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Summary. In this article, we prove selected properties of Pell’s equation
that are essential to finally prove the Diophantine property of two equations.
These equations are explored in the proof of Matiyasevich’s negative solution of
Hilbert’s tenth problem.
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0. Introduction

In this article, we prove, using the Mizar formalism, a number of properties
that correspond to the Pell’s Equation to prove finally two basic lemmas that
are essential in the proof of Matiyasevich’s negative solution of Hilbert’s tenth
problem.

For this purpose, first, we focus on a special case of the Pell’s Equation,
which has the form

x2 − (a2 − 1)y2 = 1, (0.1)

where a > 1 and integer numerical solutions are sought for x and y. We develop
the Pell’s Equation theory formalized for the general case in [1]. Note that
xa(0) = 1, ya(0) = 0 is an obvious solution. Additionally, if we know a solution
of the Pell’s equation, we can determine all solutions as well as we can order
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them. In our case the n + 1-solution xa(n + 1), ya(n + 1) as shown Theorem 6
can be simply determined in terms of the n-solution as follows:

xa(n+ 1) = a · xa(n) + (a2 − 1) · ya(n)
ya(n+ 1) = xa(n) + a · ya(n)

(0.2)

We show a number of dependency between the elements of these sequences to
provide that the equality ya(z) = y is Diophantine. For this purpose we justify
in Theorem 38 that for a given a, z, y holds ya(z) = y if and only if the following
system has a solution for natural numbers x, x1, y1, A, x2, y2:

a > 1 ∧ y1 ­ y ∧ A > y ∧ y ­ z ∧
x2 − (a2 − 1)y2 = 1 ∧ x2

1 − (a2 − 1)y21 = 1 ∧
x2

2 − (A2 − 1)y22 = 1 ∧ y2 ≡ y mod x1 ∧ A ≡ a mod x1 ∧
y2 ≡ z mod 2y ∧ A ≡ 1 mod 2y ∧ y1 ≡ 0 mod y2

(0.3)

Based on this result we prove in Theorem 39 that the equality y = xz is Dio-
phantine. For this purpose we justify that for a given x, y, z that y = xz if and
only if

(y = 1 ∧ z = 0) ∨
(x = 0 ∧ y = 0 ∧ z > 0) ∨ (x = 1 ∧ y = 1 ∧ z > 0) ∨
(x > 1 ∧ z > 0 ∧ ∃y1,y2,y3,K∈N

y1 = yz+1(x) ∧K > 2zy1 ∧ y2 = yz+1(K) ∧ y3 = yz+1(Kx)∧
(0 ¬ y − y3y2 <

1
2 ∨ 0 ¬ y3y2 − y <

1
2)).

(0.4)

The formalization follows Z.Adamowicz, P.Zbierski [2] as well as M.Davis [3].

1. Preliminaries

From now on i, j, n, n1, n2, m, k, u denote natural numbers, r, r1, r2 denote
real numbers, x, y denote integers, and a, b denote non trivial natural numbers.

Now we state the propositions:

(1) Let us consider a finite sequence F of elements of N. Suppose for every
k such that 1 < k ¬ lenF holds F (k) mod n = 0. Then

∑
F mod n =

F (1) mod n.
Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of N such that lenF = $1 and for every k such that 1 < k ¬ lenF
holds F (k) mod n = 0 holds

∑
F mod n = F (1) mod n. P[0]. If P[k],

then P[k + 1]. P[k]. �

(2) Let us consider a complex-valued finite sequence f . Then there exist
complex-valued finite sequences e, o such that
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(i) len e = b len f
2 c, and

(ii) len o = d len f
2 e, and

(iii)
∑
f =

∑
e+

∑
o, and

(iv) for every n, e(n) = f(2 · n) and o(n) = f(2 · n− 1).

Proof: Define P[natural number] ≡ for every complex-valued finite se-
quence f such that len f = $1 there exist complex-valued finite sequences
e, o such that len e = b len f

2 c and len o = d len f
2 e and

∑
f =

∑
e+

∑
o and

for every n, e(n) = f(2 · n) and o(n) = f(2 · n − 1). P[0]. If P[n], then
P[n+ 1]. P[n]. �

Let us consider a. Let us observe that a2 −′ 1 is non square.

2. Solutions of Pell’s Equation – Special Case

Let a, n be natural numbers. Assume a is not trivial. The functor xa(n)
yielding a natural number is defined by

(Def. 1) for every non trivial natural number b such that b = a there exists
a natural number y such that
it + y ·

√
b2 −′ 1 = ((the minimal Pell’s solution of (b2 −′ 1))1+

(the minimal Pell’s solution of (b2 −′ 1))2 ·
√
b2 −′ 1)

n
.

Assume a is not trivial. The functor ya(n) yielding a natural number is
defined by

(Def. 2) for every non trivial natural number b such that b = a holds xb(n) + it ·√
b2 −′ 1 = ((the minimal Pell’s solution of (b2 −′ 1))1+

(the minimal Pell’s solution of (b2 −′ 1))2 ·
√
b2 −′ 1)

n
.

Now we state the propositions:

(3) (i) xa(0) = 1, and

(ii) ya(0) = 0.

(4) Suppose 〈〈n1, n2〉〉 is a Pell’s solution of a2−′ 1. Then there exists n such
that

(i) n1 = xa(n), and

(ii) n2 = ya(n).

The theorem is a consequence of (3).

(5) 〈〈a, 1〉〉 = the minimal Pell’s solution of (a2 −′ 1).

(6) (i) xa(n+ 1) = xa(n) · a+ ya(n) · (a2 −′ 1), and

(ii) ya(n+ 1) = xa(n) + ya(n) · a.
The theorem is a consequence of (5).
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(7) (xa(n))2 − (a2 −′ 1) · (ya(n))2 = 1. The theorem is a consequence of (3).

(8) (i) xa(n) + ya(n) ·
√
a2 −′ 1 = (a+

√
a2 −′ 1)

n
, and

(ii) xa(n) +−ya(n) ·
√
a2 −′ 1 = (a−

√
a2 −′ 1)

n
.

The theorem is a consequence of (5).

(9) There exist finite sequences F2, F1 of elements of N such that

(i)
∑
F2 = ya(n), and

(ii) lenF2 = bn+1
2 c, and

(iii) for every i such that 1 ¬ i ¬ n+1
2 holds F2(i) =

( n
2·i−′1

)
· (an+1−′2·i) ·

(a2 −′ 1)i−
′1, and

(iv) an +
∑
F1 = xa(n), and

(v) lenF1 = bn2 c, and

(vi) for every i such that 1 ¬ i ¬ n2 holds F1(i) =
( n
2·i
)
·(an−′2·i)·(a2 −′ 1)i.

Proof: Set A = a2 −′ 1. Define P[natural number] ≡ there exist finite
sequences F2, F1 of elements of N such that

∑
F2 = ya($1) and lenF2 =

b$1+1
2 c and for every natural number i such that 1 ¬ i ¬ $1+1

2 holds
F2(i) =

( $1
2·i−′1

)
· (a$1+1−′2·i) · (Ai−′1) and a$1+

∑
F1 = xa($1) and lenF1 =

b$1
2 c and for every natural number i such that 1 ¬ i ¬ $1

2 holds F1(i) =($1
2·i
)
· (a$1−′2·i) · (Ai). P[0]. For every natural number n such that P[n]

holds P[n+ 1]. For every n, P[n]. �

3. Solutions of Pell’s Equation – Inequalities

Now we state the proposition:

(10) If k ¬ n, then xa(k) ¬ xa(n).
Proof: Define P[natural number] ≡ xa(k) ¬ xa(k+$1). For every natural
number i such that P[i] holds P[i+ 1] by (6), [6, (29)]. P[n1]. �

Let us consider a and k. One can verify that xa(k) is positive.
Now we state the propositions:

(11) If k < n, then ya(k) < ya(n).
Proof: Define P[natural number] ≡ if $1 > 0, then ya(k) < ya(k + $1).
For every natural number i such that P[i] holds P[i+ 1]. P[n1]. �

(12) If ya(k) = ya(n), then k = n. The theorem is a consequence of (11).

(13) ya(n) ­ n.
Proof: Define P[natural number] ≡ ya($1) ­ $1. If P[k], then P[k + 1].
P[k]. �
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Let us consider a. Let k be a non zero natural number. Observe that ya(k)
is non zero.

Let a be a non trivial natural number and x be a positive natural number.
Note that a · x is non trivial.

Now we state the propositions:

(14) If a 6= 2 and k ¬ n, then 2·(ya(k)) < xa(n). The theorem is a consequence
of (7) and (10).

(15) If a = 2 and k ¬ n, then
√

3 · (ya(k)) < xa(n). The theorem is a conse-
quence of (7) and (10).

(16) If a = 2 and k < n, then (3 + 2 ·
√

3) · ya(k) < xa(n). The theorem is
a consequence of (6) and (15).

(17) (i) (2 · a− 1)n · (a− 1) ¬ xa(n+ 1) ¬ a · (2 · a)n, and

(ii) (2 · a− 1)n ¬ ya(n+ 1) ¬ 2 · an.
Proof: Define P[natural number] ≡ (2 · a− 1)$1 ¬ ya($1 + 1) ¬ 2 · a$1
and (2 · a− 1)$1 ·(a−1) ¬ xa($1+1) ¬ a·(2 · a$1). ya(0) = 0 and xa(0) = 1.
ya(1 + 0) = 1 + 0 · a and xa(1 + 0) = 1 · a + 0 · (a2 −′ 1). If P[k], then
P[k + 1]. P[k]. �

Let us consider a positive natural number x. Now we state the propositions:

(18) xn ·(1− 1
2·a·x)

n ¬ ya·x(n+1)
ya(n+1) ¬ x

n · 1
(1− 1

2·a )n
. The theorem is a consequence

of (17).

(19) If a > 2 · n · xn, then xn − 1
2 <

ya·x(n+1)
ya(n+1) < x

n + 1
2 . The theorem is

a consequence of (18).

4. Solutions of Pell’s Equation – Equality

Now we state the propositions:

(20) If x ­ 0, then (sgnx) · (ya(|x|)) = ya(|x|). The theorem is a consequence
of (3).

(21) If x ¬ 0, then (sgnx)·(ya(|x|)) = −ya(|x|). The theorem is a consequence
of (3).

(22) (i) xa(|x+y|) = (xa(|x|))·(xa(|y|))+(a2−′1)·(sgnx)·(ya(|x|))·(sgn y)·
(ya(|y|)), and

(ii) (sgn(x + y)) · (ya(|x + y|)) = (xa(|x|)) · (sgn y) · (ya(|y|)) + (sgnx) ·
(ya(|x|)) · (xa(|y|)).

The theorem is a consequence of (20), (8), and (21).
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5. Solutions of Pell’s Equation – Congruences

Now we state the propositions:

(23) xa(n) and ya(n) are relatively prime.
Proof: Define P[natural number] ≡ gcd(xa($1), ya($1)) = 1. xa(0) = 1
and ya(0) = 0. For every n such that P[n] holds P[n+ 1] by (6), [4, (8)],
[7, (1), (5)]. For every n, P[n]. �

(24) ya(n) ≡ n (mod a − 1). The theorem is a consequence of (9), (3), and
(1).

(25) (i) xa(n) ≡ xb(n) (mod a− b), and

(ii) ya(n) ≡ yb(n) (mod a− b).
Proof: Define P[natural number] ≡ xa($1) ≡ xb($1) (mod a − b) and
ya($1) ≡ yb($1) (mod a− b). xa(0) = 1 = xb(0) and ya(0) = 0 = yb(0). For
every n such that P[n] holds P[n+ 1]. For every n, P[n]. �

(26) If a ≡ b (mod k), then ya(n) ≡ yb(n) (mod k). The theorem is a conse-
quence of (25).

(27) sgn(2·x+y)·ya(|2·x+y|) ≡ −(sgn y) · ya(|y|) (mod xa(|x|)). The theorem
is a consequence of (22) and (7).

(28) (sgn(4 · x · n+ y)) · (ya(|4 · x · n+ y|)) ≡ (sgn y) · (ya(|y|)) (mod xa(|x|)).
Proof: Define P[natural number] ≡ (sgn(4·x·$1+y))·(ya(|4·x·$1+y|)) ≡
(sgn y) · (ya(|y|)) (mod xa(|x|)). For every n such that P[n] holds P[n+ 1].
For every n, P[n]. �

(29) (sgn(x + y)) · (ya(|x + y|)) ≡ (sgn(x − y)) · (ya(|x − y|)) (mod xa(|x|)).
The theorem is a consequence of (27).

(30) If n1 < n2 ¬ n and |x| = ya(n1) and |y| = ya(n2) and x ≡ y (mod xa(n)),
then x = y.
Proof: Consider i being an integer such that x−y = (xa(n)) ·i. −xa(n) <
x− y < xa(n). �

(31) Suppose n1 ¬ 2 · n and n2 ¬ 2 · n and |x| = ya(n1) and |y| = ya(n2) and
x ≡ y (mod xa(n)). Then

(i) n1 ≡ n2 (mod 2 · n), or

(ii) n1 ≡ −n2 (mod 2 · n).
(32) Suppose n1 ¬ 4 · n and n2 ¬ 4 · n and |x| = ya(n1) and |y| = ya(n2) and
x ≡ y (mod xa(n)). Then

(i) n1 ≡ n2 (mod 2 · n), or

(ii) n1 ≡ −n2 (mod 2 · n).
The theorem is a consequence of (31).
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(33) Suppose ya(n1) ≡ ya(n2) (mod xa(n)) and n > 0. Then

(i) n1 ≡ n2 (mod 2 · n), or

(ii) n1 ≡ −n2 (mod 2 · n).
The theorem is a consequence of (28), (20), and (32).

6. Solutions of Pell’s Equation – Divisibility

Now we state the propositions:

(34) ya(n) | ya(n · k).
Proof: Define P[natural number] ≡ ya(n) | ya(n·$1). (ya(n))·0 = ya(n·0).
For every k such that P[k] holds P[k + 1]. For every k, P[k]. �

(35) ya(n · k) ≡ k · ((xa(n))
k−′1) · (ya(n)) (mod(ya(n))2). The theorem is

a consequence of (3), (2), and (1).

(36) If k > 0 and ya(k) | ya(n), then k | n.
Proof: Set P = ya(k). Set r = n mod k. Set q = n div k. (sgnn) ·
(ya(|n|)) = (xa(|r|)) · (sgn q ·k) · (ya(|q ·k|)) + (sgn r) · (ya(|r|)) · (xa(|q ·k|)).
ya(n) = (xa(|r|)) · ((sgn q · k) · (ya(|q · k|))) + (sgn r) · (ya(|r|)) · (xa(|q · k|)).
P | ya(q · k). P | (xa(r)) · (ya(q · k)). P and xa(k · q) are relatively prime.
r = 0 by [5, (6)], (11). �

(37) If (ya(k))2 | ya(n), then ya(k) | n. The theorem is a consequence of (3),
(36), (35), and (23).

7. Special Case of Pell’s Equation is Diophantine

Now we state the proposition:

(38) Let us consider natural numbers y, z, a. Then y = ya(z) and a > 1 if
and only if there exist natural numbers x, x1, y1, A, x2, y2 such that a > 1
and 〈〈x, y〉〉 is a Pell’s solution of a2 −′ 1 and 〈〈x1, y1〉〉 is a Pell’s solution
of a2 −′ 1 and y1 ­ y and A > y ­ z and 〈〈x2, y2〉〉 is a Pell’s solution of
A2 −′ 1 and y2 ≡ y (modx1) and A ≡ a (modx1) and y2 ≡ z (mod 2 · y)
and A ≡ 1 (mod 2 · y) and y1 ≡ 0 (mod y2).
Proof: If y = ya(z) and a > 1, then there exist natural numbers x, x1,
y1, A, x2, y2 such that a > 1 and 〈〈x, y〉〉 is a Pell’s solution of a2 −′ 1 and
〈〈x1, y1〉〉 is a Pell’s solution of a2 −′ 1 and y1 ­ y and A > y ­ z and 〈〈x2,

y2〉〉 is a Pell’s solution of A2−′ 1 and y2 ≡ y (modx1) and A ≡ a (modx1)
and y2 ≡ z (mod 2 · y) and A ≡ 1 (mod 2 · y) and y1 ≡ 0 (mod y2). �
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8. Exponential Function is Diophantine

Now we state the proposition:

(39) Let us consider natural numbers x, y, z. Then y = xz if and only if y = 1
and z = 0 or x = 0 and y = 0 and z > 0 or x = 1 and y = 1 and z > 0 or
x > 1 and z > 0 and there exist natural numbers y1, y2, y3, K such that
y1 = yx(z+ 1) and K > 2 · z · y1 and y2 = yK(z+ 1) and y3 = yK·x(z+ 1)
and (0 ¬ y − y3y2 <

1
2 or 0 ¬ y3y2 − y <

1
2).

Proof: If y = xz, then y = 1 and z = 0 or x = 0 and y = 0 and z > 0
or x = 1 and y = 1 and z > 0 or x > 1 and z > 0 and there exist natural
numbers y1, y2, y3, K such that y1 = yx(z + 1) and K > 2 · z · y1 and
y2 = yK(z+1) and y3 = yK·x(z+1) and (0 ¬ y− y3y2 <

1
2 or 0 ¬ y3y2−y <

1
2).

�
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