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Summary. In this article, using the Mizar system [1], [2], we discuss the
continuity of bounded linear operators on normed linear spaces. In the first sec-
tion, it is discussed that bounded linear operators on normed linear spaces are
uniformly continuous and Lipschitz continuous. Especially, a bounded linear ope-
rator on the dense subset of a complete normed linear space has a unique natural
extension over the whole space. In the next section, several basic currying pro-
perties are formalized.

In the last section, we formalized that continuity of bilinear operator is equ-
ivalent to both Lipschitz continuity and local continuity. We referred to [4], [13],
and [3] in this formalization.
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1. Uniform Continuity and Lipschitz Continuity of Bounded
Linear Operators

From now on S, T , W , Y denote real normed spaces, f denotes partial
function from S to T , Z denotes a subset of S, and i, n denote natural numbers.
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Now we state the propositions:

(1) Let us consider real normed spaces E, F , a subset E1 of E, and a partial
function f from E to F . Suppose E1 is dense and F is complete and
dom f = E1 and f is uniformly continuous on E1. Then

(i) there exists a function g from E into F such that g�E1 = f and
g is uniformly continuous on the carrier of E and for every point
x of E, there exists a sequence s0 of E such that rng s0 ⊆ E1 and
s0 is convergent and lim s0 = x and f∗s0 is convergent and g(x) =
lim(f∗s0) and for every point x of E and for every sequence s0 of E
such that rng s0 ⊆ E1 and s0 is convergent and lim s0 = x holds f∗s0
is convergent and g(x) = lim(f∗s0), and

(ii) for every functions g1, g2 from E into F such that g1�E1 = f and g1
is continuous on the carrier of E and g2�E1 = f and g2 is continuous
on the carrier of E holds g1 = g2.

Proof: For every point x of E and for every sequence s0 of E such that
rng s0 ⊆ E1 and s0 is convergent for every real number s such that 0 < s
there exists a natural number n such that for every natural numberm such
that n ¬ m holds ‖(f∗s0)(m) − (f∗s0)(n)‖ < s. For every point x of E
and for every sequence s0 of E such that rng s0 ⊆ E1 and s0 is convergent
holds f∗s0 is convergent by [12, (5)]. For every point x of E and for every
sequences s1, s2 of E such that rng s1 ⊆ E1 and s1 is convergent and
lim s1 = x and rng s2 ⊆ E1 and s2 is convergent and lim s2 = x holds
lim(f∗s1) = lim(f∗s2) by [7, (14)].

Define P[object, object] ≡ there exists a sequence s0 of E such that
rng s0 ⊆ E1 and s0 is convergent and lim s0 = $1 and f∗s0 is convergent
and $2 = lim(f∗s0). For every element x of E, there exists an element y of
F such that P[x, y]. Consider g being a function from E into F such that
for every element x of E, P[x, g(x)]. For every object x such that x ∈ dom f
holds f(x) = g(x). For every point x of E and for every sequence s0 of
E such that rng s0 ⊆ E1 and s0 is convergent and lim s0 = x holds f∗s0
is convergent and g(x) = lim(f∗s0). For every real number r such that
0 < r there exists a real number s such that 0 < s and for every points
x1, x2 of E such that x1, x2 ∈ the carrier of E and ‖x1 − x2‖ < s holds
‖g/x1 − g/x2‖ < r. For every element x of E, g1(x) = g2(x) by [5, (14)], [9,
(18)]. �

(2) Let us consider real normed spaces E, F , G, a point f of the real norm
space of bounded linear operators from E into F , and a point g of the real
norm space of bounded linear operators from F into G. Then there exists
a point h of the real norm space of bounded linear operators from E into



Continuity of bounded linear operators on normed linear ... 233

G such that

(i) h = g · f , and

(ii) ‖h‖ ¬ ‖g‖ · ‖f‖.

Proof: Reconsider L1 = f as a Lipschitzian linear operator from E into
F . Reconsider L2 = g as a Lipschitzian linear operator from F into G. Set
L3 = L2 · L1. For every real number t such that t ∈ PreNorms(L3) holds
t ¬ ‖g‖ · ‖f‖ by [11, (16)]. �

(3) Let us consider real normed spaces E, F . Then every Lipschitzian linear
operator from E into F is Lipschitzian on the carrier of E and uniformly
continuous on the carrier of E.
Proof: Consider K being a real number such that 0 ¬ K and for every
vector x of E, ‖L(x)‖ ¬ K · ‖x‖. Set r = K+ 1. Set E0 = the carrier of E.
For every points x1, x2 of E such that x1, x2 ∈ E0 holds ‖L/x1 −L/x2‖ ¬
r · ‖x1 − x2‖. �

(4) Let us consider real normed spaces E, F , a subreal normal space E1 of
E, and a point f of the real norm space of bounded linear operators from
E1 into F . Suppose F is complete and there exists a subset E0 of E such
that E0 = the carrier of E1 and E0 is dense. Then

(i) there exists a point g of the real norm space of bounded linear
operators from E into F such that dom g = the carrier of E and
g�(the carrier of E1) = f and ‖g‖ = ‖f‖ and there exists a partial
function L1 from E to F such that L1 = f and for every point x of
E, there exists a sequence s0 of E such that rng s0 ⊆ the carrier of
E1 and s0 is convergent and lim s0 = x and L1∗s0 is convergent and
g(x) = lim(L1∗s0) and for every point x of E and for every sequence
s0 of E such that rng s0 ⊆ the carrier of E1 and s0 is convergent and
lim s0 = x holds L1∗s0 is convergent and g(x) = lim(L1∗s0), and

(ii) for every points g1, g2 of the real norm space of bounded linear
operators from E into F such that g1�(the carrier of E1) = f and
g2�(the carrier of E1) = f holds g1 = g2.

Proof: Consider E0 being a subset of E such that E0 = the carrier of
E1 and E0 is dense. Reconsider L = f as a Lipschitzian linear operator
from E1 into F . Reconsider L1 = L as a partial function from E to F .
Consider K being a real number such that 0 ¬ K and for every vector x
of E1, ‖L(x)‖ ¬ K · ‖x‖. Set r = K + 1. For every points x1, x2 of E such
that x1, x2 ∈ E0 holds ‖L1/x1 − L1/x2‖ ¬ r · ‖x1 − x2‖.

There exists a function P3 from E into F such that P3�E0 = L1
and P3 is uniformly continuous on the carrier of E and for every point
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x of E, there exists a sequence s0 of E such that rng s0 ⊆ E0 and s0 is
convergent and lim s0 = x and L1∗s0 is convergent and P3(x) = lim(L1∗s0)
and for every point x of E and for every sequence s0 of E such that
rng s0 ⊆ E0 and s0 is convergent and lim s0 = x holds L1∗s0 is convergent
and P3(x) = lim(L1∗s0) and for every functions P1, P2 from E into F such
that P1�E0 = L1 and P1 is continuous on the carrier of E and P2�E0 = L1
and P2 is continuous on the carrier of E holds P1 = P2.

Consider P3 being a function from E into F such that P3�E0 = L1
and P3 is uniformly continuous on the carrier of E and for every point
x of E, there exists a sequence s0 of E such that rng s0 ⊆ E0 and s0 is
convergent and lim s0 = x and L1∗s0 is convergent and P3(x) = lim(L1∗s0)
and for every point x of E and for every sequence s0 of E such that
rng s0 ⊆ E0 and s0 is convergent and lim s0 = x holds L1∗s0 is convergent
and P3(x) = lim(L1∗s0) and for every point x of E, there exists a sequence
s0 of E such that rng s0 ⊆ E0 and s0 is convergent and lim s0 = x and
L1∗s0 is convergent and P3(x) = lim(L1∗s0) and for every point x of E
and for every sequence s0 of E such that rng s0 ⊆ E0 and s0 is convergent
and lim s0 = x holds L1∗s0 is convergent and P3(x) = lim(L1∗s0). For
every points x, y of E, P3(x+ y) = P3(x) + P3(y). For every point x of E
and for every real number a, P3(a · x) = a · P3(x).

Reconsider g = P3 as a point of the real norm space of bounded li-
near operators from E into F . For every real number t such that t ∈
PreNorms(L) holds t ¬ ‖g‖. For every real number t such that t ∈
PreNorms(P3) holds t ¬ ‖f‖. For every points g1, g2 of the real norm
space of bounded linear operators from E into F such that g1�(the carrier
of E1) = f and g2�(the carrier of E1) = f holds g1 = g2 by (3), [8, (7)],
(1). �

2. Basic Properties of Currying

Now we state the propositions:

(5) Let us consider non empty sets E, F , G, a function f from E × F into
G, and an object x. If x ∈ E, then (curry f)(x) is a function from F into
G.

(6) Let us consider non empty sets E, F , G, a function f from E × F into
G, and an object y. If y ∈ F , then (curry′ f)(y) is a function from E into
G.

Let us consider non empty sets E, F , G, a function f from E × F into G,
and objects x, y. Now we state the propositions:
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(7) If x ∈ E and y ∈ F , then (curry f)(x)(y) = f(x, y).

(8) If x ∈ E and y ∈ F , then (curry′ f)(y)(x) = f(x, y).

Let E, F , G be real linear spaces and f be a function from (the carrier of
E) × (the carrier of F ) into the carrier of G. We say that f is bilinear if and
only if

(Def. 1) for every point v of E such that v ∈ dom(curry f) holds (curry f)(v)
is an additive, homogeneous function from F into G and for every point
v of F such that v ∈ dom(curry′ f) holds (curry′ f)(v) is an additive,
homogeneous function from E into G.

3. Equivalence of Some Definitions of Continuity of Bilinear
Operators

Now we state the proposition:

(9) Let us consider real linear spaces E, F , G. Then (the carrier of E) ×
(the carrier of F ) 7−→ 0G is bilinear.
Proof: Set f = (the carrier of E)× (the carrier of F ) 7−→ 0G. For every
point x of E, (curry f)(x) is an additive, homogeneous function from F into
G. For every point x of F such that x ∈ dom(curry′ f) holds (curry′ f)(x)
is an additive, homogeneous function from E into G. �

Let E, F , G be real linear spaces. Observe that there exists a function from
(the carrier of E)× (the carrier of F ) into the carrier of G which is bilinear.

Now we state the proposition:

(10) Let us consider real linear spaces E, F , G, and a function L from
(the carrier of E) × (the carrier of F ) into the carrier of G. Then L is
bilinear if and only if for every points x1, x2 of E and for every point y
of F , L(x1 + x2, y) = L(x1, y) + L(x2, y) and for every point x of E and
for every point y of F and for every real number a, L(a ·x, y) = a ·L(x, y)
and for every point x of E and for every points y1, y2 of F , L(x, y1+y2) =
L(x, y1) + L(x, y2) and for every point x of E and for every point y of
F and for every real number a, L(x, a · y) = a · L(x, y). The theorem is
a consequence of (8) and (7).

Let E, F , G be real linear spaces and f be a function from E × F into G.
We say that f is bilinear if and only if

(Def. 2) there exists a function g from (the carrier of E)× (the carrier of F ) into
the carrier of G such that f = g and g is bilinear.

One can verify that there exists a function from E × F into G which is
bilinear.
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Let f be a function from E × F into G, x be a point of E, and y be a po-
int of F . Note that the functor f(x, y) yields a point of G. Now we state the
proposition:

(11) Let us consider real linear spaces E, F , G, and a function L from E ×
F into G. Then L is bilinear if and only if for every points x1, x2 of E
and for every point y of F , L(x1 + x2, y) = L(x1, y) + L(x2, y) and for
every point x of E and for every point y of F and for every real number a,
L(a · x, y) = a ·L(x, y) and for every point x of E and for every points y1,
y2 of F , L(x, y1+ y2) = L(x, y1) +L(x, y2) and for every point x of E and
for every point y of F and for every real number a, L(x, a ·y) = a ·L(x, y).

Let E, F , G be real linear spaces.
A bilinear operator from E × F into G is a bilinear function from E × F

into G. Let E, F , G be real normed spaces and f be a function from E×F into
G. We say that f is bilinear if and only if

(Def. 3) there exists a function g from (the carrier of E)× (the carrier of F ) into
the carrier of G such that f = g and g is bilinear.

Let us note that there exists a function from E×F into G which is bilinear.
A bilinear operator from E × F into G is a bilinear function from E×F into

G. From now on E, F , G denote real normed spaces, L denotes a bilinear ope-
rator from E × F into G, x denotes an element of E, and y denotes an element
of F .

Let E, F , G be real normed spaces, f be a function from E×F into G, x be
a point of E, and y be a point of F . Note that the functor f(x, y) yields a point
of G. Now we state the propositions:

(12) Let us consider real normed spaces E, F , G, and a function L from E×
F into G. Then L is bilinear if and only if for every points x1, x2 of E
and for every point y of F , L(x1 + x2, y) = L(x1, y) + L(x2, y) and for
every point x of E and for every point y of F and for every real number a,
L(a · x, y) = a ·L(x, y) and for every point x of E and for every points y1,
y2 of F , L(x, y1+ y2) = L(x, y1) +L(x, y2) and for every point x of E and
for every point y of F and for every real number a, L(x, a ·y) = a ·L(x, y).

(13) Let us consider real normed spaces E, F , G, and a bilinear operator f
from E × F into G. Then

(i) f is continuous on the carrier of E × F iff f is continuous in 0E×F ,
and

(ii) f is continuous on the carrier of E ×F iff there exists a real number
K such that 0 ¬ K and for every point x of E and for every point y
of F , ‖f(x, y)‖ ¬ K · ‖x‖ · ‖y‖.
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Proof: If f is continuous in 0E×F , then there exists a real number K
such that 0 ¬ K and for every point x of E and for every point y of F ,
‖f(x, y)‖ ¬ K · ‖x‖ · ‖y‖ by [9, (7)], [6, (22)], [10, (18)]. If there exists
a real number K such that 0 ¬ K and for every point x of E and for every
point y of F , ‖f(x, y)‖ ¬ K · ‖x‖ · ‖y‖, then f is continuous on the carrier
of E × F . �
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