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Summary. In this paper we give a formal definition of the notion of no-
minative data with simple names and complex values [15, 16, 19] and formal
definitions of the basic operations on such data, including naming, denaming
and overlapping, following the work [19].

The notion of nominative data plays an important role in the composition-
nominative approach to program formalization [15, 16] which is a development
of composition programming [18]. Both approaches are compared in [14].

The composition-nominative approach considers mathematical models of com-
puter software and data on various levels of abstraction and generality and pro-
vides mathematical tools for reasoning about their properties. In particular, no-
minative data are mathematical models of data which are stored and processed
in computer systems. The composition-nominative approach considers different
types [14, 19] of nominative data, but all of them are based on the name-value
relation. One powerful type of nominative data, which is suitable for representing
many kinds of data commonly used in programming like lists, multidimensional
arrays, trees, tables, etc. is the type of nominative data with simple (abstract)
names and complex (structured) values. The set of nominative data of given type
together with a number of basic operations on them like naming, denaming and
overlapping [19] form an algebra which is called data algebra.
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In the composition-nominative approach computer programs which process
data are modeled as partial functions which map nominative data from the car-
rier of a given data algebra (input data) to nominative data (output data). Such
functions are also called binominative functions. Programs which evaluate con-
ditions are modeled as partial predicates on nominative data (nominative pre-
dicates). Programming language constructs like sequential execution, branching,
cycle, etc. which construct programs from the existing programs are modeled as
operations which take binominative functions and predicates and produce bino-
minative functions. Such operations are called compositions. A set of binominati-
ve functions and a set of predicates together with appropriate compositions form
an algebra which is called program algebra. This algebra serves as a semantic
model of a programming language.

For functions over nominative data a special computability called abstract
computability is introduces and complete classes of computable functions are
specified [16].

For reasoning about properties of programs modeled as binominative func-
tions a Floyd-Hoare style logic [1, 2] is introduced and applied [12, 13, 8, 11, 9, 10].
One advantage of this approach to reasoning about programs is that it naturally
handles programs which process complex data structures (which can be quite
straightforwardly represented as nominative data). Also, unlike classical Floyd-
Hoare logic, the mentioned logic allows reasoning about assertions which include
partial pre- and post-conditions [11].

Besides modeling data processed by programs, nominative data can be also
applied to modeling data processed by signal processing systems in the context
of the mathematical systems theory [4, 6, 7, 5, 3].
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1. Preliminaries

From now on a, a1, a2, v, v1, v2, x denote objects, V , A denote sets, m, n
denote natural numbers, and S, S1, S2 denote finite sequences.

Now we state the propositions:

(1) Let us consider a finite sequence f . If n ∈ dom f , then (〈x〉a f)(n+1) =
f(n).

(2) Let us consider a function f . Suppose dom f = N. Then f� Seg n is
a finite sequence.

(3) Let us consider finite sequences f , g. Then

(i) dom f ⊆ dom g, or

(ii) dom g ⊆ dom f .
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Let f , g be finite sequences. One can check that f+·g is finite sequence-like.
Let f1, f2 be functions. Note that f2 ∪ f1�(dom f1 \ dom f2) is function-like.
Let f , g be functions and x, y be objects. We say that f(x) ∼= g(y) if and

only if

(Def. 1) (x ∈ dom f iff y ∈ dom g) and if x ∈ dom f , then f(x) = g(y).

2. Definition of Simple-Named Complex-Valued Nominative Data

Let us consider V and A.
A nominative set of V and A is a partial function from V to A. Let us note

that there exists a nominative set of V and A which is finite.
A nominative data with simple names from V and simple values from A is

a finite nominative set of V and A. The functor NDSS(V,A) yielding a set is
defined by the term

(Def. 2) the set of all d where d is a nominative data with simple names from V
and simple values from A.

Let us note that NDSS(V,A) is non empty.
Now we state the propositions:

(4) If x ∈ NDSS(V,A), then x is a nominative data with simple names from
V and simple values from A.

(5) NDSS(V,A) ⊆ V →̇A.

(6) ∅ ∈ NDSS(V,A).

(7) Let us consider sets A, B. If A ⊆ B, then NDSS(V,A) ⊆ NDSS(V,B).

(8) Let us consider finite functions f , g. Suppose f ≈ g and f , g ∈ NDSS(V,A).
Then f ∪ g ∈ NDSS(V,A). The theorem is a consequence of (4).

Let us consider V and A. The functor FNDSC(V,A) yielding a function is
defined by

(Def. 3) dom it = N and it(0) = A and for every natural number n, it(n + 1) =
NDSS(V,A ∪ it(n)).

Now we state the propositions:

(9) (FNDSC(V,A))(1) = NDSS(V,A).

(10) (FNDSC(V,A))(2) = NDSS(V,A∪NDSS(V,A)). The theorem is a conse-
quence of (9).

(11) A ⊆
⋃

FNDSC(V,A).

(12) If 1 ¬ n, then ∅ ∈ (FNDSC(V,A))(n). The theorem is a consequence of
(6).
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Let us consider V , A, and n. One can check that FNDSC(V,A)� Seg n is finite
sequence-like.

Now we state the proposition:

(13) If m 6= 0 and m ¬ n, then (FNDSC(V,A))(m) ⊆ (FNDSC(V,A))(n).
Proof: Set S = FNDSC(V,A). Define P[natural number] ≡ if m ¬ $1,
then S(m) ⊆ S($1). For every natural number k such that P[k] holds
P[k + 1]. For every natural number k, P[k]. �

Let us consider V and A. Let S be a finite sequence. We say that S is a rank
sequence if and only if

(Def. 4) S(1) = NDSS(V,A) and for every natural number n such that n, n+ 1 ∈
domS holds S(n+ 1) = NDSS(V,A ∪ S(n)).

Now we state the propositions:

(14) If S is a rank sequence, then S 6= ∅.
(15) If S is a rank sequence and S1 ⊆ S and S1 6= ∅, then S1 is a rank

sequence.

(16) If S is a rank sequence and n ∈ domS, then S�n is a rank sequence. The
theorem is a consequence of (15).

(17) If S is a rank sequence, then S a 〈NDSS(V,A ∪ S(lenS))〉 is a rank
sequence.

(18) If 1 ¬ n, then FNDSC(V,A)� Seg n is a rank sequence. The theorem is
a consequence of (9).

(19) If S is a rank sequence and n ∈ domS, then S(n) = (FNDSC(V,A))(n).
Proof: Set F = FNDSC(V,A). Define P[natural number] ≡ if $1 ∈ domS,
then S($1) = F ($1). For every n such that P[n] holds P[n+ 1]. For every
n, P[n]. �

(20) If S is a rank sequence, then S = FNDSC(V,A)� domS. The theorem is
a consequence of (19).

(21) If S1 is a rank sequence and S2 is a rank sequence, then S1 ≈ S2.
Proof: Define P[natural number] ≡ if $1 ∈ domS1∩domS2, then S1($1) =
S2($1). P[0]. For every n such that P[n] holds P[n+ 1]. For every n, P[n].
�

(22) If S1 is a rank sequence and S2 is a rank sequence, then S1 ⊆ S2 or
S2 ⊆ S1. The theorem is a consequence of (20) and (3).

(23) If S1 is a rank sequence and S2 is a rank sequence, then S1+·S2 = S1 or
S1+·S2 = S2. The theorem is a consequence of (21) and (3).

(24) If S1 is a rank sequence and S2 is a rank sequence, then S1+·S2 is a rank
sequence.
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(25) If S is a rank sequence and m ¬ n and n ∈ domS, then S(m) ⊆ S(n).
The theorem is a consequence of (19) and (13).

(26) Let us consider a finite sequence F . Suppose F is a rank sequence. Then
there exists a finite sequence S such that

(i) lenS = 1 + lenF , and

(ii) S is a rank sequence, and

(iii) for every natural number n such that n ∈ domS holds S(n) =
NDSS(V,A ∪ (〈A〉 a F )(n)).

Proof: SetG = 〈A〉aF . Define F(object) = NDSS(V,A∪G($1)). Consider
S being a finite sequence such that lenS = lenG and for every natural
number n such that n ∈ domS holds S(n) = F(n). For every natural
number n such that n ∈ domF holds G(n + 1) = F (n). S is a rank
sequence by (1), [17, (20)]. �

(27) 〈NDSS(V,A)〉 is a rank sequence.

(28) 〈NDSS(V,A),NDSS(V,A∪NDSS(V,A))〉 is a rank sequence. The theorem
is a consequence of (27) and (17).

(29) 〈NDSS(V,A),NDSS(V,A∪NDSS(V,A)),NDSS(V,A∪NDSS(V,A∪NDSS(V,
A)))〉 is a rank sequence. The theorem is a consequence of (17) and (28).

Let us consider V and A.
A non-atomic nominative data of V and A is a function and is defined by

(Def. 5) there exists a finite sequence S such that S is a rank sequence and
it ∈
⋃
S.

From now on D, D1, D2 denote non-atomic nominative data of V and A.
Now we state the propositions:

(30) ∅ is a non-atomic nominative data of V and A. The theorem is a conse-
quence of (27).

(31) D ∈
⋃

FNDSC(V,A).

(32) Let us consider a set d. If d ⊆ D, then d is a non-atomic nominative
data of V and A. The theorem is a consequence of (4).

(33) There exists a natural number n such that D is a nominative data with
simple names from V and simple values from A∪ (FNDSC(V,A))(n). The
theorem is a consequence of (19) and (4).

Let us consider V and A. Note that every non-atomic nominative data of V
and A is finite.

Now we state the propositions:

(34) If D1 ≈ D2 and S is a rank sequence and D1, D2 ∈ S(m), then D1∪D2 ∈
S(m). The theorem is a consequence of (4) and (8).
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(35) If D1 ≈ D2 and S2 is a rank sequence and S1 ⊆ S2 and D1 ∈
⋃
S1 and

D2 ∈
⋃
S2, then D1 ∪ D2 ∈

⋃
S2. The theorem is a consequence of (25)

and (34).

(36) If D1 ≈ D2, then D1 ∪D2 is a non-atomic nominative data of V and A.
The theorem is a consequence of (22) and (35).

(37) If D1 ≈ D2, then D1+·D2 is a non-atomic nominative data of V and A.
The theorem is a consequence of (36).

Let us consider V and A. A nominative data with simple names from V and
complex values from A is a set and is defined by

(Def. 6) it ∈ A or it is a non-atomic nominative data of V and A.

The functor NDSC(V,A) yielding a set is defined by the term

(Def. 7) the set of all D where D is a nominative data with simple names from
V and complex values from A.

Let us observe that NDSC(V,A) is non empty. Now we state the propositions:

(38) ∅ ∈ NDSC(V,A). The theorem is a consequence of (30).

(39) If x ∈ NDSC(V,A), then x is a nominative data with simple names from
V and complex values from A.

(40) NDSC(V,A) =
⋃

FNDSC(V,A). The theorem is a consequence of (39),
(11), (31), (4), and (18).

(41) D ∈ NDSC(V,A).

(42) If D /∈ A, then D ∈ NDSC(V,A) \ A. The theorem is a consequence of
(41).

(43) If x ∈ NDSC(V,A)\A, then x is a non-atomic nominative data of V andA.

(44) Let us consider a nominative data D with simple names from V and
complex values from A. Then D ∈

⋃
FNDSC(V,A). The theorem is a con-

sequence of (11) and (31).

3. Examples of Simple-Named Complex-Valued Nominative Data

Let us consider v and a. The functor ND(v, a) yielding a set is defined by
the term

(Def. 8) v 7−→. a.
Observe that ND(v, a) is function-like and relation-like.
Now we state the propositions:

(45) If v ∈ V and a ∈ A, then ND(v, a) ∈ NDSS(V,A).

(46) If v ∈ V and a ∈ A, then ND(v, a) is a non-atomic nominative data of
V and A. The theorem is a consequence of (27) and (45).
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Let V , A be non empty sets, v be an element of V , and a be an element of
A. Observe that the functor ND(v, a) yields a non-atomic nominative data of V
and A. Now we state the proposition:

(47) If v ∈ V and a ∈ A, then ND(v, a) is a nominative data with simple
names from V and complex values from A. The theorem is a consequence
of (46).

Let us consider v, v1, and a1. The functor ND(v, v1, a1) yielding a set is
defined by the term

(Def. 9) v 7−→. (v1 7−→. a1).

Note that ND(v, v1, a1) is function-like and relation-like.
Now we state the propositions:

(48) If {v, v1} ⊆ V and a1 ∈ A, then ND(v, v1, a1) ∈ NDSS(V,A∪NDSS(V,A)).

(49) If {v, v1} ⊆ V and a1 ∈ A, then ND(v, v1, a1) is a non-atomic nominative
data of V and A. The theorem is a consequence of (28) and (48).

Let V , A be non empty sets, v, v1 be elements of V , and a be an element
of A. Let us note that the functor ND(v, v1, a) yields a non-atomic nominative
data of V and A. Now we state the proposition:

(50) If {v, v1} ⊆ V and a1 ∈ A, then ND(v, v1, a1) is a nominative data
with simple names from V and complex values from A. The theorem is
a consequence of (49).

Let us consider v, v1, a, and a1. The functor ND(v, v1, a, a1) yielding a set
is defined by the term

(Def. 10) [v 7−→ a, v1 7−→ a1].

Let us note that ND(v, v1, a, a1) is function-like and relation-like.
Now we state the propositions:

(51) If {v, v1} ⊆ V and {a, a1} ⊆ A, then ND(v, v1, a, a1) ∈ NDSS(V,A). The
theorem is a consequence of (45) and (8).

(52) If {v, v1} ⊆ V and {a, a1} ⊆ A, then ND(v, v1, a, a1) is a non-atomic
nominative data of V and A. The theorem is a consequence of (27) and
(51).

Let V , A be non empty sets, v, v1 be elements of V , and a, a1 be elements
of A. Let us observe that the functor ND(v, v1, a, a1) yields a non-atomic nomi-
native data of V and A. Now we state the proposition:

(53) Suppose {v, v1} ⊆ V and {a, a1} ⊆ A. Then ND(v, v1, a, a1) is a nomi-
native data with simple names from V and complex values from A. The
theorem is a consequence of (52).

Let us consider v, v1, v2, a, and a1. The functor ND(v, v1, v2, a, a1) yielding
a set is defined by the term
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(Def. 11) [v 7−→ a, v1 7−→ v2 7−→. a1].

Let us note that ND(v, v1, v2, a, a1) is function-like and relation-like.
Now we state the propositions:

(54) Suppose {v, v1, v2} ⊆ V and {a, a1} ⊆ A. Then ND(v, v1, v2, a, a1) ∈
NDSS(V,A ∪NDSS(V,A)).
Proof: Set g = ND(v, v1, v2, a, a1). rng g ⊆ A ∪NDSS(V,A). �

(55) If {v, v1, v2} ⊆ V and {a, a1} ⊆ A, then ND(v, v1, v2, a, a1) is a non-
atomic nominative data of V and A. The theorem is a consequence of (54)
and (28).

Let V , A be non empty sets, v, v1, v2 be elements of V , and a, a1 be elements
of A. One can check that the functor ND(v, v1, v2, a, a1) yields a non-atomic
nominative data of V and A. Now we state the propositions:

(56) Suppose {v, v1, v2} ⊆ V and {a, a1} ⊆ A. Then ND(v, v1, v2, a, a1) is
a nominative data with simple names from V and complex values from A.
The theorem is a consequence of (55).

(57) 〈x〉 is a non-atomic nominative data of {1} and {x}.
Proof: 〈x〉 ∈ NDSS({1}, {x}). �

4. Operations on Simple-Named Complex-Valued Nominative Data

Let us consider V , A, v, and D. Assume v ∈ domD. The functor v ⇒a D
yielding a nominative data with simple names from V and complex values from
A is defined by the term

(Def. 12) D(v).

Let v, D be objects. Assume D is a nominative data with simple names from
V and complex values from A. Assume v ∈ V . The functor ⇒v(D) yielding
a non-atomic nominative data of V and A is defined by the term

(Def. 13) v 7−→. D.

Let a be an object and f be a V -valued finite sequence. Assume len f > 0.
The functor ⇒(V,A, f, a) yielding a finite sequence is defined by

(Def. 14) len it = len f and it(1) = ⇒(f(len f))(a) and for every natural number
n such that 1 ¬ n < len it holds it(n+ 1) =⇒(f(len f − n))(it(n)).

Now we state the proposition:

(58) Let us consider a V -valued finite sequence f . Suppose 1 ¬ n ¬ len f .
Then (⇒(V,A, f, a))(n) is a non-atomic nominative data of V and A.

Let us consider V and A. Let f be a V -valued finite sequence and a be
an object. The functor ⇒f(a) yielding a set is defined by the term
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(Def. 15) (⇒(V,A, f, a))(len⇒(V,A, f, a)).

Now we state the propositions:

(59) Let us consider a V -valued finite sequence f . Suppose len f > 0. Then
⇒f(a) is a non-atomic nominative data of V and A. The theorem is a con-
sequence of (58).

(60) Let us consider a non empty set V , and an element v of V . Then
⇒〈v〉(a) =⇒v(a).

(61) Let us consider a non empty set V , and elements v1, v2 of V . Suppose a
is a nominative data with simple names from V and complex values from
A. Then ⇒〈v1, v2〉(a) = v1 7−→. (v2 7−→. a). The theorem is a consequence of
(58).

(62) Let us consider a nominative data D with simple names from V and
complex values from A. If v ∈ V , then v ⇒a ⇒v(D) = D.

(63) If v ∈ domD, then ⇒v(v ⇒a D) = v 7−→. D(v). The theorem is a conse-
quence of (33).

Let us consider V and A. Let d1, d2 be objects. Assume d1 is a nominative
data with simple names from V and complex values from A and d2 is a nomi-
native data with simple names from V and complex values from A.

The functor d1∇ad2 yielding a nominative data with simple names from V
and complex values from A is defined by

(Def. 16) (i) there exist functions f1, f2 such that f1 = d1 and f2 = d2 and
it = f2 ∪ f1�(dom f1 \ dom f2), if d1 /∈ A and d2 /∈ A,

(ii) it = d2, otherwise.

Let d1, d2, v be objects.
The functor d1∇vad2 yielding a nominative data with simple names from V

and complex values from A is defined by the term

(Def. 17) d1∇a(⇒v(d2)).

Now we state the propositions:

(64) If D1 /∈ A and D2 /∈ A, then D1∇aD2 = D2 ∪D1�(domD1 \ domD2).

(65) If D1 /∈ A and D2 /∈ A and domD1 ⊆ domD2, then D1∇aD2 = D2. The
theorem is a consequence of (64).

(66) If D /∈ A, then D∇aD = D. The theorem is a consequence of (65).

(67) Suppose v ∈ V and v 7−→. a1 /∈ A and v 7−→. a2 /∈ A and a1 is a nominative
data with simple names from V and complex values from A and a2 is
a nominative data with simple names from V and complex values from
A. Then (v 7−→. a1)∇a(v 7−→. a2) = v 7−→. a2. The theorem is a consequence of
(65).
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(68) Suppose {v1, v2} ⊆ V and v1 6= v2 and v1 7−→. a1 /∈ A and v2 7−→. a2 /∈ A
and a1 is a nominative data with simple names from V and complex values
from A and a2 is a nominative data with simple names from V and complex
values from A. Then (v1 7−→. a1)∇a(v2 7−→. a2) = [v2 7−→ a2, v1 7−→ a1]. The
theorem is a consequence of (64).

(69) Suppose {v, v1, v2} ⊆ V and v 6= v1 and a2 ∈ A and v1 7−→. a1 /∈ A
and v 7−→. (v2 7−→. a2) /∈ A and a1 is a nominative data with simple names
from V and complex values from A. Then (v1 7−→. a1)∇va(v2 7−→. a2) = [v 7−→
v2 7−→. a2, v1 7−→ a1]. The theorem is a consequence of (47) and (68).

Let us consider V , A, and v. The functor v ⇒a yielding a partial function
from NDSC(V,A) to NDSC(V,A) is defined by

(Def. 18) dom it = {d, where d is a non-atomic nominative data of V and A : v ∈
dom d} and for every non-atomic nominative data D of V and A such that
D ∈ dom it holds it(D) = v ⇒a D.

The functor ⇒v yielding a function from NDSC(V,A) into NDSC(V,A) is
defined by

(Def. 19) for every nominative data D with simple names from V and complex
values from A, it(D) =⇒v(D).

The functor ∇va yielding a partial function from NDSC(V,A) × NDSC(V,A)
to NDSC(V,A) is defined by

(Def. 20) dom it = (NDSC(V,A) \ A)× NDSC(V,A) and for every non-atomic no-
minative data d1 of V and A and for every object d2 such that d1 /∈ A and
d2 ∈ NDSC(V,A) holds it(〈〈d1, d2〉〉) = d1∇vad2.
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