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Summary. In this article, we formalize in Mizar [5] the definition of dual
lattice and their properties. We formally prove that a set of all dual vectors in a
rational lattice has the construction of a lattice. We show that a dual basis can
be calculated by elements of an inverse of the Gram Matrix. We also formalize
a summation of inner products and their properties. Lattice of Z-module is ne-
cessary for lattice problems, LLL(Lenstra, Lenstra and Lovédsz) base reduction
algorithm and cryptographic systems with lattice [20], [10] and [19].
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1. SUMMATION OF INNER PRODUCTS

Now we state the proposition:

(1) Let us consider a rational Z-lattice L, and a Z-lattice L;. Suppose
L, is a submodule of DivisibleMod(L) and the scalar product of L; =
ScProductDM(L) | (the carrier of Ly). Then L is rational.

PROOF: For every vectors v, u of L1, (v,u) € Q by [14, (25)], [7, (49)]. O
Let L be a rational Z-lattice. Observe that EMLat(L) is rational.
Let r be an element of Fg. Let us note that EMLat(r, L) is rational.
Let L be a Z-lattice, F' be a finite sequence of elements of L, f be a function
from L into ZR, and v be a vector of L. The functor ScFS(v, f, F') yielding
a finite sequence of elements of Rp is defined by
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(Def. 1) lenit =len F' and for every natural number ¢ such that ¢ € dom it holds
it(i) = (v, f(F}) - F5).
Now we state the propositions:

(2) Let us consider a Z-lattice L, a function f from L into ZR, a finite
sequence [’ of elements of L, vectors v, u of L, and a natural number 3.
Suppose i € dom F' and w = F (7). Then (ScFS(v, f, F))(i) = (v, f(u) - u).

(3) Let us consider a Z-lattice L, a function f from L into Z, and vectors
v, u of L. Then ScFS(v, f, (u)) = ({(v, f(u) - u)).

(4) Let us consider a Z-lattice L, a function f from L into Z&, finite sequen-
ces F, G of elements of L, and a vector v of L. Then ScFS(v, f, F ™~ G) =
ScFS(v, f, F) ~ ScFS(v, f,G).

Let L be a Z-lattice, [ be a linear combination of L, and v be a vector of L.
The functor SumSc(v, 1) yielding an element of Ry is defined by

(Def. 2) there exists a finite sequence F' of elements of L such that F' is one-to-one
and rng F' = the support of [ and it = > ScFS(v, [, F).

Now we state the propositions:

(5) Let us consider a Z-lattice L, and a vector v of L. Then SumSc(v, Orc, ) =
ORy. -

(6) Let us consider a Z-lattice L, a vector v of L, and a linear combination
l of §4. Then SumSc(v,l) = Or,,, where « is the carrier of L. The theorem
is a consequence of (5).

(7) Let us consider a Z-lattice L, a vector v of L, and a linear combination !
of L. Suppose the support of [ = (). Then SumSc(v, ) = Og,. The theorem
is a consequence of (5).

(8) Let us consider a Z-lattice L, vectors v, u of L, and a linear combination
l of {u}. Then SumSc(v,l) = (v,l(u) - u). The theorem is a consequence
of (5) and (3).

(9) Let us consider a Z-lattice L, a vector v of L, and linear combinations
l1, lg of L. Then SumSc(v,l; + l2) = SumSc(v, 1) + SumSc(v, l2).
PROOF: Set A = ((the support of I;+13)U(the support of [;))U(the support
of l). Set C; = A\ (the support of /;). Consider p being a finite sequence
such that rngp = C1 and p is one-to-one. Set C3 = A\ (the support of
l1+12). Consider r being a finite sequence such that rngr = Cs and r is one-
to-one. Set Cy = A\ (the support of l3). Consider ¢ being a finite sequence
such that rng ¢ = C5 and g is one-to-one. Consider F' being a finite sequen-
ce of elements of L such that F' is one-to-one and rng F' = the support of
l1 413 and SumSc(w, l1 +12) = > ScFS(w, 1 +12, F'). Set F} = F"r. Consi-
der G being a finite sequence of elements of L such that G is one-to-one and
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rng G = the support of I; and SumSc(w, ;) = Y ScFS(w, 1, G). Set G3 =
G " p. rng F misses rng r. rng G misses rng p. Define F(natural number) =
Fy — (G3($1)). Consider P being a finite sequence such that len P = len F}
and for every natural number k such that £k € dom P holds P(k) =
F(k) from [4, Sch. 2]. rng P C dom F; by [22, (29)], [23 (8)]. dom F} C
rng P by [7, (33)], [27, (28), (36)], [7, (39)]. Set g = ScFS(w,l,G3).
Set f = ScFS(w,l; + la, F1). Consider H being a finite sequence of ele-
ments of L such that H is one-to-one and rng H = the support of I and
> ScFS(w,le, H) = SumSc(w,ls). Set Hy = H ™ q. rng H misses rngq.
Define F(natural number) = H; « (G3(%1)). Consider R being a finite
sequence such that len R = len H; and for every natural number k such
that & € dom R holds R(k) = F(k) from [4, Sch. 2]. rng R C dom H; by
[22, (29)], [23, (8)]. dom H; C rng R by [7, (33)], [27, (28), (36)], [7, (39)].
Set h = ScFS(w, l2, Hy). > h = Y (ScFS(w, la, H) ~ ScFS(w, l2,q)). > g =
> (ScFS(w, 11, G) ~ ScFS(w, 11, p)). Reconsider Hy = h - R as a finite sequ-
ence of elements of Rg. > f = > (ScFS(w, 1 + 12, F) ™ ScFS(w, l1 +12,7)).
Define F(natural number) = gg, + Hag,. Consider I being a finite sequ-
ence such that len I = len G3 and for every natural number k such that
k € dom I holds I(k) = F(k) from [4, Sch. 2]. rng I C the carrier of Ryp.
([l

Let us consider a Z-lattice L, a linear combination [ of L, and a vector
v of L. Then (v, 1) = SumSc(v,1).
PROOF: Define P[natural number] = for every Z-lattice L for every linear

combination [ of L for every vector v of L such that the support of [ = $;
holds (v, Y1) = SumSc(v,l). P[0] by [24, (19)], [11L (12)], (7). For every
natural number n such that P[n| holds P[n + 1] by [2, (44)], [9} (31)], [2}
(42)], [24, (7)]. For every natural number n, P[n| from [3| Sch. 2]. O

Let L be a Z-lattice, F' be a finite sequence of elements of DivisibleMod (L), f
be a function from DivisibleMod (L) into Z®, and v be a vector of DivisibleMod(L).
The functor ScFS(v, f, F') yielding a finite sequence of elements of Ry is defined

by
(Def. 3)

len it = len F' and for every natural number ¢ such that ¢ € dom it holds
it(i) = (ScProductDM(L))(v, f(F;) - F;).

Now we state the propositions:

(11)

(12)

Let us consider a Z-lattice L, a function f from DivisibleMod(L) into
7R a finite sequence F' of elements of DivisibleMod (L), vectors v, u of
DivisibleMod(L), and a natural number i. Suppose ¢ € dom F' and u =
F(i). Then (ScFS(v, f, F))(i) = (ScProductDM (L)) (v, f(u) - u).

Let us consider a Z-lattice L, a function f from DivisibleMod(L) into
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ZR | and vectors v, u of DivisibleMod(L).
Then ScFS(v, f, (u)) = ((ScProductDM(L))(v, f(u) - u)).

(13) Let us consider a Z-lattice L, a function f from DivisibleMod(L) into
7R finite sequences F', G of elements of DivisibleMod (L), and a vector v of
DivisibleMod(L). Then ScFS(v, f, FF~ G) = ScFS(v, f, F) ~ ScFS(v, f,G).

Let L be a Z-lattice, | be a linear combination of DivisibleMod(L), and v

be a vector of DivisibleMod(L). The functor SumSc(v, 1) yielding an element of
Rp is defined by

(Def. 4) there exists a finite sequence F of elements of DivisibleMod (L) such that
F is one-to-one and rng F' = the support of [ and it = > ScFS(v,, F).
Now we state the propositions:

(14) Let us consider a Z-lattice L, and a vector v of DivisibleMod(L). Then
SumSc(v, OLCDivisibleMod(L)) = ORrg-

(15) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a linear
combination ! of 0,. Then SumSc(v,l) = Og,, where « is the carrier of
DivisibleMod(L). The theorem is a consequence of (14).

(16) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a linear
combination [ of DivisibleMod(L). Suppose the support of I = (). Then
SumSc(v,1) = Og,. The theorem is a consequence of (14).

(17) Let us consider a Z-lattice L, vectors v, u of DivisibleMod(L), and a line-
ar combination [ of {u}. Then SumSc(v,l) = (ScProductDM(L)) (v, (u) -
u). The theorem is a consequence of (14) and (12).

(18) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and li-
near combinations [y, Iy of DivisibleMod(L). Then SumSc(v,l; + ly) =
SumSc(v, i1) + SumSc(v, l2).

PROOF: Set A = ((the support of I;+12)U(the support of [;))U(the support
of l3). Set C; = A\ (the support of [;). Consider p being a finite sequence
such that rngp = C and p is one-to-one. Set C3 = A\ (the support of
l1 + l2). Consider r being a finite sequence such that rngr = C3 and r is
one-to-one. Set Cy = A\ (the support of l3). Consider ¢ being a finite se-
quence such that rng ¢ = Cy and q is one-to-one. Consider F' being a finite
sequence of elements of DivisibleMod(L) such that F' is one-to-one and
rng F' = the support of I + lo and SumSc(w,l; + l3) = Y ScFS(w,l; +
ly, F). Set Fi = F ™ r. Consider G being a finite sequence of elements of
DivisibleMod(L) such that G is one-to-one and rng G = the support of
l; and SumSc(w,l;) = > ScFS(w,l;,G). Set Gz = G ™ p. rng F' misses
rng . rng G misses rngp. Define F(natural number) = F; «— (G3($1)).
Consider P being a finite sequence such that len P = len F; and for
every natural number k such that k¥ € dom P holds P(k) = F(k) from
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[, Sch. 2]. rng P C dom F by [22, (29)], [23, (8)]. dom F; C rng P by
[7, (33)], [27, (28), (36)], [7, (39)]. Set ¢ = ScFS(w,l1,G3). Set f =
ScFS(w, 1y + l2, F1). Consider H being a finite sequence of elements of
DivisibleMod(L) such that H is one-to-one and rng H = the support of Iy
and > ScFS(w, la, H) = SumSc(w, l2). Set Hy = H ~q. rng H misses rng q.
Define F(natural number) = H; «— (G3($1)). Consider R being a finite
sequence such that len R = len Hy and for every natural number k such
that k& € dom R holds R(k) = F(k) from [4, Sch. 2]. rng R C dom H; by
[22, (29)], [23} (8)]. dom H; C rng R by [7, (33)], [27, (28), (36)], [T, (39)].
Set h = ScFS(w, l2, Hy). > h =Y (ScFS(w,lo, H) ~ ScFS(w, l2,q)). > g =
> (ScFS(w, 11, G) ™~ ScFS(w, 1, p)). Reconsider Hy = h- R as a finite sequ-
ence of elements of Rp. > f = > (ScFS(w, 1 + lo, F) ™ ScFS(w, Iy +1la,7)).
Define F(natural number) = gg, + Hag,. Consider I being a finite sequ-
ence such that len/ = len G3 and for every natural number k such that
k € dom I holds I(k) = F(k) from [4, Sch. 2]. rng I C the carrier of Ry.
U

(19) Let us consider a Z-lattice L, a linear combination [ of DivisibleMod(L),
and a vector v of DivisibleMod(L). Then (ScProductDM(L))(v,> 1) =
SumSc(v, ).
PROOF: Define P[natural number| = for every Z-lattice L for every line-
ar combination [ of DivisibleMod(L) for every vector v of DivisibleMod(L)
such that the support of | = $; holds (ScProductDM(L))(v, >~ 1) = SumSc
(v,1). P[0] by [24] (19)], [12, (14)], (16). For every natural number n such
that P[n| holds P[n+1] by [2, (44)], [9, (31)], [2, (42)], [24, (7)]. For every
natural number n, P[n| from [3, Sch. 2]. O

(20) Let us consider a natural number n, a square matrix M over Rp of

dimension n, and a square matrix H over Fg of dimension n. Suppose
M = H and M is invertible. Then

(i) H is invertible, and
(i) M~ =H~.
PROOF: For every natural numbers ¢, j such that (i, j) € the indices of
M~ holds M~; ; = H™; ; by [9, (87)], [12} (52), (54), (47)]. O
(21) Let us consider a natural number n, and a square matrix M over Rp
of dimension n. Suppose M is square matrix over Fg of dimension n and

invertible. Then M™ is a square matrix over Fg of dimension n. The
theorem is a consequence of (20).

(22) Let us consider a non trivial, rational, positive definite Z-lattice L, and
an ordered basis b of L. Then (GramMatrix(b))~ is a square matrix over
Fg of dimension dim(L). The theorem is a consequence of (21).
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(23) Let us consider a finite subset X of Q. Then there exists an element a
of Z such that

(i) a # 0, and
(ii) for every element r of Q such that » € X holds a - r € Z.

PROOF: Define P[natural number| = for every finite subset X of Q such
that X = $; there exists an element a of Z such that a # 0 and for every
element r of Q such that » € X holds a - r € Z. P[0]. For every natural
number n such that P[n] holds Pn + 1] by [26], (41)], [2, (44)], [1, (30)],
[17, (1)]. For every natural number n, P[n] from [3, Sch. 2]. O

(24) Let us consider a non trivial, rational, positive definite Z-lattice L, and
an ordered basis b of L. Then there exists an element a of Rr such that

(i) a is an element of ZR, and
(ii) a # 0, and
(iii) a-(GramMatrix(b))™~ is a square matrix over Z® of dimension dim(L).

PRrOOF: Set G = (GramMatrix(b))~. For every natural numbers i, j
such that (i, j) € the indices of G holds G;; € the carrier of Fg by
[9, (87)], [7, (3)]. Define F(natural number, natural number) = Gg, g, .
Set D3 = {F(u,v), where u is an element of N, v is an element of N : u €
Seglen G and v € Seg width G'}. Dj is finite from [21], Sch. 22]. {G; ;, where
i,j are natural numbers : (i, j) € the indices of G} C D3 by [9, (87)].
{G, j, where 4, j are natural numbers : (i, j) € the indices of G} C the car-
rier of Fg. Reconsider X = {G;;, where 4, j are natural numbers : (3,
J) € the indices of G'} as a finite subset of Fg. Consider a being an element
of Z such that a # 0 and for every element r of Q such that » € X holds
a-r € Z. For every natural numbers 4, j such that (i, j) € the indices of

a -G holds (a- GQ);; € the carrier of ZR. O

(25) Let us consider a non trivial, rational, positive definite Z-lattice L,
an ordered basis b of EMLat(L), and a natural number i. Suppose i €
dom b. Then there exists a vector v of DivisibleMod(L) such that

(i) (ScProductDM(L))(b;,v) =1, and

(ii) for every natural number j such that ¢ # j and j € domb holds
(ScProductDM(L))(b;,v) = 0.

Proor: Consider a being an element of Ry such that a is an element
of Z® and a # 0 and a - (GramMatrix (b))~ is a square matrix over ZR
of dimension dim(L). For every natural number j such that i # j and
j € domb holds Line(a - (GramMatrix(b))~,4) - (GramMatrix(b))o; =
0 by [9, (87)]. Reconsider I = rngb as a basis of EMLat(L). Define
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Plobject,object] = if $; € I, then for every natural number n such
that n = b=($1) and n € domb holds $2 = (a - (GramMatrix(b))~); n
and if $; ¢ I, then $5 = Ozr. For every element x of EMLat(L), the-
re exists an element y of Z® such that Plz,y] by [7, (32)], [9, (87)],
[16 (1)]. Consider I being a function from EMLat(L) into Z® such that
for every element z of EMLat(L), P[z,l(x)] from [8, Sch. 3]. Recon-
sider as = a as an element of ZR. For every natural number k& such
that 1 < k < lenScFS(b;,1,b) holds (Line(a - (GramMatrix(b))~,i) e
(GramMatrix(b))g;) (k) = (ScFS(bs,1,b))(k) by [22, (25)], [7, (3), (34)],
[6, (72)]. The support of I C rngb. For every natural number j such
that i # j and j € domb holds (b;,> 1) = 0 by [6, (72)], [22, (25)],
[T, (3), (34)]. Consider u being a vector of DivisibleMod(L) such that
az - u = Y l. For every natural number j such that i # j and j € domb
holds (ScProductDM(L))(bj,w) = 0 by [14], (24)], [12, (13), (8)]. O

2. DuAL LATTICE

Let L be a Z-lattice.
A dual of L is a vector of DivisibleMod(L) and is defined by
(Def. 5) for every vector v of DivisibleMod(L) such that v € Embedding(L) holds
(ScProductDM(L))(it,v) € ZR.
Now we state the propositions:
(26) Let us consider a Z-lattice L. Then OpjyisibleMod(z) 1 @ dual of L.
(27) Let us consider a Z-lattice L, and duals v, u of L. Then v 4 u is a dual
of L.
PROOF: For every vector z of DivisibleMod(L) such that x € Embedding(L)
holds (ScProductDM(L))(v + u,z) € Z® by [12, (6)]. O
(28) Let us consider a Z-lattice L, a dual v of L, and an element a of ZR.
Then a - v is a dual of L.
PROOF: For every vector x of DivisibleMod(L) such that x € Embedding(L)
holds (ScProductDM(L))(a - v,z) € ZR by [12, (6)]. O

Let L be a Z-lattice. The functor DualSet(L) yielding a non empty subset
of DivisibleMod(L) is defined by the term

(Def. 6) the set of all v where v is a dual of L.

Note that DualSet(L) is linearly closed.
The functor DualLatMod(L) yielding a strict, non empty structure of Z-
lattice over Z® is defined by
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(Def. 7) the carrier of it = DualSet(L) and the addition of it = (the addition of
DivisibleMod(L)) | DualSet(L) and the zero of it = OpjyisibleMod(r) and
the left multiplication of it = (the left multiplication of DivisibleMod(L))|
((the carrier of Z®) x DualSet(L)) and the scalar product of it =
ScProductDM(L)[(DualSet(L) x DualSet(L)).

Now we state the propositions:

(29) Let us consider a Z-lattice L. Then DualLatMod(L) is a submodule of
DivisibleMod(L).

(30) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a basis
I of Embedding(L). Suppose for every vector u of DivisibleMod(L) such
that u € I holds (ScProductDM(L))(v,u) € ZR. Then v is a dual of L.
PROOF: Define P[natural number] = for every finite subset I of Embedding
(L) such that T = $; and [ is linearly independent and for every vector
u of DivisibleMod(L) such that u € I holds (ScProductDM(L))(v,u) €
Z®R for every vector w of DivisibleMod(L) such that w € Lin(I) holds
(ScProductDM(L))(v,w) € Z}. P[0] by [15} (67), (66)], [12, (6)]. For every
natural number n such that P[n] holds P[n + 1] by [26] (41)], [2 (44)], [T
(30)], [9, (31)]. For every natural number n, P[n| from [3, Sch. 2]. O

Let L be a rational, positive definite Z-lattice and I be a basis of EMLat(L).
The functor DualBasis(I) yielding a subset of DivisibleMod(L) is defined by

(Def. 8) for every vector v of DivisibleMod(L), v € it iff there exists a vec-
tor u of EMLat(L) such that v € I and (ScProductDM(L))(u,v) = 1
and for every vector w of EMLat(L) such that w € I and u # w holds
(ScProductDM(L))(w, v) = 0.

The functor B2DB(7) yielding a function from I into DualBasis([) is defined
by

(Def. 9) dom it = I and rng it = DualBasis(/) and for every vector v of EMLat (L)
such that v € I holds (ScProductDM(L))(v, it(v)) = 1 and for every vector
w of EMLat(L) such that w € I and v # w holds
(ScProductDM(L))(w, it(v)) = 0.

Observe that B2DB(I) is onto and one-to-one.
Now we state the proposition:

(31) Let us consider a rational, positive definite Z-lattice L, and a basis I of
EMLat(L). Then I = DualBasis([).

Let L be a rational, positive definite Z-lattice and I be a basis of EMLat(L).
Note that DualBasis([) is finite.

Let L be a non trivial, rational, positive definite Z-lattice.
Note that DualBasis(/) is non empty.



DUAL LATTICE OF Z-MODULE LATTICE 165

Now we state the propositions:

(32) Let us consider a rational, positive definite Z-lattice L, a basis I of
EMLat(L), a vector v of DivisibleMod(L), and a linear combination [ of
DualBasis(I). If v € I, then (ScProductDM(L))(v,>_1) = I((B2DB(I))(v)).
The theorem is a consequence of (19), (17), and (18).

(33) Let us consider a rational, positive definite Z-lattice L, a basis I of
EMLat(L), and a vector v of DivisibleMod(L). If v is a dual of L, then
v € Lin(DualBasis([)).

PROOF: Set f = (B2DB(I))~!. Define P[object, object] = if $; € DualBasis
(I), then $5 = (ScProductDM(L))(f($1), v) and if $; ¢ DualBasis(I), then
$2 = Ozr. For every object x such that x € the carrier of DivisibleMod(L)
there exists an object y such that y € the carrier of Z® and Plx, ]
by [7, (33), (3)], [13, (24)], [14, (25)]. Consider [ being a function from
DivisibleMod(L) into the carrier of Z® such that for every object  such
that x € the carrier of DivisibleMod(L) holds P[xz,[(x)] from [8, Sch. 1].
The support of [ C DualBasis(I) by [24, (2)]. Consider b being a fini-
te sequence such that rngb = I and b is one-to-one. For every natu-
ral number n such that n € dombd holds (ScProductDM(L))(by,v) =
(ScProductDM(L))(b,, > 1) by [12, (20)], [14, (25)], [7, (3)], [I8, (14)].
U

Let L be a rational, positive definite Z-lattice and I be a basis of EMLat(L).

Let us note that DualBasis(I) is linearly independent.
The functor DualLat(L) yielding a strict Z-lattice is defined by

(Def. 10) the carrier of it = DualSet(L) and 0;z = OpjyisibleMod(z) and the addition
of it = (the addition of DivisibleMod(L)) | (the carrier of it) and the left
multiplication of it = (the left multiplication of DivisibleMod(L))[((the
carrier of ZR®) x (the carrier of it)) and the scalar product of it =
ScProductDM(L) | (the carrier of it).

Now we state the propositions:

(34) Let us consider a rational, positive definite Z-lattice L, and a vector v
of DivisibleMod(L). Then v € DualLat(L) if and only if v is a dual of L.

(35) Let us consider a rational, positive definite Z-lattice L. Then DualLat(L)
is a submodule of DivisibleMod(L).

Let us consider a Z-lattice L. Now we state the propositions:
(36) Every basis of EMLat(L) is a basis of Embedding(L).
(37) Every basis of Embedding(L) is a basis of EMLat(L).

(38) Let us consider a rational, positive definite Z-lattice L, a basis I of
EMLat(L), and a vector v of DivisibleMod(L). If v € DualBasis(!), then
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v is a dual of L.

PRrROOF: Consider u being a vector of EMLat(L) such that v € I and
(ScProductDM(L))(u,v) = 1 and for every vector w of EMLat(L) such
that w € I and u # w holds (ScProductDM(L))(w,v) = 0. Reconsider
J =T as a basis of Embedding(L). For every vector w of DivisibleMod(L)
such that w € J holds (ScProductDM(L))(v,w) € Z® by [12, (6)]. O

(39) Let us consider a rational, positive definite Z-lattice L, and a basis I of
EMLat(L). Then DualBasis(]) is a basis of DualLat(L).
PRrROOF: Reconsider D = DualLat(L) as a submodule of DivisibleMod(L).
For every vector v of DivisibleMod(L) such that v € DualBasis(I) holds
v € the carrier of DualLat(L). For every vector v of DivisibleMod(L) such
that v € the vector space structure of D holds v € Lin(DualBasis(I)). For
every vector v of DivisibleMod(L) such that v € Lin(DualBasis(/)) holds
v € the vector space structure of D by [25] (7)], (36), (32), [7, (3)]. O

(40) Let us consider a rational, positive definite Z-lattice L, an ordered ba-
sis b of EMLat(L), and a basis I of EMLat(L). Suppose I = rngb. Then
B2DB(I) - b is an ordered basis of DualLat(L). The theorem is a consequ-
ence of (39).

(41) Let us consider a positive definite, finite rank, free Z-lattice L, an or-
dered basis b of L, and an ordered basis e of EMLat(L). Suppose e =
MorphsZQ(L) - b. Then GramMatrix(InnerProduct L, b) = GramMatrix
(InnerProduct EMLat(L), e).

PROOF: For every natural numbers ¢, j such that (i, j) € the indices of
GramMatrix(InnerProduct L, b) holds (GramMatrix(InnerProduct L, b)); ;
= (GramMatrix(InnerProduct EMLat(L), e)); ; by [9, (87)], [7, (13)]. O

(42) Let us consider a positive definite, finite rank, free Z-lattice L. Then
GramDet(InnerProduct L) = GramDet(InnerProduct EMLat(L)). The the-
orem is a consequence of (41).

(43) Let us consider a rational, positive definite Z-lattice L. Then rank L =
rank DualLat(L). The theorem is a consequence of (39) and (31).

(44) Let us consider an integral, positive definite Z-lattice L. Then EMLat(L)
is a Z-sublattice of DualLat(L).
PROOF: DualLat(L) is a submodule of DivisibleMod(L). For every vector
v of DivisibleMod(L) such that v € EMLat(L) holds v € DualLat(L) by
(36), [12, (28), (8)], (30). O

(45) Let us consider a Z-lattice L, and an ordered basis b of L. Suppose
GramMatrix(InnerProduct L, b) is a square matrix over Z® of dimension
dim(L). Then L is integral.
PRrROOF: Set I = rngb. For every vectors v, v of L such that v, u € I holds
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(v,u) € Z by [6, (10)], [16, (49)], [9, (87)], [16, (1)]. O

(46) Let us consider a Z-lattice L, a finite subset I of L, and a vector u of L.

Suppose for every vector v of L such that v € I holds (v,u) € Q. Let us
consider a vector v of L. If v € Lin([), then (v,u) € Q.
PROOF: Define P[natural number| = for every finite subset I of L such
that T = $; and for every vector v of L such that v € I holds (v,u) € Q
for every vector v of L such that v € Lin(I) holds (v, u) € Q. P[0] by [15,
(67)], [11), (12)]. For every natural number n such that P[n] holds P[n+ 1]
by [9, (40)], [15, (72)], [2, (44)], [9} (31)]. For every natural number n, P[n]
from [3, Sch. 2]. O

(47) Let us consider a Z-lattice L, and a basis I of L. Suppose for every

vectors v, u of L such that v, u € I holds {(v,u) € Q. Let us consider
vectors v, u of L. Then (v,u) € Q.
PROOF: Define P[natural number| = for every finite subset I of L such
that I = $; and for every vectors v, u of L such that v, v € I holds
(v,u) € Q for every vectors v, u of L such that v, v € Lin(I) holds
(v,u) € Q. P[0] by [15, (67)], [11, (12)]. For every natural number n such
that P[n] holds P[n + 1] by [9, (40)], [15, (72)], [2, (44)], [9, (31)]. For
every natural number n, P[n] from [3, Sch. 2]. O

(48) Let us consider a Z-lattice L, and a basis I of L. Suppose for every
vectors v, u of L such that v, u € I holds (v,u) € Q. Then L is rational.
The theorem is a consequence of (47).

(49) Let us consider a Z-lattice L, and an ordered basis b of L. Suppose
GramMatrix(InnerProduct L, b) is a square matrix over Fg of dimension
dim(L). Then L is rational.

PROOF: Set I = rngb. For every vectors v, u of L such that v, u € I holds
(v,u) € Q by [6, (10)], [16, (49)], [ (87)], [16, (1)]. O
Let L be arational, positive definite Z-lattice. One can check that DualLat (L)
is rational.
Now we state the propositions:

(50) Let us consider a rational Z-lattice L, a Z-lattice L;, and an orde-
red basis b of L;. Suppose L; is a submodule of DivisibleMod(L) and
the scalar product of L; = ScProductDM(L) | (the carrier of L;). Then
GramMatrix(InnerProduct Ly, b) is a square matrix over Fg of dimension
dim(L;). The theorem is a consequence of (1).

(51) Let us consider a rational, positive definite Z-lattice L, and an ordered
basis b of DualLat(L). Then GramMatrix(InnerProduct DualLat(L), b) is

a square matrix over Fg of dimension dim(L). The theorem is a consequ-
ence of (35), (43), and (50).
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(52) Let us consider a positive definite Z-lattice L, and a Z-lattice L. Suppose
L; is a submodule of DivisibleMod(L) and the scalar product of L1 =
ScProductDM(L) | (the carrier of L1). Then L; is positive definite.

PROOF: For every vector v of Lj such that v # 0, holds |[v|| > 0 by [14,
(25)], [7, (49)], [13} (29)], [12} (13), (6), (8)]. O

Let L be a rational, positive definite Z-lattice. Note that DualLat(L) is
positive definite.

Let L be a non trivial, rational, positive definite Z-lattice. Let us note that
DualLat(L) is non trivial.
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