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Klein-Beltrami Model. Part I
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Summary. Tim Makarios (with Isabelle/HOL1) and John Harrison (with
HOL-Light2) shown that “the Klein-Beltrami model of the hyperbolic plane sa-
tisfy all of Tarski’s axioms except his Euclidean axiom” [3], [4], [14], [5].

With the Mizar system [2], [7] we use some ideas are taken from Tim Maka-
rios’ MSc thesis [13] for the formalization of some definitions (like the absolute)
and lemmas necessary for the verification of the independence of the parallel
postulate. This work can be also treated as further development of Tarski’s geo-
metry in the formal setting [6]. Note that the model presented here, may also
be called “Beltrami-Klein Model”, “Klein disk model”, and the “Cayley-Klein
model” [1].
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1. Preliminaries

From now on a, b, c, d, e, f denote real numbers, g denotes a positive real
number, x, y denote complex numbers, S, T denote elements of R2, and u, v,
w denote elements of E3

T.
Now we state the propositions:

(1) Let us consider elements P1, P2, P3 of the projective space over E3
T.

Suppose u is not zero and v is not zero and w is not zero and P1 =
the direction of u and P2 = the direction of v and P3 = the direction of
w. Then P1, P2 and P3 are collinear if and only if 〈|u, v, w|〉 = 0.

1https://www.isa-afp.org/entries/Tarskis_Geometry.html
2https://github.com/jrh13/hol-light/blob/master/100/independence.ml
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(2) If (a 6= 0 or b 6= 0) and a · d = b · c, then there exists e such that c = e · a
and d = e · b.

(3) If a2 + b2 = 1 and (c · a)2 + (c · b)2 = 1, then c = 1 or c = −1.

(4) a · u+ (−a) · u = 0E3T .

(5) If 0 ¬ a and c < 0 and ∆(a, b, c) = 0, then a = 0.
Proof: 0 ¬ b2. �

(6)
∑

(2(T − S)) =
∑

(2(S − T )).

(7) If a2 + b2 = 1 and c2 + d2 = 1 and c · a+ d · b = 1, then b · c = a · d.
(8) If a2 + b2 = 1 and a = 0, then b = 1 or b = −1.

(9) 0 ¬ a2.
(10) If (a · b)2 + b2 = 1, then b = 1√

1+a2
or b = −1√

1+a2
.

(11) If a 6= 0 and b2 = 1 + a · a, then a · 1
b · a ·

−1
b + 1

b ·
−1
b = −1.

Proof: b 6= 0. �

(12) a2 · 1
b2

= (ab )
2.

(13) a2 + b2 = 1 if and only if [a, b] ∈ circle(0, 0, 1).

(14) a2 + b2 = g2 if and only if [a, b] ∈ circle(0, 0, g).

(15) If a 6= 0 and −1 < a < 1 and b = 2+
√

∆(a·a,−2,1)
2·a·a , then (1 + a · a) · b · b−

2 · b+ 1− b · b = 0.
Proof: 0 ¬ 1− a2. ∆(a · a,−2, 1) ­ 0. �

(16) Suppose a2 + b2 = 1 and −1 < c < 1. Then there exists d and there
exists e and there exists f such that e = d · c · a + (1 − d) · (−b) and
f = d · c · b+ (1− d) · a and e2 + f2 = d2.

(17) If a2 + b2 < 1 and c2 + d2 = 1, then (a+c2 )2 + ( b+d2 )2 < 1.

(18) If |S|2 ¬ 1, then 0 ¬ ∆(
∑

(2(T − S)), b,
∑

(2S)− 1).

(19) If a2 + b2 is negative, then a = 0 and b = 0.

(20) If u = [a, b, 1] and v = [c, d, 1] and w = [a+c2 ,
b+d

2 , 1], then 〈|u, v, w|〉 = 0.

(21) (i) a · |(u, v)| = |(a · u, v)|, and

(ii) a · |(u, v)| = |(u, a · v)|.
In the sequel a, b, c denote elements of RF andM , N denote square matrices

over RF of dimension 3.
Now we state the propositions:

(22) If M = symmetric3(0, 0, 0, 0, 0, 0), then DetM = 0RF .

(23) Suppose N = 〈〈a, 0, 0〉, 〈0, b, 0〉, 〈0, 0, c〉〉. Then

(i) MT ·(N ·M)1,1 = a·(M1,1)·(M1,1)+b·(M2,1)·(M2,1)+c·(M3,1)·(M3,1),
and
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(ii) MT ·(N ·M)1,2 = a·(M1,1)·(M1,2)+b·(M2,1)·(M2,2)+c·(M3,1)·(M3,2),
and

(iii) MT ·(N ·M)1,3 = a·(M1,1)·(M1,3)+b·(M2,1)·(M2,3)+c·(M3,1)·(M3,3),
and

(iv) MT ·(N ·M)2,1 = a·(M1,2)·(M1,1)+b·(M2,2)·(M2,1)+c·(M3,2)·(M3,1),
and

(v) MT ·(N ·M)2,2 = a·(M1,2)·(M1,2)+b·(M2,2)·(M2,2)+c·(M3,2)·(M3,2),
and

(vi) MT ·(N ·M)2,3 = a·(M1,2)·(M1,3)+b·(M2,2)·(M2,3)+c·(M3,2)·(M3,3),
and

(vii) MT ·(N ·M)3,1 = a·(M1,3)·(M1,1)+b·(M2,3)·(M2,1)+c·(M3,3)·(M3,1),
and

(viii) MT ·(N ·M)3,2 = a·(M1,3)·(M1,2)+b·(M2,3)·(M2,2)+c·(M3,3)·(M3,2),
and

(ix) MT ·(N ·M)3,3 = a·(M1,3)·(M1,3)+b·(M2,3)·(M2,3)+c·(M3,3)·(M3,3).

(24) Let us consider natural numbers m, n, a square matrix M over RF of
dimensionm, and a matrix N over RF of dimensionm×n. Supposem > 0.
Then M ·N is a matrix over RF of dimension m×n.

In the sequel D denotes a non empty set, d1, d2, d3 denote elements of D,
A denotes a matrix over D of dimension 1×3, and B denotes a matrix over D
of dimension 3×1.

Now we state the propositions:

(25) Let us consider a square matrix M over D of dimension 1. Then MT =
M .

(26) AT is 3,1-size.

(27) 〈〈d1, d2, d3〉〉 is a matrix over D of dimension 1×3.

(28) 〈〈d1〉, 〈d2〉, 〈d3〉〉 is a matrix over D of dimension 3×1.

(29) A = 〈〈A1,1, A1,2, A1,3〉〉.
Proof: Reconsider B = 〈〈A1,1, A1,2, A1,3〉〉 as a matrix over D of dimen-
sion 1×3. For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
A holds Ai,j = Bi,j . �

(30) B = 〈〈B1,1〉, 〈B2,1〉, 〈B3,1〉〉.
Proof: Reconsider C = 〈〈B1,1〉, 〈B2,1〉, 〈B3,1〉〉 as a matrix over D of di-
mension 3×1. For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices
of B holds Bi,j = Ci,j . �

(31) AT = 〈〈A1,1〉, 〈A1,2〉, 〈A1,3〉〉. The theorem is a consequence of (26) and
(30).
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(32) There exists d1 and there exists d2 and there exists d3 such that A = 〈〈d1,
d2, d3〉〉. The theorem is a consequence of (29).

(33) Let us consider a finite sequence p of elements of R1. If len p = 3, then
ColVec2Mx(M2F(p)) = p. The theorem is a consequence of (30).

(34) Let us consider a square matrix M over RF of dimension 3, a square
matrix M1 over R of dimension 3, an element v of E3

T, a finite sequence
u1 of elements of RF, a finite sequence u2 of elements of R, and a finite
sequence p of elements of R1. Suppose p = M · u1 and v = M2F(p) and
lenu1 = 3 and u1 = u2 and M1 =M . Then v =M1 · u2.

(35) Let us consider a square matrix N over R of dimension 3, and a finite
sequence u1 of elements of R. If u1 = 0E3T , then N · u1 = 0E3T .

(36) Let us consider a square matrixN over R of dimension 3, a finite sequence
u1 of elements of R, and an element u of E3

T. Suppose N is invertible and
u = u1 and u is not zero. Then N ·u1 6= 0E3T . The theorem is a consequence
of (35).

(37) Let us consider an invertible square matrix N over RF of dimension 3,
a square matrix N2 over R of dimension 3, elements P , Q of the projective
space over E3

T, non zero elements u, v of E3
T, and finite sequences v1, u2

of elements of R. Suppose P = the direction of u and Q = the direction
of v and u = u2 and v = v1 and N = N2 and N2 · u2 = v1. Then
(the homography of N)(P ) = Q. The theorem is a consequence of (34).

(38) Let us consider an invertible square matrix N over RF of dimension 3,
a square matrix N2 over R of dimension 3, elements P , Q of the projective
space over E3

T, non zero elements u, v of E3
T, finite sequences v1, u2 of

elements of R, and a non zero real number a. Suppose P = the direction
of u and Q = the direction of v and u = u2 and v = v1 and N = N2 and
N2 · u2 = a · v1. Then (the homography of N)(P ) = Q. The theorem is
a consequence of (34) and (36).

Let us consider a finite sequence p of elements of R and a square matrix M
over R of dimension 3. Now we state the propositions:

(39) If len p = 3, then |(a · p,M · (b · p))| = a · b · |(p,M · p)|.
(40) If len p = 3, then SumAll QuadraticForm(a · p,M, b · p) =
a · b · (SumAll QuadraticForm(p,M, p)). The theorem is a consequence of
(39).

(41) Let us consider real numbers a, b. Then [a, b, 1] is not zero.

(42) Let us consider an element P of E2
T, an element Q of E2

T, and a real
number r. Then P ∈ Sphere(Q, r) if and only if P ∈ circle(Q(1), Q(2), r).

In the sequel u, v denote non zero elements of E3
T.
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(43) If the direction of u = the direction of v and u(3) = v(3) and v(3) 6= 0,
then u = v.

The functor Dir101 yielding a point of the projective space over E3
T is defined

by the term

(Def. 1) the direction of [1, 0, 1].

The functor Dirm101 yielding a point of the projective space over E3
T is

defined by the term

(Def. 2) the direction of [−1, 0, 1].

The functor Dir011 yielding a point of the projective space over E3
T is defined

by the term

(Def. 3) the direction of [0, 1, 1].

Now we state the propositions:

(44) (i) Dir101, Dirm101 and Dir011 are not collinear, and

(ii) Dir101, Dirm101 and Dir010 are not collinear, and

(iii) Dir101, Dir011 and Dir010 are not collinear, and

(iv) Dirm101, Dir011 and Dir010 are not collinear.
Proof: Dir101, Dirm101 and Dir011 are not collinear. Dir101, Dirm101
and Dir010 are not collinear. Dir101, Dir011 and Dir010 are not collinear.
Dirm101, Dir011 and Dir010 are not collinear. �

(45) symmetric3(1, 1, 1, 0, 0, 0) = I3×3
RF .

(46) Let us consider elements r, a, b, c, d, e, f , g, h, i of RF, and a square
matrix M over RF of dimension 3. Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h,
i〉〉. Then r ·M = 〈〈r · a, r · b, r · c〉, 〈r · d, r · e, r · f〉, 〈r · g, r · h, r · i〉〉.

(47) Let us consider a real number a, and an element r of RF. Suppose r =
a · a. Then (symmetric3(a, a,−a, 0, 0, 0)) · (symmetric3(a, a,−a, 0, 0, 0)) =
r · (I3×3

RF ). The theorem is a consequence of (46).

Let us consider a non zero real number a. Now we state the propositions:

(48) (symmetric3(a, a,−a, 0, 0, 0)) · (symmetric3( 1
a ,

1
a ,−

1
a , 0, 0, 0)) = I3×3

RF .

(49) (symmetric3( 1
a ,

1
a ,−

1
a , 0, 0, 0))·(symmetric3(a, a,−a, 0, 0, 0)) = I3×3

RF . The
theorem is a consequence of (48).

(50) (symmetric3(1, 1,−1, 0, 0, 0)) · (symmetric3(1, 1,−1, 0, 0, 0)) = I3×3
RF . The

theorem is a consequence of (48).

(51) Let us consider a non zero real number a, and a square matrix N over RF

of dimension 3. If N = symmetric3(a, a,−a, 0, 0, 0), then N is invertible.
The theorem is a consequence of (48) and (49).

(52) (i) symmetric3(1, 1,−1, 0, 0, 0) is an invertible square matrix over RF

of dimension 3, and
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(ii) (symmetric3(1, 1,−1, 0, 0, 0))` = symmetric3(1, 1,−1, 0, 0, 0).
The theorem is a consequence of (50).

(53) Let us consider an invertible square matrix N over RF of dimension
3, a square matrix N1 over RF of dimension 3, and square matrices M ,
N2 over R of dimension 3. Suppose M = symmetric3(1, 1,−1, 0, 0, 0) and
N1 = M and N2 = (RF → R)N`. Then NT ·N1 ·N = ((RF → R)((R →
RF)N2

T)`) ·M · ((RF → R)((R→ RF)N2)`).
Proof: (RF → R)((R→ RF)N2

T)` = NT by [15, (13), (16)]. �

(54) Let us consider a natural number n, an element a of RF, a real number
r, a square matrix A over RF of dimension n, and a square matrix r1 over
R of dimension n. If a = r and A = r1, then a ·A = r · r1.

(55) Let us consider a natural number n, an element a of RF, and square
matrices A, B over RF of dimension n. If n > 0, then (a ·A) ·B = a ·(A ·B).
The theorem is a consequence of (54).

(56) symmetric3(a, a,−a, 0, 0, 0) = a · (symmetric3(1, 1,−1, 0, 0, 0)). The the-
orem is a consequence of (46).

(57) If M = symmetric3(a, a,−a, 0, 0, 0), then M ·M ·M =
a · a · a · (symmetric3(1, 1,−1, 0, 0, 0)). The theorem is a consequence of
(47), (55), and (56).

Let us consider a natural number n, a real number a, a square matrix M
over R of dimension n, and a finite sequence x of elements of R. Now we state
the propositions:

(58) If n > 0 and lenx = n, then M · (a · x) = (a ·M) · x.
(59) If n > 0 and lenx = n, then a · (M · x) = (a ·M) · x. The theorem is

a consequence of (58).

(60) Let us consider a natural number n, and a square matrix N over R of
dimension n. Suppose N is invertible. Then

(i) NT is invertible, and

(ii) InvNT = (InvN)T.

(61) Let us consider a non zero real number r, and matricesN , O,M over R of
dimension 3×3. Suppose N is invertible andM = r ·O andM = NT ·O ·N .
Then (InvN)T ·O · (InvN) = 1

r ·O. The theorem is a consequence of (60).

(62) Let us consider a real number r, square matrices M , N over RF of
dimension 3, and square matrices M1, N2 over R of dimension 3. Suppose
M1 = M and N2 = N and N is symmetric and M1 = r ·N2. Then M is
symmetric.

Let us consider a real number r and square matrices O, M over R of dimen-
sion 3. Now we state the propositions:
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(63) Suppose O = symmetric3(1, 1,−1, 0, 0, 0) and M = r ·O. Then

(i) O ·M = r · (1R matrix(3)), and

(ii) M ·O = r · (1R matrix(3)).

The theorem is a consequence of (50).

(64) If O = symmetric3(1, 1,−1, 0, 0, 0) and M = r · O, then (MT · O)T · O ·
(MT ·O) = r2 ·O.
Proof: Reconsider M1 = M as a square matrix over RF of dimension 3.
M1 is symmetric. r · (1R matrix(3)) ·O · (r · (1R matrix(3))) = r2 ·O. �

(65) Let us consider square matrices O, N over R of dimension 3. Then (NT ·
O)T ·O · (NT ·O) = (OT · (N ·O ·NT)) ·O.

(66) Let us consider square matrices N2,M1 over R of dimension 3, and finite
sequences p1, p2, p3 of elements of R. Suppose p1 = 〈1, 0, 0〉 and p2 = 〈0,
1, 0〉 and p3 = 〈0, 0, 1〉 and N2 · p1 = M1 · p1 and N2 · p2 = M1 · p2 and
N2 · p3 =M1 · p3. Then N2 =M1.

(67) Let us consider a non zero real number a, and an element u of E3
T. If

a · u = 0E3T , then u is zero.

(68) Let us consider non zero elements u, v of E3
T, and real numbers a, b.

Suppose (a 6= 0 or b 6= 0) and a · u + b · v = 0E3T . Then u and v are
proportional.
Proof: Reconsider a1 = a · u, b1 = b · v as an element of E3

T. Consider c
being a real number such that c 6= 0 and a1 = c · b1. a 6= 0 and b 6= 0 by
[11, (3), (1)]. �

(69) Let us consider an invertible square matrix N over RF of dimension 3,
and points P , Q, R of the projective space over E3

T. Suppose P 6= Q and
(the homography of N)(P ) = Q and (the homography of N)(Q) = P and
P , Q and R are collinear. Then (the homography of N)((the homography
of N)(R)) = R.
Proof: Consider u1, v1 being elements of E3

T, u4 being a finite sequence
of elements of RF, p1 being a finite sequence of elements of R1 such that
P = the direction of u1 and u1 is not zero and u1 = u4 and p1 = N · u4

and v1 = M2F(p1) and v1 is not zero and (the homography of N)(P ) =
the direction of v1. Consider u2, v2 being elements of E3

T, u5 being a finite
sequence of elements of RF, p2 being a finite sequence of elements of R1

such that Q = the direction of u2 and u2 is not zero and u2 = u5 and
p2 = N · u5 and v2 = M2F(p2) and v2 is not zero and (the homography
of N)(Q) = the direction of v2. Consider u3 being an element of E3

T such
that u3 is not zero and R = the direction of u3. Consider l1 being a real
number such that l1 6= 0 and v2 = l1 · u1. Consider l2 being a real number
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such that l2 6= 0 and v1 = l2 · u2. 〈|u1, u2, u3|〉 = 0. Consider a, b, c being
real numbers such that a · u1 + b · u2 + c · u3 = 0E3T and (a 6= 0 or b 6= 0 or
c 6= 0). c 6= 0. (The homography of N ·N)(R) = R. �

(70) Let us consider a natural number n, elements u, v of EnT, and real numbers
a, b. If (1−a)·u+a·v = (1−b)·v+b·u, then (1−(a+b))·u = (1−(a+b))·v.
Proof: Reconsider r1 = u, r2 = v as an element of Rn. (1 − a) · r1 + a ·
r2−a · r2 = (1−a) · r1. (1− b) · r2−a · r2 + b · r1− b · r1 = (1− b) · r2−a · r2.
�

(71) The projective space over E3
T is proper.

The real projective plane yielding a non empty, proper projective plane de-
fined in terms of collinearity is defined by the term

(Def. 4) the projective space over E3
T.

From now on P , Q, R denote points of Inc-ProjSp(the real projective plane),
L denotes a line of Inc-ProjSp(the real projective plane), and p, q, r denote
points of the real projective plane.

Now we state the propositions:

(72) Let us consider an element L of L(the real projective plane). Then there
exists p and there exists q such that p 6= q and L = Line(p, q).

(73) There exists p and there exists q such that p 6= q and L = Line(p, q).

(74) If R = r and L = Line(p, q), then R lies on L iff p, q and r are collinear.

(75) Inc-ProjSp(the real projective plane) is an incidence projective plane.
Proof: Inc-ProjSp(the real projective plane) is 2-dimensional. �

(76) Let us consider lines L1, L2 of the real projective plane. Then L1 meets
L2. The theorem is a consequence of (75).

In the sequel u, v, w denote non zero elements of E3
T.

(77) Suppose p = the direction of u and q = the direction of v and R =
the direction of w and L = Line(p, q). Then R lies on L if and only if
〈|u, v, w|〉 = 0. The theorem is a consequence of (74).

(78) Let us consider elements p, q of the projective space over E3
T. Suppose

p 6= q and p = the direction of u and q = the direction of v. Then u× v is
not zero.

Let p, q be points of the real projective plane. Assume p 6= q. The functor
L2P(p, q) yielding a point of the real projective plane is defined by

(Def. 5) there exist non zero elements u, v of E3
T such that p = the direction of

u and q = the direction of v and it = the direction of u× v.
Now we state the propositions:

(79) Let us consider points p, q of the real projective plane. Suppose p 6= q.
Then
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(i) L2P(q, p) = L2P(p, q), and

(ii) p 6= L2P(p, q).

Proof: Consider u1, v1 being non zero elements of E3
T such that p =

the direction of u1 and q = the direction of v1 and L2P(p, q) = the direction
of u1 × v1. Consider u2, v2 being non zero elements of E3

T such that
q = the direction of u2 and p = the direction of v2 and L2P(q, p) =
the direction of u2 × v2. Consider a being a real number such that a 6= 0
and u1 = a · v2. Consider b being a real number such that b 6= 0 and
v1 = b · u2. a · v2 × b · u2 = (−a · b) · (u2 × v2). u1 × v1 is not zero. u2 × v2
is not zero. p 6= L2P(p, q). �

(80) Let us consider an invertible square matrix N over RF of dimension 3.
Then dom(the homography of N) = the projective points over E3

T.

2. Absolute

Let a, b, c, d, e, f be real numbers. The interior of the conic for a, b, c, d, e
and f yielding a subset of the projective space over E3

T is defined by the term

(Def. 6) {P , where P is a point of the projective space over E3
T : for every ele-

ment u of E3
T such that u is not zero and P = the direction of u holds

qfconic(a, b, c, d, e, f, u) is negative}.

Now we state the proposition:

(81) Let us consider real numbers a, b, c, d, e, f , and non zero elements u1, u2

of E3
T. Suppose the direction of u1 = the direction of u2 and qfconic(a, b, c, d,

e, f, u1) is negative. Then qfconic(a, b, c, d, e, f, u2) is negative.

The absolute yielding a non empty subset of the projective space over E3
T is

defined by the term

(Def. 7) conic(1, 1,−1, 0, 0, 0).

Now we state the proposition:

(82) Let us consider a square matrix O over R of dimension 3, an element P of
the projective space over E3

T, and a finite sequence p of elements of R. Sup-
pose O = symmetric3(1, 1,−1, 0, 0, 0) and P = the direction of u and u =
p. Then P ∈ the absolute if and only if SumAll QuadraticForm(p,O, p) =
0. The theorem is a consequence of (40).

Let us consider an element P of the absolute. Now we state the propositions:

(83) If P = the direction of u, then u(3) 6= 0.
Proof: Consider Q being a point of the projective space over E3

T such
that P = Q and for every element u of E3

T such that u is not zero and
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Q = the direction of u holds qfconic(1, 1,−1, 0, 0, 0, u) = 0. u(3) 6= 0 by
[8, (3), (4)]. �

(84) If P = the direction of u and u(3) = 1, then [u(1), u(2)] ∈ circle(0, 0, 1).
The theorem is a consequence of (13).

(85) Let us consider a point P of the projective space over E3
T. Suppose P =

the direction of u and u(3) = 1 and [u(1), u(2)] ∈ circle(0, 0, 1). Then P is
an element of the absolute.

(86) Let us consider a point P of the projective space over E3
T, and a non

zero element u of E3
T. Suppose P = the direction of u and u(3) = 1. Then

[u(1), u(2)] ∈ circle(0, 0, 1) if and only if P is an element of the absolute.

Let P be an element of the absolute. The absolute to unit circle of P yielding
an element of circle(0, 0, 1) is defined by

(Def. 8) there exists a non zero element u of E3
T such that P = the direction of

u and u(3) = 1 and it = [u(1), u(2)].

Now we state the proposition:

(87) The carrier of TopUnitCircle 2 = circle(0, 0, 1).
Proof: The carrier of TopUnitCircle 2 ⊆ circle(0, 0, 1). circle(0, 0, 1) ⊆
the carrier of TopUnitCircle 2 by [9, (52)], [10, (9)]. �

Let u be a non zero element of E2
T. Assume u ∈ circle(0, 0, 1). The unit circle

to absolute of u yielding an element of the absolute is defined by the term

(Def. 9) the direction of [u(1), u(2), 1].

Now we state the proposition:

(88) Let us consider an element u of E3
T. Suppose qfconic(1, 1,−1, 0, 0, 0, u) =

0 and u(3) = 1. Then [u(1), u(2)] ∈ Sphere(0E2T , 1). The theorem is a con-
sequence of (13).

Let us consider an element P of the absolute. Now we state the propositions:

(89) There exists u such that

(i) u(1)2 + u(2)2 = 1, and

(ii) u(3) = 1, and

(iii) P = the direction of u.

The theorem is a consequence of (83), (84), and (14).

(90) There exists an element Q of the absolute such that P 6= Q.
Proof: Consider Q being a point of the projective space over E3

T such
that P = Q and for every element u of E3

T such that u is not zero and Q =
the direction of u holds qfconic(1, 1,−1, 0, 0, 0, u) = 0. Consider u being
an element of E3

T such that u is not zero and the direction of u = P . u(3) 6=
0. [u(1), u(2),−u(3)] is not zero. Reconsider v = [u(1), u(2),−u(3)] as
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a non zero element of E3
T. Reconsider R = the direction of v as an element

of the projective space over E3
T. R 6= P . For every element w of E3

T such that
w is not zero and R = the direction of w holds qfconic(1, 1,−1, 0, 0, 0, w) =
0. �

(91) Let us consider real numbers a, b. Suppose a2 + b2 = 1. Then [−b, a, 0]
is not zero.

(92) Let us consider elements P , Q, R of the absolute. If P , Q, R are mutually
different, then P , Q and R are not collinear.
Proof: Consider u12 being an element of E3

T such that u12 is not zero and
P = the direction of u12. Consider u16 being an element of E3

T such that
u16 is not zero and Q = the direction of u16. Consider u20 being an element
of E3

T such that u20 is not zero and R = the direction of u20. Reconsider
u13 = (u12)1, u14 = (u12)2, u15 = (u12)3, u17 = (u16)1, u18 = (u16)2,
u19 = (u16)3, u21 = (u20)1, u22 = (u20)2, u23 = (u20)3 as a real number.
u12(3) 6= 0 and u16(3) 6= 0 and u20(3) 6= 0. Reconsider v5 = u13

u15
, v6 = u14

u15
,

v8 = u17
u19

, v9 = u18
u19

, v11 = u21
u23

, v12 = u22
u23

as a real number. Reconsider v4 =
[v5, v6, 1], v7 = [v8, v9, 1], v10 = [v11, v12, 1] as a non zero element of E3

T.
P = the direction of v4 and Q = the direction of v7 and R = the direction
of v10. Consider t1, t2, t3 being elements of E3

T such that P = the direction
of t1 and Q = the direction of t2 and R = the direction of t3 and t1 is not
zero and t2 is not zero and t3 is not zero and there exist real numbers a1,
b1, c1 such that a1 ·t1+b1 ·t2+c1 ·t3 = 0E3T and (a1 6= 0 or b1 6= 0 or c1 6= 0).
Consider a1, b1, c1 being real numbers such that a1 ·t1 +b1 ·t2 +c1 ·t3 = 0E3T
and a1 6= 0 or b1 6= 0 or c1 6= 0. Consider l1 being a real number such that
l1 6= 0 and t1 = l1 · v4. Consider l2 being a real number such that l2 6= 0
and t2 = l2 · v7. Consider l3 being a real number such that l3 6= 0 and
t3 = l3 · v10. Reconsider A = [(v4)1, (v4)2], B = [(v7)1, (v7)2], C = [(v10)1,
(v10)2] as an element of E2

T. A 6= B. A 6= C. B 6= C. A ∈ Sphere(0E2T , 1).
qfconic(1, 1,−1, 0, 0, 0, v7) = 0. B ∈ Sphere(0E2T , 1). C ∈ Sphere(0E2T , 1). �

(93) Let us consider a non zero real number r, and invertible square matrices
O,N ,M over RF of dimension 3. Suppose O = symmetric3(1, 1,−1, 0, 0, 0)
and M = symmetric3(r, r,−r, 0, 0, 0) and
M = NT·O·N and (the homography ofM)◦(the absolute) = the absolute.
Then (the homography of N)◦(the absolute) = the absolute.
Proof: (The homography of N)◦(the absolute) ⊆ the absolute.
The absolute ⊆ (the homography of N)◦(the absolute) by [12, (50)]. �
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