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Summary. In this article, we formalize in Mizar [1], [3] the existence
and uniqueness part of the implicit function theorem. In the first section, some
composition properties of Lipschitz continuous linear function are discussed. In
the second section, a definition of closed ball and theorems of several properties
of open and closed sets in Banach space are described. In the last section, we
formalized the existence and uniqueness of continuous implicit function in Banach
space using Banach fixed point theorem. We referred to [7], [8], and [2] in this
formalization.
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1. Properties of Lipschitz Continuous Linear Function

From now on S, T , W , Y denote real normed spaces, f , f1, f2 denote partial
functions from S to T , Z denotes a subset of S, and i, n denote natural numbers.

Now we state the propositions:

(1) Let us consider real normed spaces X, Y, a point x of X, a point y of Y,
and a point z of X × Y. Suppose z = 〈〈x, y〉〉. Then ‖z‖ =

√
‖x‖2 + ‖y‖2.
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(2) Let us consider real normed spaces X, Y, a point x of X, and a point
z of X × Y. Suppose z = 〈〈x, 0Y 〉〉. Then ‖z‖ = ‖x‖. The theorem is
a consequence of (1).

(3) Let us consider real normed spaces X, Y, a point y of Y, and a point
z of X × Y. Suppose z = 〈〈0X , y〉〉. Then ‖z‖ = ‖y‖. The theorem is
a consequence of (1).

(4) Let us consider real normed spaces X, Y, Z, W , a Lipschitzian linear
operator f from Z into W , a Lipschitzian linear operator g from Y into
Z, and a Lipschitzian linear operator h from X into Y. Then f · (g · h) =
(f · g) · h.

(5) Let us consider real normed spaces X, Y, Z, a Lipschitzian linear opera-
tor g from X into Y, a Lipschitzian linear operator f from Y into Z, and
a Lipschitzian linear operator h from X into Z. Then h = f · g if and only
if for every vector x of X, h(x) = f(g(x)).

(6) Let us consider real normed spaces X, Y, and a Lipschitzian linear ope-
rator f from X into Y. Then

(i) f · idα = f , and

(ii) idβ · f = f ,

where α is the carrier of X and β is the carrier of Y.

(7) Let us consider real normed spaces X, Y, Z, W , an element f of
BdLinOps(Z,W ), an element g of BdLinOps(Y,Z), and an element h of
BdLinOps(X,Y ). Then f · (g · h) = (f · g) · h.

(8) Let us consider real normed spaces X, Y, and
an element f of BdLinOps(X,Y ). Then

(i) f · FuncUnit(X) = f , and

(ii) FuncUnit(Y ) · f = f .

The theorem is a consequence of (6).

(9) Let us consider real normed spaces X, Y, Z, an element f of the real
norm space of bounded linear operators from Y into Z, and elements g, h
of the real norm space of bounded linear operators from X into Y. Then
f · (g + h) = f · g + f · h.
Proof: Set m1 = PartFuncs(f, Y, Z). Set m2 = PartFuncs(g,X, Y ). Set
m4 = PartFuncs(h,X, Y ). Set m3 = PartFuncs(g + h,X, Y ). For every
vector x of X, (m1 ·m3)(x) = (m1 ·m2)(x) + (m1 ·m4)(x) by [9, (35)], (5).
�

(10) Let us consider real normed spaces X, Y, Z, an element f of the real
norm space of bounded linear operators from X into Y, and elements g, h
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of the real norm space of bounded linear operators from Y into Z. Then
(g + h) · f = g · f + h · f .
Proof: Set m1 = PartFuncs(f,X, Y ). Set m2 = PartFuncs(g, Y, Z). Set
m4 = PartFuncs(h, Y, Z). Set m3 = PartFuncs(g + h, Y, Z). For every
vector x of X, (m3 ·m1)(x) = (m2 ·m1)(x) + (m4 ·m1)(x). �

(11) Let us consider real normed spaces X, Y, Z, an element f of the real
norm space of bounded linear operators from Y into Z, an element g of
the real norm space of bounded linear operators from X into Y, and real
numbers a, b. Then (a · b) · (f · g) = a · f · (b · g).
Proof: Set m1 = PartFuncs(f, Y, Z). Set m2 = PartFuncs(g,X, Y ). Set
m5 = PartFuncs(a · f, Y, Z). Set m6 = PartFuncs(b · g,X, Y ). For every
vector x of X, (m5 ·m6)(x) = a · b · (m1 ·m2)(x). �

(12) Let us consider real normed spaces X, Y, Z, an element f of the real
norm space of bounded linear operators from Y into Z, an element g of
the real norm space of bounded linear operators from X into Y, and a real
number a. Then a · (f · g) = (a · f) · g. The theorem is a consequence of
(11).

2. Properties of Open and Closed Sets in Banach Space

Let M be a real normed space, p be an element of M , and r be a real number.
The functor Ball(p, r) yielding a subset of M is defined by the term

(Def. 1) {q, where q is an element of M : ‖p− q‖ ¬ r}.

Let us consider an element p of S and a real number r. Now we state the
propositions:

(13) If 0 < r, then p ∈ Ball(p, r) and p ∈ Ball(p, r).

(14) If 0 < r, then Ball(p, r) 6= ∅ and Ball(p, r) 6= ∅.
Let us consider a real normed space M , an element p of M , and real numbers

r1, r2. Now we state the propositions:

(15) Suppose r1 ¬ r2. Then

(i) Ball(p, r1) ⊆ Ball(p, r2), and

(ii) Ball(p, r1) ⊆ Ball(p, r2), and

(iii) Ball(p, r1) ⊆ Ball(p, r2).

(16) If r1 < r2, then Ball(p, r1) ⊆ Ball(p, r2).

Let us consider an element p of S and a real number r. Now we state the
propositions:
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(17) Ball(p, r) = {y, where y is a point of S : ‖y − p‖ < r}.
Proof: Define F(object) = $1. Define P[element of S] ≡ ‖p − $1‖ < r.
Define Q[element of S] ≡ ‖$1 − p‖ < r. {F(y), where y is an element of
the carrier of S : P[y]} = {F(y), where y is an element of the carrier of
S : Q[y]}. �

(18) Ball(p, r) = {y, where y is a point of S : ‖y − p‖ ¬ r}.
Proof: Define F(object) = $1. Define P[element of S] ≡ ‖p − $1‖ ¬ r.
Define Q[element of S] ≡ ‖$1 − p‖ ¬ r. {F(y), where y is an element of
the carrier of S : P[y]} = {F(y), where y is an element of the carrier of
S : Q[y]}. �

(19) If 0 < r, then Ball(p, r) is a neighbourhood of p. The theorem is a con-
sequence of (17).

Let X be a real normed space, x be a point of X, and r be a real number.
One can check that Ball(x, r) is open and Ball(x, r) is closed.

Now we state the propositions:

(20) Let us consider a real normed space X, and a subset V of X. Then V

is open if and only if for every point x of X such that x ∈ V there exists
a real number r such that r > 0 and Ball(x, r) ⊆ V .

(21) Let us consider real normed spaces X, Y, a point x of X, a point y of Y,
and a point z of X × Y. Suppose z = 〈〈x, y〉〉. Then

(i) ‖x‖ ¬ ‖z‖, and

(ii) ‖y‖ ¬ ‖z‖.

The theorem is a consequence of (1).

(22) Let us consider real normed spaces X, Y, a point x of X, a point y of Y,
a point z of X × Y, and a real number r1. Suppose 0 < r1 and z = 〈〈x, y〉〉.
Then there exists a real number r2 such that

(i) 0 < r2 < r1, and

(ii) Ball(x, r2)× Ball(y, r2) ⊆ Ball(z, r1).

Proof: Ball(x, r2)× Ball(y, r2) ⊆ Ball(z, r1). �

(23) Let us consider real normed spaces X, Y, a point x of X, a point y of Y,
and a subset V of X × Y. Suppose V is open and 〈〈x, y〉〉 ∈ V . Then there
exists a real number r such that

(i) 0 < r, and

(ii) Ball(x, r)× Ball(y, r) ⊆ V .

The theorem is a consequence of (20) and (22).
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(24) Let us consider real normed spaces X, Y, a point x of X, a point y of
Y, a subset V of X × Y, and a real number r. Suppose V = Ball(x, r) ×
Ball(y, r). Then V is open.
Proof: For every point z of X × Y such that z ∈ V there exists a real
number s such that s > 0 and Ball(z, s) ⊆ V by [5, (18)]. �

(25) Let us consider real normed spaces E, F , a linear operator Q from E

into F , and a point v of E. If Q is one-to-one, then Q(v) = 0F iff v = 0E .

Let us consider a real normed space E, subsets X, Y of E, and a point v of
E. Now we state the propositions:

(26) If X is open and Y = {x+ v, where x is a point of E : x ∈ X}, then Y

is open.
Proof: Define C(point of E) = 1 · $1 +−v. Consider H being a function
from E into E such that for every point p of E, H(p) = C(p). For every
object s, s ∈ H−1(X) iff s ∈ Y. �

(27) If X is open and Y = {x− v, where x is a point of E : x ∈ X}, then Y

is open.
Proof: Set w = −v. {x + w, where x is a point of E : x ∈ X} ⊆
the carrier of E. Define F(point of E) = $1 + w. Define G(point of E) =
$1− v. Define P[point of E] ≡ $1 ∈ X. {F(v1), where v1 is an element of
the carrier of E : P[v1]} = {G(v2), where v2 is an element of the carrier
of E : P[v2]}. �

3. Existence and Uniqueness of Continuous Implicit Function

Now we state the propositions:

(28) Let us consider a real Banach space X, a non empty subset S of X, and
a partial function f from X to X. Suppose S is closed and dom f = S and
rng f ⊆ S and there exists a real number k such that 0 < k < 1 and for
every points x, y of X such that x, y ∈ S holds ‖fx − fy‖ ¬ k · ‖x − y‖.
Then

(i) there exists a point x0 of X such that x0 ∈ S and f(x0) = x0, and

(ii) for every points x0, y0 of X such that x0, y0 ∈ S and f(x0) = x0 and
f(y0) = y0 holds x0 = y0.

Proof: Consider x0 being an object such that x0 ∈ S. Consider K being
a real number such that 0 < K and K < 1 and for every points x, y of X
such that x, y ∈ S holds ‖fx−fy‖ ¬ K ·‖x−y‖. Define G(set, set) = f($2).
Consider g being a function such that dom g = N and g(0) = x0 and for
every natural number n, g(n+1) = G(n, g(n)). Define P[natural number] ≡
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g($1) ∈ S and g($1) is an element of X. For every natural number k such
that P[k] holds P[k + 1]. For every natural number n, P[n]. For every
object n such that n ∈ N holds g(n) ∈ the carrier of X. For every natural
number n, ‖g(n + 1) − g(n)‖ ¬ ‖g(1) − g(0)‖ · (Kn). For every natural
numbers k, n, ‖g(n + k) − g(n)‖ ¬ ‖g(1) − g(0)‖ · (Kn−Kn+k1−K ). For every
natural numbers k, n, ‖g(n+k)−g(n)‖ ¬ ‖g(1)−g(0)‖ · ( Kn

1−K ). For every
real number e such that e > 0 there exists a natural number n such that
for every natural number m such that n ¬ m holds ‖(g↑1)(m)−flim g‖ < e.
For every points x0, y0 of X such that x0, y0 ∈ S and f(x0) = x0 and
f(y0) = y0 holds x0 = y0. �

(29) Let us consider a real normed space E, a real Banach space F , a non
empty subset E0 of E, a non empty subset F0 of F , and a partial function
F1 from E × F to F . Suppose F0 is closed and E0 × F0 ⊆ domF1 and for
every point x of E and for every point y of F such that x ∈ E0 and y ∈ F0

holds F1(x, y) ∈ F0 and for every point y of F such that y ∈ F0 for every
point x0 of E such that x0 ∈ E0 for every real number e such that 0 < e

there exists a real number d such that 0 < d and for every point x1 of E
such that x1 ∈ E0 and ‖x1 − x0‖ < d holds ‖F1〈〈x1, y〉〉 − F1〈〈x0, y〉〉‖ < e and
there exists a real number k such that 0 < k < 1 and for every point x
of E such that x ∈ E0 for every points y1, y2 of F such that y1, y2 ∈ F0

holds ‖F1〈〈x, y1〉〉 − F1〈〈x, y2〉〉‖ ¬ k · ‖y1 − y2‖. Then

(i) for every point x of E such that x ∈ E0 holds there exists a point y
of F such that y ∈ F0 and F1(x, y) = y and for every points y1, y2 of
F such that y1, y2 ∈ F0 and F1(x, y1) = y1 and F1(x, y2) = y2 holds
y1 = y2, and

(ii) for every point x0 of E and for every point y0 of F such that x0 ∈ E0

and y0 ∈ F0 and F1(x0, y0) = y0 for every real number e such that
0 < e there exists a real number d such that 0 < d and for every point
x1 of E and for every point y1 of F such that x1 ∈ E0 and y1 ∈ F0

and F1(x1, y1) = y1 and ‖x1 − x0‖ < d holds ‖y1 − y0‖ < e.

Proof: Consider k being a real number such that 0 < k < 1 and for
every point x of E such that x ∈ E0 for every points y1, y2 of F such
that y1, y2 ∈ F0 holds ‖F1〈〈x, y1〉〉 − F1〈〈x, y2〉〉‖ ¬ k · ‖y1 − y2‖. For every
point x of E such that x ∈ E0 holds there exists a point y of F such that
y ∈ F0 and F1(x, y) = y and for every points y1, y2 of F such that y1,
y2 ∈ F0 and F1(x, y1) = y1 and F1(x, y2) = y2 holds y1 = y2. For every
point x0 of E and for every point y0 of F such that x0 ∈ E0 and y0 ∈ F0

and F1(x0, y0) = y0 for every real number e such that 0 < e there exists
a real number d such that 0 < d and for every point x1 of E and for every
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point y1 of F such that x1 ∈ E0 and y1 ∈ F0 and F1(x1, y1) = y1 and
‖x1 − x0‖ < d holds ‖y1 − y0‖ < e. �

(30) Let us consider a real normed space E, a real Banach space F , a non
empty subset A of E, a non empty subset B of F , and a partial function
F1 from E × F to F . Suppose B is closed and A × B ⊆ domF1 and for
every point x of E and for every point y of F such that x ∈ A and y ∈ B
holds F1(x, y) ∈ B and for every point y of F such that y ∈ B for every
point x0 of E such that x0 ∈ A for every real number e such that 0 < e

there exists a real number d such that 0 < d and for every point x1 of E
such that x1 ∈ A and ‖x1 − x0‖ < d holds ‖F1〈〈x1, y〉〉 − F1〈〈x0, y〉〉‖ < e and
there exists a real number k such that 0 < k < 1 and for every point x of
E such that x ∈ A for every points y1, y2 of F such that y1, y2 ∈ B holds
‖F1〈〈x, y1〉〉 − F1〈〈x, y2〉〉‖ ¬ k · ‖y1 − y2‖. Then

(i) there exists a partial function g from E to F such that g is continuous
on A and dom g = A and rng g ⊆ B and for every point x of E such
that x ∈ A holds F1(x, g(x)) = g(x), and

(ii) for every partial functions g1, g2 from E to F such that dom g1 = A

and rng g1 ⊆ B and dom g2 = A and rng g2 ⊆ B and for every point
x of E such that x ∈ A holds F1(x, g1(x)) = g1(x) and for every point
x of E such that x ∈ A holds F1(x, g2(x)) = g2(x) holds g1 = g2.

Proof: There exists a partial function g from E to F such that g is
continuous on A and dom g = A and rng g ⊆ B and for every point x of
E such that x ∈ A holds F1(x, g(x)) = g(x) by (29), [4, (19)]. For every
object x such that x ∈ dom g1 holds g1(x) = g2(x). �

Let us consider real normed spaces E, F and points s1, s2 of E × F . Now
we state the propositions:

(31) If (s1)2 = (s2)2, then reproj1(s1) = reproj1(s2).

(32) If (s1)1 = (s2)1, then reproj2(s1) = reproj2(s2).

(33) Let us consider a real normed space E, a real number r, and points z,
y1, y2 of E. Suppose y1, y2 ∈ Ball(z, r). Then [y1, y2] ⊆ Ball(z, r).

(34) Let us consider a real normed space E, points x, b of E, and a neigh-
bourhood N of x. Then {z − b, where z is a point of E : z ∈ N} is
neighbourhood of x− b and neighbourhood of x+ b.
Proof: Consider g being a real number such that 0 < g and {y, where
y is a point of E : ‖y − x‖ < g} ⊆ N . {z − b, where z is a point of
E : z ∈ N} ⊆ the carrier of E. {z + b, where z is a point of E : z ∈
N} ⊆ the carrier of E. {y, where y is a point of E : ‖y − (x − b)‖ <
g} ⊆ {z − b, where z is a point of E : z ∈ N}. {y, where y is a point of
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E : ‖y − (x+ b)‖ < g} ⊆ {z + b, where z is a point of E : z ∈ N}. �

Let us consider real normed spaces E, G, a real Banach space F , a subset
Z of E × F , a partial function f from E × F to G, a point a of E, a point b of
F , a point c of G, and a point z of E × F . Now we state the propositions:

(35) Suppose Z is open and dom f = Z and f is continuous on Z and f is
partially differentiable on Z w.r.t. 2 and f �2 Z is continuous on Z and
z = 〈〈a, b〉〉 and z ∈ Z and f(a, b) = c and partdiff(f, z) w.r.t. 2 is one-to-
one and (partdiff(f, z) w.r.t. 2)−1 is a Lipschitzian linear operator from G

into F . Then there exist real numbers r1, r2 such that

(i) 0 < r1, and

(ii) 0 < r2, and

(iii) Ball(a, r1)× Ball(b, r2) ⊆ Z, and

(iv) for every point x of E such that x ∈ Ball(a, r1) there exists a point
y of F such that y ∈ Ball(b, r2) and f(x, y) = c, and

(v) for every point x of E such that x ∈ Ball(a, r1) for every points y1, y2

of F such that y1, y2 ∈ Ball(b, r2) and f(x, y1) = c and f(x, y2) = c

holds y1 = y2, and

(vi) there exists a partial function g from E to F such that g is continuous
on Ball(a, r1) and dom g = Ball(a, r1) and rng g ⊆ Ball(b, r2) and
g(a) = b and for every point x of E such that x ∈ Ball(a, r1) holds
f(x, g(x)) = c, and

(vii) for every partial functions g1, g2 from E to F such that dom g1 =
Ball(a, r1) and rng g1 ⊆ Ball(b, r2) and for every point x of E such
that x ∈ Ball(a, r1) holds f(x, g1(x)) = c and dom g2 = Ball(a, r1)
and rng g2 ⊆ Ball(b, r2) and for every point x of E such that x ∈
Ball(a, r1) holds f(x, g2(x)) = c holds g1 = g2.

Proof: Consider Q1 being a Lipschitzian linear operator from G into F
such that Q1 = (partdiff(f, z) w.r.t. 2)−1. Reconsider Q = Q1 as a point of
the real norm space of bounded linear operators from G into F . Reconsider
z1 = 〈〈a, 0F 〉〉 as a point of E×F . Reconsider e0 = 〈〈0E , b〉〉 as a point of E×
F . Define C(point of E × F ) = 1 · $1 +−e0. Consider H being a function
from the carrier of E×F into the carrier of E×F such that for every point
p of E × F , H(p) = C(p). For every point x of E and for every point y of
F , H(x, y) = 〈〈x, y − b〉〉. Define D(point of E × F ) = 1 · $1 + e0. Consider
K being a function from the carrier of E × F into the carrier of E × F
such that for every point p of E × F , K(p) = D(p). For every point p of
E×F , K ·H(p) = p. For every point p of E×F , H ·K(p) = p. Reconsider
Z1 = H◦Z as a subset of E × F . For every point x of E and for every
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point y of F , 〈〈x, y + b〉〉 ∈ Z iff 〈〈x, y〉〉 ∈ Z1. Reconsider e0 = 〈〈0E , b〉〉 as
a point of E × F . For every object p, p ∈ Z1 iff p ∈ {y − e0, where y is
a point of E × F : y ∈ Z}. Z1 is open. Define J [object, object] ≡ there
exists a point x of E and there exists a point y of F such that $1 = 〈〈x,
y〉〉 and $2 = f〈〈x, y+b〉〉 − c. For every object p such that p ∈ Z1 there exists

an object w such that w ∈ the carrier of G and J [p, w]. Consider f1 being
a function from Z1 into G such that for every object p such that p ∈ Z1

holds J [p, f1(p)]. For every point x of E and for every point y of F such
that 〈〈x, y〉〉 ∈ Z1 holds f1(x, y) = f〈〈x, y+b〉〉 − c. Define O[object, object] ≡
there exists a point x of E and there exists a point y of F such that $1 = 〈〈x,
y〉〉 and $2 = Q(f1(x, y)). For every object p such that p ∈ Z1 there exists
an object w such that w ∈ the carrier of F and O[p, w]. Consider f2 being
a function from Z1 into F such that for every object p such that p ∈ Z1

holds O[p, f2(p)]. For every point x of E and for every point y of F such
that 〈〈x, y〉〉 ∈ Z1 holds f2(x, y) = Q(f1(x, y)). Define U [object, object] ≡
there exists a point x of E and there exists a point y of F such that
$1 = 〈〈x, y〉〉 and $2 = y − f2〈〈x, y〉〉. For every object p such that p ∈ Z1

there exists an object w such that w ∈ the carrier of F and U [p, w].

Consider F1 being a function from Z1 into F such that for every
object p such that p ∈ Z1 holds U [p, F1(p)]. For every point x of E and
for every point y of F such that 〈〈x, y〉〉 ∈ Z1 holds F1(x, y) = y − f2〈〈x, y〉〉.
For every point z0 of E×F and for every real number r such that z0 ∈ Z1

and 0 < r there exists a real number s such that 0 < s and for every point
z1 of E × F such that z1 ∈ Z1 and ‖z1 − z0‖ < s holds ‖F1z1 − F1z0‖ < r.
For every point w0 of E × F such that w0 ∈ Z holds f · (reproj2(w0)) is
differentiable in (w0)2. For every point w0 of E×F such that w0 ∈ Z there
exists a neighbourhood N of (w0)2 such that N ⊆ dom f · (reproj2(w0))
and there exists a rest R of F , G such that for every point w1 of F
such that w1 ∈ N holds f · (reproj2(w0))w1 − f · (reproj2(w0))(w0)2 =
f · (reproj2(w0))′((w0)2)(w1 − (w0)2) + Rw1−(w0)2 . For every point z0 of
E×F such that z0 ∈ Z1 holds F1·(reproj2(z0)) is differentiable in (z0)2 and
there exist points L0, I of the real norm space of bounded linear operators
from F into F such that L0 = Q · ((f �2 Z)z0+e0) and I = idα and
F1 · (reproj2(z0))′((z0)2) = I −L0, where α is the carrier of F . dom(F1 �2

Z1) = Z1 and for every point z of E×F such that z ∈ Z1 there exist points
L, I of the real norm space of bounded linear operators from F into F

such that L = Q · ((f �2 Z)z+e0) and I = idα and (F1 �2 Z1)z = I − L,
where α is the carrier of F . Set F2 = F1 �2 Z1. For every point z0 of E ×
F and for every real number r such that z0 ∈ Z1 and 0 < r there exists
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a real number s such that 0 < s and for every point z1 of E×F such that
z1 ∈ Z1 and ‖z1 − z0‖ < s holds ‖F2z1 − F2z0‖ < r. F1(a, 0F ) = 0F by
[6, (3)]. Reconsider a0 = 〈〈a, 0F 〉〉 as a point of E × F . Consider r4 being
a real number such that 0 < r4 and for every point s of E × F such that
s ∈ Z1 and ‖s−a0‖ < r4 holds ‖(F1 �2 Z1)s− (F1 �2 Z1)a0‖ < 1

4 . Consider
r5 being a real number such that 0 < r5 and Ball(a0, r5) ⊆ Z1. Reconsider
r6 = min(r4, r5) as a real number. Ball(a0, r6) ⊆ Ball(a0, r5).

Consider r1 being a real number such that 0 < r1 < r6 and
Ball(a, r1) × Ball(0F , r1) ⊆ Ball(a0, r6). For every point x of E × F such
that x ∈ Z1 holds (F1 �2 Z1)x = F1 · (reproj2(x))′((x)2). a ∈ Ball(a, r1).
0F ∈ Ball(0F , r1). Reconsider a0 = 〈〈a, 0F 〉〉 as a point of E × F . Consider
L1, I1 being points of the real norm space of bounded linear operators
from F into F such that L1 = Q · ((f �2 Z)a0+e0) and I1 = idα and
(F1 �2 Z1)a0 = I1 − L1, where α is the carrier of F . For every point
x of E and for every point y of F such that x ∈ Ball(a, r1) and y ∈
Ball(0F , r1) holds ‖(F1 �2 Z1)〈〈x, y〉〉‖ <

1
4 . Reconsider r2 = r1

2 as a real
number. Consider a2 being a real number such that 0 < a2 and for every
point s of E × F such that s ∈ Z1 and ‖s − a0‖ < a2 holds ‖F1s −
F1a0‖ < (1

2) · r2. Consider a4 being a real number such that 0 < a4 < a2

and Ball(a, a4) × Ball(0F , a4) ⊆ Ball(a0, a2). Reconsider a3 = min(a2, a4)
as a real number. Ball(a, a3) ⊆ Ball(a, a4). Reconsider a1 = min(a3, r1)
as a real number. Ball(a, a1) ⊆ Ball(a, r1). Ball(a, a1) ⊆ Ball(a, a3). For
every point x of E such that x ∈ Ball(a, a1) holds ‖F1〈〈x, 0F 〉〉‖ ¬ (1

2) · r2.

Reconsider r0 = min( r12 , a1) as a real number. Ball(a, r0) ⊆ Ball(a, r1).
For every point x of E such that x ∈ Ball(a, r0) holds ‖F1〈〈x, 0F 〉〉‖ ¬
(1

2) · r2. Ball(0F , r2) ⊆ Ball(0F , r1). For every point x of E such that
x ∈ Ball(a, r0) for every points y1, y2 of F such that y1, y2 ∈ Ball(0F , r2)
holds ‖F1〈〈x, y1〉〉 − F1〈〈x, y2〉〉‖ ¬ (1

2) · ‖y1 − y2‖. For every point x of E

and for every point y of F such that x ∈ Ball(a, r0) and y ∈ Ball(0F , r2)
holds F1(x, y) ∈ Ball(0F , r2). Ball(a, r0) 6= ∅. Ball(0F , r2) 6= ∅. For every
point y of F such that y ∈ Ball(0F , r2) for every point x0 of E such that
x0 ∈ Ball(a, r0) for every real number e such that 0 < e there exists
a real number d such that 0 < d and for every point x1 of E such that
x1 ∈ Ball(a, r0) and ‖x1 − x0‖ < d holds ‖F1〈〈x1, y〉〉 − F1〈〈x0, y〉〉‖ < e.

Consider Ψ being a partial function from E to F such that Ψ is
continuous on Ball(a, r0) and dom Ψ = Ball(a, r0) and rng Ψ ⊆ Ball(0F , r2)
and for every point x of E such that x ∈ Ball(a, r0) holds F1(x,Ψ(x)) =
Ψ(x). For every object z, z ∈ Ball(b, r2) iff z ∈ {y + b, where y is a point
of F : y ∈ Ball(0F , r2)}. For every object y, y ∈ Ball(a, r0) × Ball(b, r2)
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iff there exists an object x such that x ∈ domK and x ∈ Ball(a, r0) ×
Ball(0F , r2) and y = K(x). Define W(object) = Ψ$1 + b. For every object
y such that y ∈ Ball(a, r0) holds W(y) ∈ Ball(b, r2). Consider E3 being
a function from Ball(a, r0) into Ball(b, r2) such that for every object y such
that y ∈ Ball(a, r0) holds E3(y) = W(y). Ball(b, r2) 6= ∅. For every point
x0 of E and for every real number r such that x0 ∈ Ball(a, r0) and 0 < r

there exists a real number s such that 0 < s and for every point x1 of E
such that x1 ∈ Ball(a, r0) and ‖x1−x0‖ < s holds ‖E3x1 −E3x0‖ < r. For
every point x of E such that x ∈ Ball(a, r0) holds f(x,E3(x)) = c. For
every point x of E such that x ∈ Ball(a, r0) there exists a point y of F
such that y ∈ Ball(b, r2) and f(x, y) = c. For every point x of E such that
x ∈ Ball(a, r0) for every points y1, y2 of F such that y1, y2 ∈ Ball(b, r2)
and f(x, y1) = c and f(x, y2) = c holds y1 = y2. a ∈ Ball(a, r0) and b ∈
Ball(b, r2). E3(a) ∈ rngE3. f(a,E3(a)) = c. For every partial functions E1,
E2 from E to F such that domE1 = Ball(a, r0) and rngE1 ⊆ Ball(b, r2)
and for every point x of E such that x ∈ Ball(a, r0) holds f(x,E1(x)) = c

and domE2 = Ball(a, r0) and rngE2 ⊆ Ball(b, r2) and for every point x
of E such that x ∈ Ball(a, r0) holds f(x,E2(x)) = c holds E1 = E2. �

(36) Suppose Z is open and dom f = Z and f is continuous on Z and f is
partially differentiable on Z w.r.t. 2 and f �2 Z is continuous on Z and
z = 〈〈a, b〉〉 and z ∈ Z and f(a, b) = c and partdiff(f, z) w.r.t. 2 is one-to-
one and (partdiff(f, z) w.r.t. 2)−1 is a Lipschitzian linear operator from G

into F . Then there exist real numbers r1, r2 such that

(i) 0 < r1, and

(ii) 0 < r2, and

(iii) Ball(a, r1)× Ball(b, r2) ⊆ Z, and

(iv) for every point x of E such that x ∈ Ball(a, r1) there exists a point
y of F such that y ∈ Ball(b, r2) and f(x, y) = c, and

(v) for every point x of E such that x ∈ Ball(a, r1) for every points y1, y2

of F such that y1, y2 ∈ Ball(b, r2) and f(x, y1) = c and f(x, y2) = c

holds y1 = y2, and

(vi) there exists a partial function g from E to F such that g is continuous
on Ball(a, r1) and dom g = Ball(a, r1) and rng g ⊆ Ball(b, r2) and
g(a) = b and for every point x of E such that x ∈ Ball(a, r1) holds
f(x, g(x)) = c, and

(vii) for every partial functions g1, g2 from E to F such that dom g1 =
Ball(a, r1) and rng g1 ⊆ Ball(b, r2) and for every point x of E such
that x ∈ Ball(a, r1) holds f(x, g1(x)) = c and dom g2 = Ball(a, r1)
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and rng g2 ⊆ Ball(b, r2) and for every point x of E such that x ∈
Ball(a, r1) holds f(x, g2(x)) = c holds g1 = g2.

Proof: Consider r1, r2 being real numbers such that 0 < r1 and 0 < r2

and Ball(a, r1) × Ball(b, r2) ⊆ Z and for every point x of E such that
x ∈ Ball(a, r1) there exists a point y of F such that y ∈ Ball(b, r2) and
f(x, y) = c and for every point x of E such that x ∈ Ball(a, r1) for every
points y1, y2 of F such that y1, y2 ∈ Ball(b, r2) and f(x, y1) = c and
f(x, y2) = c holds y1 = y2 and there exists a partial function g from E

to F such that g is continuous on Ball(a, r1) and dom g = Ball(a, r1) and
rng g ⊆ Ball(b, r2) and g(a) = b and for every point x of E such that
x ∈ Ball(a, r1) holds f(x, g(x)) = c and for every partial functions g1, g2

from E to F such that dom g1 = Ball(a, r1) and rng g1 ⊆ Ball(b, r2) and
for every point x of E such that x ∈ Ball(a, r1) holds f(x, g1(x)) = c and
dom g2 = Ball(a, r1) and rng g2 ⊆ Ball(b, r2) and for every point x of E
such that x ∈ Ball(a, r1) holds f(x, g2(x)) = c holds g1 = g2.

Consider g being a partial function from E to F such that g is
continuous on Ball(a, r1) and dom g = Ball(a, r1) and rng g ⊆ Ball(b, r2)
and g(a) = b and for every point x of E such that x ∈ Ball(a, r1) holds
f(x, g(x)) = c and for every partial functions g1, g2 from E to F such that
dom g1 = Ball(a, r1) and rng g1 ⊆ Ball(b, r2) and for every point x of E
such that x ∈ Ball(a, r1) holds f(x, g1(x)) = c and dom g2 = Ball(a, r1)
and rng g2 ⊆ Ball(b, r2) and for every point x of E such that x ∈ Ball(a, r1)
holds f(x, g2(x)) = c holds g1 = g2. a ∈ Ball(a, r1). Consider r3 being
a real number such that 0 < r3 and for every point x1 of E such that x1 ∈
dom g and ‖x1−a‖ < r3 holds ‖gx1−ga‖ < r2. Reconsider r0 = min(r1, r3)
as a real number. Ball(a, r0) ⊆ Ball(a, r1) and Ball(a, r0) ⊆ Ball(a, r3). For
every point x of E such that x ∈ Ball(a, r0) there exists a point y of F
such that y ∈ Ball(b, r2) and f(x, y) = c.

For every point x of E such that x ∈ Ball(a, r0) for every points
y1, y2 of F such that y1, y2 ∈ Ball(b, r2) and f(x, y1) = c and f(x, y2) = c

holds y1 = y2. Reconsider g1 = g� Ball(a, r0) as a partial function from E

to F . dom g1 = Ball(a, r0). For every object y such that y ∈ rng g1 holds
y ∈ Ball(b, r2). g1(a) = b. For every point x of E such that x ∈ Ball(a, r0)
holds f(x, g1(x)) = c. For every partial functions g1, g2 from E to F such
that dom g1 = Ball(a, r0) and rng g1 ⊆ Ball(b, r2) and for every point x of
E such that x ∈ Ball(a, r0) holds f(x, g1(x)) = c and dom g2 = Ball(a, r0)
and rng g2 ⊆ Ball(b, r2) and for every point x of E such that x ∈ Ball(a, r0)
holds f(x, g2(x)) = c holds g1 = g2. �
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