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Summary. In this article we formalize several basic theorems that cor-
respond to Pell’s equation. We focus on two aspects: that the Pell’s equation
x2−Dy2 = 1 has infinitely many solutions in positive integers for a given D not
being a perfect square, and that based on the least fundamental solution of the
equation when we can simply calculate algebraically each remaining solution.

“Solutions to Pell’s Equation” are listed as item #39 from the “Formalizing
100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.
Wiedijk/100/ .
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0. Introduction

Pell’s equation (alternatively called the Pell-Fermat equation) is a type of a
diophantine equation of the form x2−Dy2 = 1 for a natural number D. If D is a
perfect square, then Pell’s equation can be rewritten as (x−

√
dy)·(x+

√
dy) = 1.

Similarly, the trivial solution (x, y) = (1, 0) is not very interesting. Therefore
it is often assumed that D is not a square and only nontrivial solutions (non
zero pairs of integers) are considered. The first nontrivial solution (x1, y1), if the
solutions are ordered by their magnitude, is called the fundamental solution and
determine all other solutions since the n-th solution xn, yn can be expressed in
terms of the fundamental solution by xn + yn

√
D = (x1 + y1

√
D)n.

1This work has been financed by the resources of the Polish National Science Centre granted
by decision no. DEC-2015/19/D/ST6/01473.
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Pell’s equation has an exceptional history, described in detail in [5, 10].
Firstly, John Pell (1611–1685) has nothing to do with the equation, except the
fact that Leonhard Euler (1707–1783) mistakenly attributed to Pell a solution
method founded by William Brouncker (1620–1684). Solutions of Pell’s equation
for special cases (e.g., D = 2) were even considered in India and Greece around
400 BC. The first description of a method which allowed to construct a nontrivial
solution of the equation for an arbitrary D can be found, e.g. in Euler’s Algebra,
but the method was described without any justification guaranteeing that it
would find at least one solution. The first proof of correctness was published by
Joseph Louis Lagrange [4].

Motivation The solution of Pell’s equation has been applied in many branches
of mathematics. Most basically, the sequence of fractions xiyi approximates

√
D

arbitrarily closely, where (xi, yi) is i-th solution for a given not square natural
D. Note also that Stormer’s theorem applies Pell’s equations to find pairs of
consecutive smooth numbers.

From our point of view, the most significant application of Pell’s equation
was done in the proof of Matiyasevich’s theorem [6] that we try to formalize in
the Mizar system [1]. That theorem states that every computable enumerable
set is diophantine. It implies the undecidability of Hilbert’s 10th problem. The
proof is based mainly on a particular case

x2 − (a2 − 1)y2 = 1, (0.1)

where a is a natural number. Note that the pair (a, 1) is the fundamental solution
of the equation, so it seems that we do not need to consider a complicated con-
struction of the fundamental solution for an arbitrary non square D to analyze
all solutions of (0.1). Such a case of Pell’s equation has been already formalized
in HOL Light [2] and Metamath [7]. However, in our formalization we consider
Pell’s equation in the general case. This decision is a consequence of the fact
that Matiyasevich to show that the equality yn(a) = y is diophantine used Pell’s
equation for D = (a2 − 1) · (2 · y2)2, where yn(a) is the n-th solution of (0.1).
From Amthor’s approach [3] to the cattle problem we can obtain a solution of
Pell’s equation for D based on the fundamental solution of (0.1), since for each
solution (x, y) calculated for D there exists some n such that

x+ y · (2 · y2) = (a+ 1
√
a)n. (0.2)

But this approach is more difficult to formalize than Dirichlet’s argumentation
to obtain existence of the fundamental solution in the general case, as considered
by W. Sierpiński [9].
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Contributions We formalize theorems related to the solvability of Pell’s equ-
ation imitating the approach considered in [9]. We formalize the Dirichlet’s ap-
proximation theorem as Theorem 9, to show that |x− y

√
D| can be arbitrarily

close to 0. Then we show in Theorem 12 that there exist infinitely many pairs
(x, y) where |x2 − Dy2| < 2

√
D + 1. Next, using several times the infinite va-

riant of the pigeonhole principle in the justification of Theorem 13, we indicate
two pairs of such solutions that fulfill the additional list of congruence, suffi-
cient to construct a nontrivial solution of Pell’s equation for a given non square
D in the proof of Theorem 14. Since we can give another nontrivial solution
(ac + Dbd, cb + ad) based on any two nontrivial solutions (a, b), (c, d) we show
in Theorem 17 that there exist infinitely many solutions in positive integers for
a given not square D. Then we show in Theorem 19 that such solutions can
be ordered and we specify the fundamental solution in Definition 3. Finally,
we show in Theorem 21 that each nontrivial solution can easily be calculated
algebraically based on the fundamental solution.

1. Preliminaries

From now on n, n1, n2, k, D denote natural numbers, r, r1, r2 denote real
numbers, and x, y denote integers.

Now we state the propositions:

(1) Let us consider integers i, j. If j < 0, then j < i mod j ¬ 0.

(2) Let us consider integers i, j. If j 6= 0, then |i mod j| < |j|. The theorem
is a consequence of (1).

(3) Let us consider a natural number D, and integers a, b, c, d. If a + (b ·√
D) = c+ (d ·

√
D), then a = c and b = d.

(4) Let us consider natural numbers c, d, n. Then there exist natural num-
bers a, b such that a+ (b ·

√
D) = (c+ (d ·

√
D))
n
.

Proof: Set c1 = c + (d ·
√
D). Define P[natural number] ≡ there exist

natural numbers a, b such that a + (b ·
√
D) = c1

$1 . P[0]. If P[n], then
P[n+ 1]. P[n]. �

(5) Let us consider integers c, d, and a natural number n. Then there exist
integers a, b such that a+ (b ·

√
D) = (c+ (d ·

√
D))
n
.

Proof: Set c1 = c + (d ·
√
D). Define P[natural number] ≡ there exist

integers a, b such that a + (b ·
√
D) = c1

$1 . P[0]. If P[n], then P[n + 1].
P[n]. �

(6) Let us consider a natural number D, integers a, b, c, d, and a natural
number n. Suppose a + (b ·

√
D) = (c+ (d ·

√
D))
n
. Then a− (b ·

√
D) =

(c− (d ·
√
D))
n
.
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Proof: Set S =
√
D. Define P[natural number] ≡ for every integers a, b,

c, d such that a+ (b ·S) = (c+ (d · S))$1 holds a− (b ·S) = (c− (d · S))$1 .
P[0]. If P[n], then P[n+ 1]. P[n]. �

2. Solutions to Pell’s Equation – Construction

Now we state the propositions:

(7) There exists a finite sequence F of elements of N such that

(i) lenF = n+ 1, and

(ii) for every k such that k ∈ domF holds F (k) = bk − 1 ·
√
Dc+ 1, and

(iii) if D is not square, then F is one-to-one.

Proof: Define F(natural number) = b$1 − 1 ·
√
Dc+ 1. Consider p being

a finite sequence such that len p = n+1 and for every k such that k ∈ dom p

holds p(k) = F(k). rng p ⊆ N. �

(8) Let us consider real numbers a, b, and a finite sequence F of elements of
R. Suppose n > 1 and lenF = n+ 1 and for every k such that k ∈ domF

holds a < F (k) ¬ b. Then there exist natural numbers i, j such that

(i) i, j ∈ domF , and

(ii) i 6= j, and

(iii) F (i) ¬ F (j), and

(iv) F (j)− F (i) < b−an .

Proof: Define P(natural number) = ]a + $1−1·(b−a)
n , a + $1·(b−a)

n ]. Define
H[object, object] ≡ for every natural number k such that $1 ∈ P(k) holds
k = $2. For every object x such that x ∈ ]a, b] there exists a natural number
k such that x ∈ P(k) and k ∈ Seg n. For every object x such that x ∈ ]a, b]
there exists an object y such that H[x, y]. Consider f being a function
such that dom f = ]a, b] and for every object x such that x ∈ ]a, b] holds
H[x, f(x)]. Set f1 = f ·F . rngF ⊆ dom f . rng f1 ⊆ Seg n. f1 is one-to-one.
�

(9) If D is not square and n > 1, then there exist integers x, y such that
y 6= 0 and |y| ¬ n and 0 < x− (y ·

√
D) < 1

n .
Proof: Consider x being a finite sequence of elements of N such that
lenx = n + 1 and for every k such that k ∈ domx holds x(k) = bk − 1 ·√
Dc + 1 and if D is not square, then x is one-to-one. Define U(natural

number) = x($1)− ($1 − 1 ·
√
D). Consider u being a finite sequence such

that lenu = n+ 1 and for every k such that k ∈ domu holds u(k) = U(k).
rng u ⊆ R. For every k such that k ∈ domu holds 0 < u(k) ¬ 1. Consider
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n1, n2 being natural numbers such that n1, n2 ∈ domu and n1 6= n2 and
u(n1) ¬ u(n2) and u(n2)− u(n1) < 1−0

n . u(n1) 6= u(n2). �

(10) Suppose D is not square and n 6= 0 and |y| ¬ n and 0 < x−(y ·
√
D) < 1

n .
Then |x2 − (D · y2)| ¬ 2 ·

√
D + 1

n2
.

(11) If D is not square, then there exist integers x, y such that y 6= 0 and
0 < x − (y ·

√
D) and |x2 − (D · y2)| < 2 ·

√
D + 1. The theorem is

a consequence of (9) and (10).

(12) Suppose D is not square. Then {〈〈x, y〉〉, where x, y are integers : y 6= 0
and |x2 − (D · y2)| < 2 ·

√
D + 1 and 0 < x− (y ·

√
D)} is infinite.

Proof: Set S = {〈〈x, y〉〉, where x, y are integers : y 6= 0 and |x2 − (D ·
y2)| < 2 ·

√
D+ 1 and 0 < x− (y ·

√
D)}. There exists a function f from S

into R such that for every integers x, y such that 〈〈x, y〉〉 ∈ S holds f(〈〈x,
y〉〉) = x− (y ·

√
D). Consider f being a function from S into R such that

for every integers x, y such that 〈〈x, y〉〉 ∈ S holds f(〈〈x, y〉〉) = x− (y ·
√
D).

S is not empty. Reconsider R = rng f as a finite, non empty subset of
R. inf R > 0. Consider n being a natural number such that 1

n < inf R
and n > 1. Consider x, y being integers such that y 6= 0 and |y| ¬ n and
0 < x−(y ·

√
D) < 1

n . |x2−(D ·y2)| ¬ 2 ·
√
D+ 1

n2
. 2 ·
√
D+ 1

n2
< 2 ·

√
D+1.

�

(13) Suppose D is not square. Then there exist integers k, a, b, c, d such that

(i) 0 6= k, and

(ii) a2 − (D · b2) = k = c2 − (D · d2), and

(iii) a ≡ c (mod k), and

(iv) b ≡ d (mod k), and

(v) |a| 6= |c| or |b| 6= |d|.
Proof: Set S = {〈〈x, y〉〉, where x is an integer, y is an integer : y 6= 0 and
|x2−(D·y2)| < 2·

√
D+1 and 0 < x−(y ·

√
D)}. Define P[object, object] ≡

for every integers x, y such that 〈〈x, y〉〉 = $1 holds $2 = x2 − (D · y2). For
every object x1 such that x1 ∈ S there exists an object u such that P[x1, u].
Consider f being a function such that dom f = S and for every object x1

such that x1 ∈ S holds P[x1, f(x1)]. Reconsider M = d2 ·
√
D + 1e as

an element of N. Define P[integer] ≡ $1 6= 0. Define F(set) = $1. Set
S1 = {F(i), where i is an element of Z : −M ¬ i ¬ M and P[i]}. S1 is
finite. rng f ⊆ S1. Consider k1 being an object such that k1 ∈ rng f and
f−1({k1}) is infinite. Consider k being an element of Z such that k = k1

and −M ¬ k ¬M and P[k]. Set Z = f−1({k}). DefineR[object, object] ≡
for every integers x, y such that 〈〈x, y〉〉 = $1 holds $2 = 〈〈x mod k,

y mod k〉〉. For every object x1 such that x1 ∈ Z there exists an object u
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such that R[x1, u]. Consider g being a function such that dom g = Z

and for every object x1 such that x1 ∈ Z holds R[x1, g(x1)]. Define
R[object] ≡ not contradiction. Set K = {F(i), where i is an element of
Z : −|k| ¬ i ¬ |k| and R[i]}. K is finite. rng g ⊆ K×K. Consider a1 being
an object such that a1 ∈ rng g and g−1({a1}) is infinite. Consider X being
an object such that X ∈ g−1({a1}). Consider x, y being integers such that
X = 〈〈x, y〉〉 and y 6= 0 and |x2−(D ·y2)| < 2 ·

√
D+1 and 0 < x−(y ·

√
D).

There exist integers a, b, c, d such that a2 − (D · b2) = k = c2 − (D · d2)
and a ≡ c (mod k) and b ≡ d (mod k) and (|a| 6= |c| or |b| 6= |d|). �

3. Pell’s Equation

Now we state the proposition:

(14) #39: Solutions to Pell’s Equation:
If D is not square, then there exist natural numbers x, y such that x2 −
(D · y2) = 1 and y 6= 0. The theorem is a consequence of (13).

Let D be a natural number.
A Pell’s solution of D is an element of Z× Z and is defined by

(Def. 1) ((it)1)2 − (D · ((it)2)2) = 1.

Let D1, D2 be real-membered, non empty sets and p be an element of D1×
D2. We say that p is positive if and only if

(Def. 2) (p)1 is positive and (p)2 is positive.

One can check that there exists an element of Z× Z which is positive.
Let p be a positive element of Z×Z. Observe that (p)1 is positive as an integer

and (p)2 is positive as an integer.
Now we state the propositions:

(15) Let us consider square natural number D, and a positive element p of
Z× Z. If D > 0, then p is not a Pell’s solution of D.

(16) If D is not square, then there exists a Pell’s solution p of D such that p
is positive. The theorem is a consequence of (14).

Let D be a natural number. One can verify that there exists a Pell’s solution
of D which is positive.

(17) The Cardinality of the Pell’s Solutions:
Let us consider a natural number D. Then the set of all a1 where a1 is
a positive Pell’s solution of D is infinite.
Proof: Set P = the set of all a1 where a1 is a positive Pell’s solution
of D. Set a1 = the positive Pell’s solution of D. π2(P ) ⊆ N. Reconsider
P2 = π2(P ) as a finite, non empty subset of N. Set b = maxP2. Consider
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a being an object such that 〈〈a, b〉〉 ∈ P . Consider a1 being a positive Pell’s
solution of D such that 〈〈a, b〉〉 = a1. �

4. Solutions to Pell’s Equation – Shape

In the sequel p, p1, p2 denote Pell’s solutions of D.
Now we state the propositions:

(18) If D is not square, then p is positive iff (p)1 + ((p)2 ·
√
D) > 1.

Proof: If p is positive, then (p)1 + ((p)2 ·
√
D) > 1. �

(19) Suppose 1 < (p1)1 + ((p1)2 ·
√
D) < (p2)1 + ((p2)2 ·

√
D) and D is not

square. Then

(i) (p1)1 < (p2)1, and

(ii) (p1)2 < (p2)2.

The theorem is a consequence of (18).

(20) Let us consider a natural number D, a positive Pell’s solution p of D,
integers a, b, and a natural number n. Suppose n > 0 and a+ (b ·

√
D) =

((p)1 + ((p)2 ·
√
D))
n
. Then 〈〈a, b〉〉 is a positive Pell’s solution of D. The

theorem is a consequence of (6) and (18).

Let D be a natural number. The minimal Pell’s solution of D yielding a po-
sitive Pell’s solution of D is defined by

(Def. 3) for every positive Pell’s solution p of D, (it)1 ¬ (p)1 and (it)2 ¬ (p)2.

Now we state the proposition:

(21) Let us consider a natural number D, and an element p of Z×Z. Then p is
a positive Pell’s solution of D if and only if there exists a positive natural
number n such that (p)1 + ((p)2 ·

√
D) = ((the minimal Pell’s solution of

D)1 + ((the minimal Pell’s solution of D)2 ·
√
D))
n
.

Proof: Set m = the minimal Pell’s solution of D. Set t = (m)1. Set
u = (m)2. Set S =

√
D. Set x = (p)1. Set y = (p)2. If p is a positive Pell’s

solution of D, then there exists a positive natural number n such that
x+ (y ·S) = (t+ (u · S))n by (18), (19), [8, (51), (57)]. 〈〈x, y〉〉 is a positive
Pell’s solution of D. �
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