an element a of R. Suppose z = [a]EqRel( r,1)- Let us consider a natural
number n. Then 2" = [a"|g gey(g,1)-

PROOF: Define P[natural number] = 2% = [a$1]EqRel(R’1). For every natu-
ral number ¢, Pi]. O

Let R be a ring and a, b be elements of R. We say that b is an irreducible
factor of a if and only if

(Def. 1) b a and b is irreducible.
Observe that there exists an integral domain which is non almost left inver-
tible and factorial.
Now we state the proposition:
(3) Let us consider a non almost left invertible, factorial integral domain R,

and a non zero non-unit a of R. Then there exists an element b of R such
that b is an irreducible factor of a.
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2. THE POLYNOMIALS a - 2"

Let R be a ring, a be an element of R, and n be a natural number. We
introduce the notation anpoly(a,n) as a synonym of seq(n, a).
Let R be a non degenerated ring and a be a non zero element of R. One can
check that anpoly(a,n) is non zero.
Let R be a ring and a be a zero element of R. Observe that anpoly(a,n) is
zero.
Now we state the propositions:
(4) Let us consider a non degenerated ring R, and a non zero element a of
R. Then deg anpoly(a,n) = n.
(5) Let us consider a non degenerated ring R, and an element a of R. Then
LCanpoly(a,n) = a.
(6) Let us consider a non degenerated ring R, a non zero natural number n,
and elements a, x of R. Then eval(anpoly(a,n),z) =a- (z").
(7) Let us consider a non degenerated ring R, and an element a of R. Then
anpoly(a,0) = a[R.
(8) Let us consider a non degenerated ring R, and a non zero element n of
N. Then anpoly(1g,n) = rpoly(n,0g).
(9) Let us consider a non degenerated commutative ring R, and non zero
elements a, b of R. Then b - (anpoly(a,n)) = anpoly(a - b, n).
(10) Let us consider a non degenerated commutative ring R, non zero ele-
ments a, b of R, and natural numbers n, m. Then anpoly(a, n)xanpoly (b, m)
= anpoly(a - b,n +m). The theorem is a consequence of (9).
(11) Let us consider a non degenerated ring R, and a non zero polynomial p
over R. Then LM(p) = anpoly(p(degp), degp).
(12) Let us consider a non degenerated commutative ring R. Then (0, 1z)" =
anpoly(1g,n).
PROOF: Define P[natural number] = (Og, 1g)% = anpoly(1z, $1). P[0] by
[8, (15)]. For every natural number k, P[k]. O

3. MORE ON HOMOMORPHISMS

Now we state the propositions:

(13) Let us consider a ring R, an R-homomorphic ring S, a homomorphism
h from R to S, an element a of R, and a natural number n. Then h(a™) =
h(a)".

PROOF: Define P[natural number] = h(a®) = h(a)®'. P[0] by [10, (8)].
For every natural number n, Pln|. O
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(14) Let us consider a ring R, an R-homomorphic ring S, and a homomor-
phism A from R to S. Then h(}_e,) = 0g, where « is the carrier of R.
Let us consider a ring R, an R-homomorphic ring S, a homomorphism A
from R to S, a finite sequence F of elements of R, and an element a of R. Now
we state the propositions:

(15)  h(X({a) ™ F)) = h(a) + h(3 F).

(16)  h(32(F ™ (a))) = h(3 F) + h(a).

(17) Let us consider a ring R, an R-homomorphic ring S, a homomorphism
h from R to S, and finite sequences F', G of elements of R. Then h(}_(F ™
G)) =h(XF)+h(ZG).

(18) Let us consider a ring R, an R-homomorphic ring S, and a homomor-
phism A from R to S. Then h(]]es) = 1g, where « is the carrier of R.

Let us consider a ring R, an R-homomorphic ring S, a homomorphism A

from R to S, a finite sequence F of elements of R, and an element a of R. Now
we state the propositions:

(19)  A(1((a) = F)) = h(a) - R(ITF).

(20)  A(II(F ™ (a))) = R(IT F) - h(a).

(21) Let us consider a ring R, an R-homomorphic ring S, a homomorphism
h from R to S, and finite sequences F', G of elements of R. Then h([](F ™

G)) = M1 F) - (I G).

4. LIFTING HOMOMORPHISMS FROM R TO R[X]

Let R, S be rings, f be a function from PolyRing(R) into PolyRing(.S), and
p be an element of the carrier of PolyRing(R). Observe that the functor f(p)
yields an element of the carrier of PolyRing(S). Let R be a ring, S be an R-
homomorphic ring, and h be an additive function from R into S. The functor
PolyHom(h) yielding a function from PolyRing(R) into PolyRing(.S) is defined
by

(Def. 2) for every element f of the carrier of PolyRing(R) and for every natural
number 4, (it(f))(i) = h(f(7)).

Let h be a homomorphism from R to S. Observe that PolyHom(h) is addi-
tive, multiplicative, and unity-preserving.

Let us consider a ring R, an R-homomorphic ring S, and a homomorphism
h from R to S. Now we state the propositions:

(22) (PolyHom(h))(0.R) =0.5S.
(23) (PolyHom(h))(1.R) = 1.5.
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Let us consider a ring R, an R-homomorphic ring S, a homomorphism h
from R to S, and elements p, g of the carrier of PolyRing(R). Now we state the
propositions:

(24)  (PolyHom(h))(p + q) = (PolyHom(h))(p) + (PolyHom(h))(q).

(25)  (PolyHom(h))(p - q) = (PolyHom(h))(p) - (PolyHom(h))(g).

(26) Let us consider a ring R, an R-homomorphic ring S, a homomorphism A
from R to S, an element p of the carrier of PolyRing(R), and an element
b of R. Then (PolyHom(h))(b - p) = h(b) - (PolyHom(h))(p).

(27) Let us consider a ring R, an R-homomorphic ring S, a homomorphism h
from R to S, an element p of the carrier of PolyRing(R), and an element
a of R. Then h(eval(p,a)) = eval((PolyHom(h))(p), h(a)).
PROOF: Define P[natural number] = for every element p of the carrier
of PolyRing(R) for every element a of R such that lenp = $; holds
h(eval(p, a)) = eval((PolyHom(h))(p), h(a)). P[0] by [7, (5), (17)], [5; (6)],
(22). For every natural number k, P[k]. O

(28) Let us consider an integral domain R, an R-homomorphic integral do-
main S, a homomorphism A from R to S, an element p of the carrier
of PolyRing(R), and elements b, x of R. Then h(eval(b - p,x)) = h(b) -
(eval((PolyHom(h))(p), h(z))). The theorem is a consequence of (27) and
(26).

Let R be aring. One can check that there exists a ring which is R-homomorphic
and R-monomorphic and there exists a ring which is R-homomorphic and R-
isomorphic and every ring which is R-monomorphic is also R-homomorphic.

Let S be an R-homomorphic, R-monomorphic ring and h be a monomor-
phism of R and S. Note that PolyHom(h) is monomorphic.

Let S be an R-isomorphic, R-homomorphic ring and kA be an isomorphism
between R and S. Let us note that PolyHom(h) is isomorphism.

Now we state the propositions:

(29) Let us consider a ring R, an R-homomorphic ring S, a homomorphism
h from R to S, and an element p of the carrier of PolyRing(R). Then
deg(PolyHom(h))(p) < degp.

(30) Let us consider a non degenerated ring R, an R-homomorphic ring S,
a homomorphism h from R to S, and a non zero element p of the carrier of
PolyRing(R). Then deg(PolyHom(h))(p) = degp if and only if h(LCp) #
0s.

Let us consider a ring R, an R-monomorphic, R-homomorphic ring S, a mo-
nomorphism h of R and S, and an element p of the carrier of PolyRing(R). Now
we state the propositions:

(31) deg(PolyHom(h))(p) = degp.
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(32) LM((PolyHom(h))(p)) = (PolyHom(h))(LM(p)). The theorem is a con-
sequence of (31).

(33) Let us consider a ring R, an R-homomorphic ring S, a homomorphism A
from R to S, an element p of the carrier of PolyRing(R), and an element
a of R. If a is a root of p, then h(a) is a root of (PolyHom(h))(p). The
theorem is a consequence of (27).

(34) Let us consider a ring R, an R-monomorphic, R-homomorphic ring S,
a monomorphism A of R and S, an element p of the carrier of PolyRing(R),
and an element a of R. Then a is a root of p if and only if h(a) is a root
of (PolyHom(h))(p). The theorem is a consequence of (27) and (33).

(35) Let us consider a ring R, an R-isomorphic, R-homomorphic ring S,
an isomorphism h between R and .S, an element p of the carrier of PolyRing
(R), and an element b of S. Then b is a root of (PolyHom(h))(p) if and only
if there exists an element a of R such that a is a root of p and h(a) = b.
The theorem is a consequence of (27).

(36) Let us consider a ring R, an R-homomorphic ring S, a homomorphism
h from R to S, and an element p of the carrier of PolyRing(R). Then
Roots(p) C {a, where a is an element of R : h(a) € Roots((PolyHom(h))
(p))}. The theorem is a consequence of (33).

(37) Let us consider a ring R, an R-monomorphic, R-homomorphic ring
S, a monomorphism h of R and S, and an element p of the carrier of
PolyRing(R). Then Roots(p) = {a, where a is an element of R : h(a) €
Roots((PolyHom(h))(p))}. The theorem is a consequence of (36) and (34).

(38) Let us consider a ring R, an R-isomorphic, R-homomorphic ring S,
an isomorphism h between R and S, and an element p of the carrier of
PolyRing(R). Then Roots((PolyHom(h))(p)) = {h(a), where a is
an element of R : a € Roots(p)}. The theorem is a consequence of (35).

5. KRONECKER’S CONSTRUCTION

In the sequel F' denotes a field, p denotes an irreducible element of the carrier
of PolyRing(F'), f denotes an element of the carrier of PolyRing(F'), and a
denotes an element of F'.

Let us consider F' and p. The functor KroneckerField(F,p) yielding a field
is defined by the term

(Det. 3) POlyRing(F)/{p}fideal'

The functor embedding(p) yielding a function from F into KroneckerField
(F,p) is defined by the term
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(Def. 4) (the canonical homomorphism of {p}-ideal into quotient field) - (the
canonical homomorphism of F' into quotient field).

Let us observe that embedding(p) is additive, multiplicative, and unity-
preserving and embedding(p) is monomorphic and KroneckerField(F,p) is F-
homomorphic and F-monomorphic.

Let us consider f. The functor f, yielding an element of the carrier of
PolyRing(KroneckerField(F, p)) is defined by the term

(Def. 5)  (PolyHom(embedding(p)))(f)-

The functor KrRoot(p) yielding an element of KroneckerField(F, p) is defined
by the term

(Def. 6)  [(OF, 1F>]EqRel(PolyRing(F),{p}*ideal)'
Now we state the propositions:

(39) (embedding (p))(a) = [CL fF] EqRel(PolyRing(F),{p}—ideal)"

(40) (fp)(n) = [f(n)IF ]EqRel(PolyRing(F),{p}*ideal)’ The theorem is a consequ-
ence of (39).

(41)  eval(fp, KrRoot(p)) = [flgqrei(PolyRing(F),{p}ideal)-
PROOF: Set z = KrRoot(p). Define P[natural number| = for every f such

that len f = $; holds eval(fy, z) = [f]EqRel(PolyRing(F)7{p},ideal). For every
natural number &, P[k]. O

(42) KrRoot(p) is a root of p,. The theorem is a consequence of (41).

(43) If f is not constant, then there exists an irreducible element p of the car-
rier of PolyRing(F") such that f, has roots. The theorem is a consequence
of (3) and (42).

(44) If embedding(p) is isomorphism, then p has roots. The theorem is a con-
sequence of (38) and (42).

(45) If p has no roots, then embedding(p) is not isomorphism.
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