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Summary. The coexistence of “classical” finite sequences [1] and their
zero-based equivalents finite 0-sequences [6] in Mizar has been regarded as a
disadvantage. However the suggested replacement of the former type with the
latter [5] has not yet been implemented, despite of several advantages of this
form, such as the identity of length and domain operators [4]. On the other hand
the number of theorems formalized using finite sequence notation is much larger
then of those based on finite 0-sequences, so such translation would require quite
an effort.

The paper addresses this problem with another solution, using the Mizar
system [3], [2]. Instead of removing one notation it is possible to introduce ope-
rators which would concatenate sequences of various types, and in this way allow
utilization of the whole range of formalized theorems. While the operation could
replace existing FS2XFS, XFS2FS commands (by using empty sequences as initial
elements) its universal notation (independent on sequences that are concatena-
ted to the initial object) allows to “forget” about the type of sequences that are
concatenated on further positions, and thus simplify the proofs.
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1. Preliminaries

Let a be a real number and b be a non negative real number. One can check
that a−′ (a+ b) is zero.

One can check that a+ b−′ a reduces to b.
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Let n, m be natural numbers. We identify n∩m with min(m,n). We identify
min(m,n) with n ∩ m. We identify max(m,n) with n ∪ m. Let n, m be non
negative real numbers. Observe that min(n + m,n) reduces to n and max(n +
m,n) reduces to n+m.

Now we state the propositions:

(1) Let us consider a binary relation f , and natural numbers n, m. Then
(f�(n+m))�n = f�n.

(2) Let us consider a function f , a natural number n, and a non zero natural
number m. Then (f�(n+m))(n) = f(n).

Let D be a non empty set, x be a sequence of D, and n be a natural number.
Let us note that dom(x�n) reduces to n. Observe that x�n is finite and transfinite
sequence-like and x�n is n-element.

2. Complex-Valued Sequences

Now we state the proposition:

(3) Let us consider complex-valued functions f , g, and a set X. Then (f ·
g)�X = (f�X) · (g�X).
Proof: For every object x such that x ∈ dom((f · g)�X) holds ((f ·
g)�X)(x) = ((f�X) · (g�X))(x). �

Let D be a non empty set and f , g be sequences of D. Let us note that f+·g
is transfinite sequence-like.

Let f be a constant complex sequence and n be a natural number. Let us
note that f ↑ n is constant and there exists a complex sequence which is empty
yielding and there exists a sequence of real numbers which is empty yielding
and every complex sequence which is empty yielding is also natural-valued and
there exists a complex sequence which is constant and real-valued.

Now we state the proposition:

(4) Let us consider a sequence s of real numbers, and a natural number n.
Then ((

∑κ
α=0 s(α))κ∈N)(n) =

∑
(s�Zn+1).

Let c be a complex number. The functor {c}n∈N yielding a complex sequence
is defined by the term

(Def. 1) N 7−→ c.

Let n be a natural number. One can check that ({c}n∈N)(n) reduces to c.
Now we state the proposition:

(5) Let us consider complex-valued functions f , g, and a set X. Then (f +
g)�X = f�X + g�X.
Proof: For every object x such that x ∈ dom((f + g)�X) holds ((f +
g)�X)(x) = (f�X + g�X)(x). �
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Let f be a 1-element finite sequence. One can verify that 〈f(1)〉 reduces to
f .

Let f be a 2-element finite sequence. Let us note that 〈f(1), f(2)〉 reduces
to f .

Let f be a 3-element finite sequence. Let us note that 〈f(1), f(2), f(3)〉
reduces to f .

Now we state the propositions:

(6) Let us consider a complex-valued finite sequence f . Then
∑
f = f(1) +∑

f�1.

(7) Let us consider a non empty, complex-valued finite sequence f . Then∏
f = f(1) · (

∏
f�1).

(8) Let us consider a natural number n, a non zero natural number m, and
an (n+m)-element finite sequence f . Then f�(n+1) = (f�n)a 〈f(n+1)〉.

(9) Let us consider a complex-valued finite sequence f , and a natural number
n. Then

∏
f =
∏

(f�n) ·
∏
f�n.

Proof: Define P[natural number] ≡
∏
f = (

∏
(f�$1)) ·(

∏
f�$1). For every

natural number k such that P[k] holds P[k+ 1] by [8, (35)], (7). For every
natural number x, P[x]. �

(10) Let us consider complex-valued finite sequences f , g. Then
∏

(f a g) =
(
∏
f) · (

∏
g). The theorem is a consequence of (9).

3. On Product and Sum of Complex Sequences

Let s be a complex sequence. The partial product of s yielding a complex
sequence is defined by

(Def. 2) it(0) = s(0) and for every natural number n, it(n+ 1) = it(n) · s(n+ 1).

Now we state the propositions:

(11) Let us consider a complex sequence f , and a natural number n. Suppose
f(n) = 0. Then (the partial product of f)(n) = 0.

(12) Let us consider a complex sequence f , and natural numbers n, m. Sup-
pose f(n) = 0. Then (the partial product of f)(n+m) = 0.
Proof: Define P[natural number] ≡ (the partial product of f)(n+$1) = 0.
P[0]. For every natural number k such that P[k] holds P[k+ 1]. For every
natural number x, P[x]. �

Let c be a complex number and n be a non zero natural number. Observe
that the functor cn is defined by the term

(Def. 3) (the partial product of {c}n∈N)(n− 1).

Now we state the proposition:
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(13) Let us consider a natural number n. Then (the partial product of
{0C}n∈N)(n) = 0. The theorem is a consequence of (12).

Let k be a natural number. Let us note that (the partial product of {0}n∈N)(k)
reduces to 0.

One can verify that every complex sequence which is empty yielding is also
absolutely summable and every sequence of real numbers which is empty yielding
is also absolutely summable.

Observe that (
∑κ
α=0(N 7−→ 0)(α))κ∈N reduces to N 7−→ 0 and the partial

product of {0}n∈N reduces to {0}n∈N. One can verify that every complex se-
quence is transfinite sequence-like and there exists a sequence of C which is
summable.

Let s1 be an empty yielding complex sequence. One can check that
∑
s1 is

zero.
Let s1 be an empty yielding sequence of real numbers. Let us note that

∑
s1

is zero.

4. Finite 0-sequences

Let c be a complex number. Observe that 〈c〉 is complex-valued.
One can verify that

∑
〈c〉 reduces to c.

Let n be a natural number. One can verify that there exists a natural-valued
finite 0-sequence which is n-element.

Let k be an object. One can check that n 7−→ k is n-element and there exists
a finite 0-sequence which is n-element.

Let f be an n-element finite 0-sequence. Let us note that f�n reduces to f .
Let n, m be natural numbers. One can check that f�(n+m) reduces to f .
Let f be a 1-element finite 0-sequence. Let us note that 〈f(0)〉 reduces to f .
Let f be a 2-element finite 0-sequence. Let us note that 〈f(0), f(1)〉 reduces

to f .
Let f be a 3-element finite 0-sequence. One can verify that 〈f(0), f(1), f(2)〉

reduces to f .
Now we state the propositions:

(14) Let us consider natural numbers n, k. If k ∈ Zn+1, then n−k is a natural
number.

(15) Let us consider complex numbers a, b, and natural numbers n, k. Suppose
k ∈ Zn+1. Then there exists an object c and there exists a natural number
l such that l = n − k and c = al · (bk). The theorem is a consequence of
(14).
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5. Shifting Sequences

Let f be a complex-valued finite 0-sequence and s1 be a complex sequence.
The functor f a s1 yielding a complex sequence is defined by the term

(Def. 4) f ∪ Shift(s1, len f).

Let f be a function. The functor s1 a f yielding a sequence of C is defined
by the term

(Def. 5) s1.

Now we state the propositions:

(16) Let us consider an object x. Then x is a real-valued complex sequence if
and only if x is a sequence of real numbers.

(17) Let us consider a sequence r1 of real numbers, and a complex sequence
c1. Suppose c1 = r1. Then the partial product of r1 = the partial product
of c1.

Let f be a complex-valued finite 0-sequence and s1 be a sequence of real
numbers. The functor f a s1 yielding a complex sequence is defined by the term

(Def. 6) f ∪ Shift(s1, len f).

Now we state the proposition:

(18) Let us consider a sequence r1 of real numbers. Then 〈〉R a r1 is a real-
valued complex sequence.

Let f be a sequence of real numbers and g be a function. The functor f a g
yielding a real-valued sequence of C is defined by the term

(Def. 7) f .

Let f be a complex-valued finite 0-sequence and s1 be a complex sequence.
Let us observe that (f a s1)� dom f reduces to f .

Let s1 be a sequence of real numbers. Let us note that (fas1)� dom f reduces
to f .

Now we state the propositions:

(19) Let us consider a complex-valued finite 0-sequence f , and a natural num-
ber x. Then (f a {0}n∈N)(x) = f(x).

(20) Let us consider a sequence f of real numbers. Then f a f is a real-valued
complex sequence.

Let f be a real-valued complex sequence. Note that =(f) is empty yielding.
One can check that <(f) reduces to f .

Let us observe that there exists a sequence of real numbers which is empty
yielding and every sequence of real numbers is transfinite sequence-like.

Let r be a real number. Let us note that <(r · (i)) is zero.
One can check that =(r · (i)) reduces to r.
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Let f be a complex-valued finite 0-sequence. Let us note that <(f) is real-
valued, finite, and transfinite sequence-like and =(f) is real-valued, finite, and
transfinite sequence-like and <(f) is (len f)-element and =(f) is (len f)-element.

Let f be a complex-valued finite sequence. Note that <(f) is real-valued and
finite sequence-like and =(f) is real-valued and finite sequence-like.

Let f be a complex-valued function. Let us observe that <(<(f)) reduces to
<(f) and <(=(f)) reduces to =(f). Let us note that =(<(f)) is empty yielding
and =(=(f)) is empty yielding.

One can check that <(<(f)+ i ·=(f)) reduces to <(f) and =(<(f)+ i ·=(f))
reduces to =(f) and <(f) + i · =(f) reduces to f .

Let n be a natural number. One can check that there exists a finite function
which is n-element.

Let f be a finite, complex-valued transfinite sequence. Note that Shift(f, n)
is finite and Shift(f, n) is (len f)-element and {0}n∈N is empty yielding.

6. Converting Complex 0-sequences into Ordinary Ones

Let f be a complex-valued finite 0-sequence. The functor Sequel f yielding
a complex sequence is defined by the term

(Def. 8) (N 7−→ 0)+·f .

Now we state the propositions:

(21) Let us consider a complex-valued finite 0-sequence f , and a natural num-
ber x. Then (Sequel f)(x) = f(x).

(22) Let us consider a complex-valued finite 0-sequence f . Then Sequel f =
f a {0}n∈N.
Proof: dom(Sequel f) = dom(f a {0}n∈N). For every natural number x,
(Sequel f)(x) = (f a {0}n∈N)(x). �

(23) Let us consider a complex sequence s1. Then s1 = <(s1) + i · =(s1).

Let us consider a complex-valued finite 0-sequence f . Now we state the
propositions:

(24) <(Sequel f) = Sequel<(f). The theorem is a consequence of (21).

(25) =(Sequel f) = Sequel=(f). The theorem is a consequence of (21).

Now we state the propositions:

(26) Let us consider a complex number c. Then 0 · (N 7−→ c) = N 7−→ 0.

(27) Let us consider a complex sequence s1, and a natural number x. Suppose
for every natural number k such that k ­ x holds s1(k) = 0. Then s1 is
summable.
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(28) Let us consider a sequence s1 of real numbers, and a natural number
x. Suppose for every natural number k such that k ­ x holds s1(k) = 0.
Then s1 is summable.

Let f be a complex-valued finite 0-sequence. One can check that Sequel f is
summable.

7. Properties of Concatenation

Let f be a finite 0-sequence and g be a finite sequence. The functor f a g
yielding a finite 0-sequence is defined by

(Def. 9) dom it = len f+len g and for every natural number k such that k ∈ dom f

holds it(k) = f(k) and for every natural number k such that k ∈ dom g

holds it(len f + k − 1) = g(k).

Let f be a finite sequence and g be a finite 0-sequence. The functor f a g
yielding a finite sequence is defined by

(Def. 10) dom it = Seg(len f + len g) and for every natural number k such that
k ∈ dom f holds it(k) = f(k) and for every natural number k such that
k ∈ dom g holds it(len f + k + 1) = g(k).

Now we state the proposition:

(29) Let us consider a finite 0-sequence f , and a finite sequence g. Then

(i) len(f a g) = len f + len g, and

(ii) len(g a f) = len f + len g.

Let n, m be natural numbers, f be an n-element finite 0-sequence, and g

be an m-element finite sequence. Let us note that f a g is (n+m)-element and
g a f is (n+m)-element.

Now we state the propositions:

(30) Let us consider a finite 0-sequence f , a finite sequence g, and a natural
number x. Then x ∈ dom(f a g) if and only if x ∈ dom f or x+ 1− len f ∈
dom g.
Proof: If x ∈ dom(f a g), then x ∈ dom f or x + 1 − len f ∈ dom g. If
x ∈ dom f or x+ 1− len f ∈ dom g, then x ∈ dom(f a g). �

(31) Let us consider a finite sequence f , a finite 0-sequence g, and a natural
number x. Then x ∈ dom(fag) if and only if x ∈ dom f or x−(len f+1) ∈
dom g.
Proof: If x ∈ dom(f a g), then x ∈ dom f or x− (len f + 1) ∈ dom g. �

(32) Let us consider a finite sequence f , and a finite 0-sequence g. Then

(i) rng(f a g) = rng f ∪ rng g, and
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(ii) rng(g a f) = rng f ∪ rng g.

Proof: rng(f a g) ⊆ rng f ∪ rng g. rng f ∪ rng g ⊆ rng(f a g). rng(ga f) ⊆
rng f ∪ rng g. rng f ∪ rng g ⊆ rng(g a f). �

(33) Let us consider a non empty finite 0-sequence f , and a finite sequence
g. Then dom(f ∪ Shift(g, len f − 1)) = Zlen f+len g.
Proof: For every object x, x ∈ dom(f ∪ Shift(g, len f − 1)) iff x ∈
Zlen f+len g. �

(34) Let us consider a finite sequence f , and a finite 0-sequence g. Then
dom(f ∪ Shift(g, len f + 1)) = Seg(len f + len g).
Proof: For every object x, x ∈ dom(f ∪ Shift(g, len f + 1)) iff x ∈
Seg(len f + len g). �

Let f be a complex-valued finite sequence. One can verify that 〈〉C a f is
complex-valued.

Let f be a complex-valued finite 0-sequence. Let us note that εC
a f is

complex-valued.
Let f be a finite 0-sequence and g be a finite sequence. One can verify that

(f a g)� len f reduces to f and (g a f)� len g reduces to g.
Now we state the propositions:

(35) Let us consider a set D, a finite 0-sequence f , and a finite sequence g of
elements of D. Then (f a g)�len f = FS2XFS(g).
Proof: For every natural number i such that i ∈ dom((f a g)�len f ) holds
((f a g)�len f )(i) = (FS2XFS(g))(i). �

(36) Every finite 0-sequence is a finite 0-sequence of rng f ∪ {1}.
(37) Let us consider a set D, a finite sequence f , and a finite 0-sequence g of

D. Then (f a g)�len f = XFS2FS(g).
Proof: len f ¬ len(f a g). For every natural number i such that i ∈
dom((f a g)�len f ) holds ((f a g)�len f )(i) = (XFS2FS(g))(i). �

Let D be a set and f be a finite 0-sequence of D. One can verify that the
functor XFS2FS(f) is defined by the term

(Def. 11) εD
a f .

Now we state the proposition:

(38) Let us consider a set D, and a finite 0-sequence f of D.
Then dom(Shift(f, 1)) = Seg len f .
Proof: For every object x such that x ∈ Seg len f holds x ∈ dom(Shift(f, 1)).
For every object x such that x ∈ dom(Shift(f, 1)) holds x ∈ Seg len f by
[7, (106)]. �

Let D be a set and f be a finite 0-sequence of D. One can verify that the
functor XFS2FS(f) is defined by the term
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(Def. 12) Shift(f, 1).

Let f be a finite sequence of elements of D. One can check that the functor
FS2XFS(f) is defined by the term

(Def. 13) 〈〉D a f .

Now we state the propositions:

(39) Let us consider a set D, and finite 0-sequences f , g of D. Then f a g =
f a XFS2FS(g).
Proof: For every natural number k such that k ∈ dom(f a g) holds
(f a g)(k) = (f a XFS2FS(g))(k). �

(40) Let us consider a set D, and finite sequences f , g of elements of D. Then
f a g = f a FS2XFS(g).
Proof: For every natural number k such that k ∈ dom(f a g) holds
(f a g)(k) = (f a FS2XFS(g))(k). �

Let f be a finite 0-sequence of R. Let us observe that Sequel f� dom f reduces
to f . One can check that Shift(f, 1) is finite sequence-like and Sequel f ↑ dom f

is empty yielding.
Now we state the propositions:

(41) Let us consider a set D, a finite sequence f of elements of D, and a fi-
nite 0-sequence g of D. Then f a g = f a XFS2FS(g). The theorem is
a consequence of (40).

(42) Let us consider a set D, a finite 0-sequence f of D, and a finite sequ-
ence g of elements of D. Then f a g = f a FS2XFS(g). The theorem is
a consequence of (39).

(43) Let us consider a set D, and finite sequences f , g of elements of D. Then
FS2XFS(f a g) = FS2XFS(f) a FS2XFS(g).
Proof: For every natural number x such that x ∈ dom(FS2XFS(f a g))
holds (FS2XFS(f a g))(x) = (FS2XFS(f) a FS2XFS(g))(x). �

Let D be a set, f be a finite sequence of elements of D, and g be a finite
0-sequence of D. Note that the functor f a g yields a finite sequence of elements
of D. Now we state the propositions:

(44) Let us consider a set D, a finite sequence f of elements of D, and a finite
0-sequence g of D. Then FS2XFS(f a g) = FS2XFS(f) a g. The theorem
is a consequence of (43) and (40).

(45) Let us consider a setD, and finite 0-sequences f , g ofD. Then XFS2FS(fa

g) = XFS2FS(f) a XFS2FS(g).
Proof: For every natural number x such that x ∈ dom(XFS2FS(f a g))
holds (XFS2FS(f a g))(x) = (XFS2FS(f) a XFS2FS(g))(x). �
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Let D be a set, f be a finite 0-sequence of D, and g be a finite sequence of
elements of D. One can check that the functor f a g yields a finite 0-sequence
of D. Now we state the propositions:

(46) Let us consider a set D, a finite 0-sequence f of D, and a finite sequence
g of elements of D. Then XFS2FS(f a g) = XFS2FS(f) a g. The theorem
is a consequence of (45) and (39).

(47) Let us consider a set D, finite 0-sequences f , g of D, and a finite sequence
h of elements of D. Then

(i) (f a g) a h = f a (g a h), and

(ii) (f a h) a g = f a (h a g), and

(iii) (h a f) a g = h a (f a g).

The theorem is a consequence of (42), (39), (43), (41), and (45).

8. Sum of Finite 0-sequences

Now we state the proposition:

(48) Let us consider a complex-valued finite 0-sequence f . Then
∑

(f�1) =
f(0).

Let n, m be natural numbers and f be an (n+m)-element finite 0-sequence.
One can verify that f�n is n-element. Let n be a natural number and p be an n-
element, complex-valued finite 0-sequence. Let us observe that −p is n-element
and p−1 is n-element and p2 is n-element and |p| is n-element and Rev(p) is
n-element.

Let m be a natural number and q be an (n + m)-element, complex-valued
finite 0-sequence. Let us observe that dom p ∩ dom q reduces to dom p. Note
that p+ q is n-element and p− q is n-element and p · q is n-element and p/q is
n-element. Let p, q be n-element, complex-valued finite 0-sequences. Note that
p + q is n-element and p − q is n-element and p · q is n-element and p/q is
n-element. Now we state the propositions:

(49) Let us consider a natural number n, and n-element, complex-valued finite
0-sequences f1, f2. Then

∑
(f1 + f2) =

∑
f1 +

∑
f2.

Proof: Define P[natural number] ≡ for every $1-element, complex-valued
finite 0-sequences f1, f2,

∑
(f1 + f2) =

∑
f1 +

∑
f2. For every natural

number k such that P[k] holds P[k+1]. For every natural number k, P[k].
�

(50) Let us consider a complex number c. Then XFS2FS(〈c〉) = 〈c〉.
Proof: For every natural number k such that k ∈ dom〈c〉 holds
(XFS2FS(〈c〉))(k) = 〈c〉(k). �
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(51) Let us consider a finite 0-sequence f of R. Then
∑

XFS2FS(f) =
∑
f .

The theorem is a consequence of (16).

(52) Let us consider a complex-valued finite 0-sequence f . Then
∑
f =∑

<(f) + (i) · (
∑
=(f)). The theorem is a consequence of (49).

(53) Let us consider a complex-valued transfinite sequence f , and a natural
number n. Then

(i) <(Shift(f, n)) = Shift(<(f), n), and

(ii) =(Shift(f, n)) = Shift(=(f), n).

Let us consider a complex-valued finite 0-sequence f .

(54) (i) XFS2FS(<(f)) = <(XFS2FS(f)), and

(ii) XFS2FS(=(f)) = =(XFS2FS(f)).

(55)
∑

XFS2FS(f) =
∑
f . The theorem is a consequence of (52), (51), and

(53).

(56) Let us consider a finite sequence f of elements of C. Then
∑

FS2XFS(f) =∑
f . The theorem is a consequence of (55).

(57) Let us consider a real-valued finite 0-sequence f . Then
∑
f =
∑

Sequel f .

Note that there exists a real-valued complex sequence which is summable.
Let f be a summable complex sequence. The functors: <(f) and =(f) yield

summable, real-valued complex sequences. Now we state the propositions:

(58) Let us consider a complex-valued finite 0-sequence f . Then
∑
f =∑

Sequel f . The theorem is a consequence of (57), (24), (25), and (52).

(59) Let us consider a finite 0-sequence f of C, and a finite sequence g of
elements of C. Then

(i)
∑

(f a g) =
∑
f +
∑
g, and

(ii)
∑

(g a f) =
∑
g +
∑
f .

The theorem is a consequence of (39), (56), (40), and (55).

9. Product of Finite 0-sequences

Let f be a finite 0-sequence. The functor
∏
f yielding an element of C is

defined by the term

(Def. 14) ·C � f .

Now we state the proposition:

(60) Let us consider an empty finite 0-sequence f . Then
∏
f = 1.

Let c be a complex number. One can check that
∏
〈c〉 reduces to c.
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(61) Let us consider a natural number n, and a complex-valued finite 0-
sequence f . Suppose n ∈ dom f . Then

∏
(f�n) · f(n) =

∏
(f�(n+ 1)).

(62) Let us consider a natural number n, and a complex sequence f . Then∏
(f�n) · f(n) =

∏
(f�(n+ 1)). The theorem is a consequence of (61).

(63) Let us consider a non empty, complex-valued finite 0-sequence f . Then∏
(f�1) = f(0).

(64) Let us consider a natural number n, and n-element, complex-valued finite
0-sequences f1, f2. Then

∏
(f1 · f2) = (

∏
f1) · (

∏
f2).

Proof: Define P[natural number] ≡ for every $1-element, complex-valued
finite 0-sequences f1, f2,

∏
(f1 · f2) = (

∏
f1) · (

∏
f2). For every natural

number k such that P[k] holds P[k + 1]. P[0]. For every natural number
k, P[k]. �

(65) Let us consider a complex sequence f , and a natural number n. Then∏
(f�(n+ 1)) = (the partial product of f)(n).
Proof: Define P[natural number] ≡

∏
(f�($1+1)) = (the partial product

of f)($1). P[0]. For every natural number k such that P[k] holds P[k+ 1].
For every natural number x, P[x]. �

(66) Let us consider a complex-valued finite 0-sequence f .
Then

∏
XFS2FS(f) =

∏
f .

Proof: Define P[natural number] ≡
∏

XFS2FS(f�$1) =
∏

(f�$1). P[0].
For every natural number k such that P[k] holds P[k+1]. For every natural
number x, P[x]. �

(67) Let us consider a finite sequence f of elements of C. Then
∏

FS2XFS(f) =∏
f . The theorem is a consequence of (66).

(68) Let us consider a finite 0-sequence f of C, and a finite sequence g of
elements of C. Then

(i)
∏

(f a g) = (
∏
f) · (

∏
g), and

(ii)
∏

(g a f) = (
∏
g) · (
∏
f).

The theorem is a consequence of (66), (46), (10), and (40).
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