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Summary. In this article, we formalize in Mizar [5] the definition of dual
lattice and their properties. We formally prove that a set of all dual vectors in a
rational lattice has the construction of a lattice. We show that a dual basis can
be calculated by elements of an inverse of the Gram Matrix. We also formalize
a summation of inner products and their properties. Lattice of Z-module is ne-
cessary for lattice problems, LLL(Lenstra, Lenstra and Lovász) base reduction
algorithm and cryptographic systems with lattice [20], [10] and [19].
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1. Summation of Inner Products

Now we state the proposition:

(1) Let us consider a rational Z-lattice L, and a Z-lattice L1. Suppose
L1 is a submodule of DivisibleMod(L) and the scalar product of L1 =
ScProductDM(L) � (the carrier of L1). Then L1 is rational.
Proof: For every vectors v, u of L1, 〈〈v, u〉〉 ∈ Q by [14, (25)], [7, (49)]. �

Let L be a rational Z-lattice. Observe that EMLat(L) is rational.
Let r be an element of FQ. Let us note that EMLat(r, L) is rational.
Let L be a Z-lattice, F be a finite sequence of elements of L, f be a function

from L into ZR, and v be a vector of L. The functor ScFS(v, f, F ) yielding
a finite sequence of elements of RF is defined by
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(Def. 1) len it = lenF and for every natural number i such that i ∈ dom it holds
it(i) = 〈〈v, f(Fi) · Fi〉〉.

Now we state the propositions:

(2) Let us consider a Z-lattice L, a function f from L into ZR, a finite
sequence F of elements of L, vectors v, u of L, and a natural number i.
Suppose i ∈ domF and u = F (i). Then (ScFS(v, f, F ))(i) = 〈〈v, f(u) · u〉〉.

(3) Let us consider a Z-lattice L, a function f from L into ZR, and vectors
v, u of L. Then ScFS(v, f, 〈u〉) = 〈〈〈v, f(u) · u〉〉〉.

(4) Let us consider a Z-lattice L, a function f from L into ZR, finite sequen-
ces F , G of elements of L, and a vector v of L. Then ScFS(v, f, F a G) =
ScFS(v, f, F ) a ScFS(v, f,G).

Let L be a Z-lattice, l be a linear combination of L, and v be a vector of L.
The functor SumSc(v, l) yielding an element of RF is defined by

(Def. 2) there exists a finite sequence F of elements of L such that F is one-to-one
and rngF = the support of l and it =

∑
ScFS(v, l, F ).

Now we state the propositions:

(5) Let us consider a Z-lattice L, and a vector v of L. Then SumSc(v,0LCL) =
0RF .

(6) Let us consider a Z-lattice L, a vector v of L, and a linear combination
l of ∅α. Then SumSc(v, l) = 0RF , where α is the carrier of L. The theorem
is a consequence of (5).

(7) Let us consider a Z-lattice L, a vector v of L, and a linear combination l
of L. Suppose the support of l = ∅. Then SumSc(v, l) = 0RF . The theorem
is a consequence of (5).

(8) Let us consider a Z-lattice L, vectors v, u of L, and a linear combination
l of {u}. Then SumSc(v, l) = 〈〈v, l(u) · u〉〉. The theorem is a consequence
of (5) and (3).

(9) Let us consider a Z-lattice L, a vector v of L, and linear combinations
l1, l2 of L. Then SumSc(v, l1 + l2) = SumSc(v, l1) + SumSc(v, l2).
Proof: SetA = ((the support of l1+l2)∪(the support of l1))∪(the support
of l2). Set C1 = A \ (the support of l1). Consider p being a finite sequence
such that rng p = C1 and p is one-to-one. Set C3 = A \ (the support of
l1+l2). Consider r being a finite sequence such that rng r = C3 and r is one-
to-one. Set C2 = A\(the support of l2). Consider q being a finite sequence
such that rng q = C2 and q is one-to-one. Consider F being a finite sequen-
ce of elements of L such that F is one-to-one and rngF = the support of
l1+l2 and SumSc(w, l1+l2) =

∑
ScFS(w, l1+l2, F ). Set F1 = F ar. Consi-

der G being a finite sequence of elements of L such that G is one-to-one and
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rngG = the support of l1 and SumSc(w, l1) =
∑

ScFS(w, l1, G). Set G3 =
Ga p. rngF misses rng r. rngG misses rng p. Define F(natural number) =
F1 ← (G3($1)). Consider P being a finite sequence such that lenP = lenF1

and for every natural number k such that k ∈ domP holds P (k) =
F(k) from [4, Sch. 2]. rngP ⊆ domF1 by [22, (29)], [23, (8)]. domF1 ⊆
rngP by [7, (33)], [27, (28), (36)], [7, (39)]. Set g = ScFS(w, l1, G3).
Set f = ScFS(w, l1 + l2, F1). Consider H being a finite sequence of ele-
ments of L such that H is one-to-one and rngH = the support of l2 and∑

ScFS(w, l2, H) = SumSc(w, l2). Set H1 = H a q. rngH misses rng q.
Define F(natural number) = H1 ← (G3($1)). Consider R being a finite
sequence such that lenR = lenH1 and for every natural number k such
that k ∈ domR holds R(k) = F(k) from [4, Sch. 2]. rngR ⊆ domH1 by
[22, (29)], [23, (8)]. domH1 ⊆ rngR by [7, (33)], [27, (28), (36)], [7, (39)].
Set h = ScFS(w, l2, H1).

∑
h =
∑

(ScFS(w, l2, H) a ScFS(w, l2, q)).
∑
g =∑

(ScFS(w, l1, G)a ScFS(w, l1, p)). Reconsider H2 = h ·R as a finite sequ-
ence of elements of RF.

∑
f =
∑

(ScFS(w, l1 + l2, F )a ScFS(w, l1 + l2, r)).
Define F(natural number) = g$1 + H2$1 . Consider I being a finite sequ-
ence such that len I = lenG3 and for every natural number k such that
k ∈ dom I holds I(k) = F(k) from [4, Sch. 2]. rng I ⊆ the carrier of RF.
�

(10) Let us consider a Z-lattice L, a linear combination l of L, and a vector
v of L. Then 〈〈v,

∑
l〉〉 = SumSc(v, l).

Proof: Define P[natural number] ≡ for every Z-lattice L for every linear
combination l of L for every vector v of L such that the support of l = $1

holds 〈〈v,
∑
l〉〉 = SumSc(v, l). P[0] by [24, (19)], [11, (12)], (7). For every

natural number n such that P[n] holds P[n+ 1] by [2, (44)], [9, (31)], [2,
(42)], [24, (7)]. For every natural number n, P[n] from [3, Sch. 2]. �

Let L be a Z-lattice, F be a finite sequence of elements of DivisibleMod(L), f
be a function from DivisibleMod(L) into ZR, and v be a vector of DivisibleMod(L).
The functor ScFS(v, f, F ) yielding a finite sequence of elements of RF is defined
by

(Def. 3) len it = lenF and for every natural number i such that i ∈ dom it holds
it(i) = (ScProductDM(L))(v, f(Fi) · Fi).

Now we state the propositions:

(11) Let us consider a Z-lattice L, a function f from DivisibleMod(L) into
ZR, a finite sequence F of elements of DivisibleMod(L), vectors v, u of
DivisibleMod(L), and a natural number i. Suppose i ∈ domF and u =
F (i). Then (ScFS(v, f, F ))(i) = (ScProductDM(L))(v, f(u) · u).

(12) Let us consider a Z-lattice L, a function f from DivisibleMod(L) into
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ZR, and vectors v, u of DivisibleMod(L).
Then ScFS(v, f, 〈u〉) = 〈(ScProductDM(L))(v, f(u) · u)〉.

(13) Let us consider a Z-lattice L, a function f from DivisibleMod(L) into
ZR, finite sequences F , G of elements of DivisibleMod(L), and a vector v of
DivisibleMod(L). Then ScFS(v, f, F aG) = ScFS(v, f, F ) a ScFS(v, f,G).

Let L be a Z-lattice, l be a linear combination of DivisibleMod(L), and v

be a vector of DivisibleMod(L). The functor SumSc(v, l) yielding an element of
RF is defined by

(Def. 4) there exists a finite sequence F of elements of DivisibleMod(L) such that
F is one-to-one and rngF = the support of l and it =

∑
ScFS(v, l, F ).

Now we state the propositions:

(14) Let us consider a Z-lattice L, and a vector v of DivisibleMod(L). Then
SumSc(v,0LCDivisibleMod(L)) = 0RF .

(15) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a linear
combination l of ∅α. Then SumSc(v, l) = 0RF , where α is the carrier of
DivisibleMod(L). The theorem is a consequence of (14).

(16) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a linear
combination l of DivisibleMod(L). Suppose the support of l = ∅. Then
SumSc(v, l) = 0RF . The theorem is a consequence of (14).

(17) Let us consider a Z-lattice L, vectors v, u of DivisibleMod(L), and a line-
ar combination l of {u}. Then SumSc(v, l) = (ScProductDM(L))(v, l(u) ·
u). The theorem is a consequence of (14) and (12).

(18) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and li-
near combinations l1, l2 of DivisibleMod(L). Then SumSc(v, l1 + l2) =
SumSc(v, l1) + SumSc(v, l2).
Proof: SetA = ((the support of l1+l2)∪(the support of l1))∪(the support
of l2). Set C1 = A \ (the support of l1). Consider p being a finite sequence
such that rng p = C1 and p is one-to-one. Set C3 = A \ (the support of
l1 + l2). Consider r being a finite sequence such that rng r = C3 and r is
one-to-one. Set C2 = A \ (the support of l2). Consider q being a finite se-
quence such that rng q = C2 and q is one-to-one. Consider F being a finite
sequence of elements of DivisibleMod(L) such that F is one-to-one and
rngF = the support of l1 + l2 and SumSc(w, l1 + l2) =

∑
ScFS(w, l1 +

l2, F ). Set F1 = F a r. Consider G being a finite sequence of elements of
DivisibleMod(L) such that G is one-to-one and rngG = the support of
l1 and SumSc(w, l1) =

∑
ScFS(w, l1, G). Set G3 = G a p. rngF misses

rng r. rngG misses rng p. Define F(natural number) = F1 ← (G3($1)).
Consider P being a finite sequence such that lenP = lenF1 and for
every natural number k such that k ∈ domP holds P (k) = F(k) from
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[4, Sch. 2]. rngP ⊆ domF1 by [22, (29)], [23, (8)]. domF1 ⊆ rngP by
[7, (33)], [27, (28), (36)], [7, (39)]. Set g = ScFS(w, l1, G3). Set f =
ScFS(w, l1 + l2, F1). Consider H being a finite sequence of elements of
DivisibleMod(L) such that H is one-to-one and rngH = the support of l2
and
∑

ScFS(w, l2, H) = SumSc(w, l2). Set H1 = Ha q. rngH misses rng q.
Define F(natural number) = H1 ← (G3($1)). Consider R being a finite
sequence such that lenR = lenH1 and for every natural number k such
that k ∈ domR holds R(k) = F(k) from [4, Sch. 2]. rngR ⊆ domH1 by
[22, (29)], [23, (8)]. domH1 ⊆ rngR by [7, (33)], [27, (28), (36)], [7, (39)].
Set h = ScFS(w, l2, H1).

∑
h =
∑

(ScFS(w, l2, H) a ScFS(w, l2, q)).
∑
g =∑

(ScFS(w, l1, G)a ScFS(w, l1, p)). Reconsider H2 = h ·R as a finite sequ-
ence of elements of RF.

∑
f =
∑

(ScFS(w, l1 + l2, F )a ScFS(w, l1 + l2, r)).
Define F(natural number) = g$1 + H2$1 . Consider I being a finite sequ-
ence such that len I = lenG3 and for every natural number k such that
k ∈ dom I holds I(k) = F(k) from [4, Sch. 2]. rng I ⊆ the carrier of RF.
�

(19) Let us consider a Z-lattice L, a linear combination l of DivisibleMod(L),
and a vector v of DivisibleMod(L). Then (ScProductDM(L))(v,

∑
l) =

SumSc(v, l).
Proof: Define P[natural number] ≡ for every Z-lattice L for every line-
ar combination l of DivisibleMod(L) for every vector v of DivisibleMod(L)
such that the support of l = $1 holds (ScProductDM(L))(v,

∑
l) = SumSc

(v, l). P[0] by [24, (19)], [12, (14)], (16). For every natural number n such
that P[n] holds P[n+ 1] by [2, (44)], [9, (31)], [2, (42)], [24, (7)]. For every
natural number n, P[n] from [3, Sch. 2]. �

(20) Let us consider a natural number n, a square matrix M over RF of
dimension n, and a square matrix H over FQ of dimension n. Suppose
M = H and M is invertible. Then

(i) H is invertible, and

(ii) M` = H`.

Proof: For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
M` holds M`i,j = H`i,j by [9, (87)], [12, (52), (54), (47)]. �

(21) Let us consider a natural number n, and a square matrix M over RF

of dimension n. Suppose M is square matrix over FQ of dimension n and
invertible. Then M` is a square matrix over FQ of dimension n. The
theorem is a consequence of (20).

(22) Let us consider a non trivial, rational, positive definite Z-lattice L, and
an ordered basis b of L. Then (GramMatrix(b))` is a square matrix over
FQ of dimension dim(L). The theorem is a consequence of (21).
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(23) Let us consider a finite subset X of Q. Then there exists an element a
of Z such that

(i) a 6= 0, and

(ii) for every element r of Q such that r ∈ X holds a · r ∈ Z.

Proof: Define P[natural number] ≡ for every finite subset X of Q such
that X = $1 there exists an element a of Z such that a 6= 0 and for every
element r of Q such that r ∈ X holds a · r ∈ Z. P[0]. For every natural
number n such that P[n] holds P[n + 1] by [26, (41)], [2, (44)], [1, (30)],
[17, (1)]. For every natural number n, P[n] from [3, Sch. 2]. �

(24) Let us consider a non trivial, rational, positive definite Z-lattice L, and
an ordered basis b of L. Then there exists an element a of RF such that

(i) a is an element of ZR, and

(ii) a 6= 0, and

(iii) a·(GramMatrix(b))` is a square matrix over ZR of dimension dim(L).

Proof: Set G = (GramMatrix(b))`. For every natural numbers i, j
such that 〈〈i, j〉〉 ∈ the indices of G holds Gi,j ∈ the carrier of FQ by
[9, (87)], [7, (3)]. Define F(natural number,natural number) = G$1,$2 .
Set D3 = {F(u, v), where u is an element of N, v is an element of N : u ∈
Seg lenG and v ∈ Seg widthG}.D3 is finite from [21, Sch. 22]. {Gi,j , where
i, j are natural numbers : 〈〈i, j〉〉 ∈ the indices of G} ⊆ D3 by [9, (87)].
{Gi,j , where i, j are natural numbers : 〈〈i, j〉〉 ∈ the indices ofG} ⊆ the car-
rier of FQ. Reconsider X = {Gi,j , where i, j are natural numbers : 〈〈i,
j〉〉 ∈ the indices of G} as a finite subset of FQ. Consider a being an element
of Z such that a 6= 0 and for every element r of Q such that r ∈ X holds
a · r ∈ Z. For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
a ·G holds (a ·G)i,j ∈ the carrier of ZR. �

(25) Let us consider a non trivial, rational, positive definite Z-lattice L,
an ordered basis b of EMLat(L), and a natural number i. Suppose i ∈
dom b. Then there exists a vector v of DivisibleMod(L) such that

(i) (ScProductDM(L))(bi, v) = 1, and

(ii) for every natural number j such that i 6= j and j ∈ dom b holds
(ScProductDM(L))(bj , v) = 0.

Proof: Consider a being an element of RF such that a is an element
of ZR and a 6= 0 and a · (GramMatrix(b))` is a square matrix over ZR

of dimension dim(L). For every natural number j such that i 6= j and
j ∈ dom b holds Line(a · (GramMatrix(b))`, i) · (GramMatrix(b))�,j =
0 by [9, (87)]. Reconsider I = rng b as a basis of EMLat(L). Define



Dual lattice of Z-module lattice 163

P[object, object] ≡ if $1 ∈ I, then for every natural number n such
that n = b−1($1) and n ∈ dom b holds $2 = (a · (GramMatrix(b))`)i,n
and if $1 /∈ I, then $2 = 0ZR . For every element x of EMLat(L), the-
re exists an element y of ZR such that P[x, y] by [7, (32)], [9, (87)],
[16, (1)]. Consider l being a function from EMLat(L) into ZR such that
for every element x of EMLat(L), P[x, l(x)] from [8, Sch. 3]. Recon-
sider a2 = a as an element of ZR. For every natural number k such
that 1 ¬ k ¬ len ScFS(bi, l, b) holds (Line(a · (GramMatrix(b))`, i) •
(GramMatrix(b))�,i)(k) = (ScFS(bi, l, b))(k) by [22, (25)], [7, (3), (34)],
[6, (72)]. The support of l ⊆ rng b. For every natural number j such
that i 6= j and j ∈ dom b holds 〈〈bj ,

∑
l〉〉 = 0 by [6, (72)], [22, (25)],

[7, (3), (34)]. Consider u being a vector of DivisibleMod(L) such that
a2 · u =

∑
l. For every natural number j such that i 6= j and j ∈ dom b

holds (ScProductDM(L))(bj , u) = 0 by [14, (24)], [12, (13), (8)]. �

2. Dual Lattice

Let L be a Z-lattice.
A dual of L is a vector of DivisibleMod(L) and is defined by

(Def. 5) for every vector v of DivisibleMod(L) such that v ∈ Embedding(L) holds
(ScProductDM(L))(it , v) ∈ ZR.

Now we state the propositions:

(26) Let us consider a Z-lattice L. Then 0DivisibleMod(L) is a dual of L.

(27) Let us consider a Z-lattice L, and duals v, u of L. Then v + u is a dual
of L.
Proof: For every vector x of DivisibleMod(L) such that x ∈ Embedding(L)
holds (ScProductDM(L))(v + u, x) ∈ ZR by [12, (6)]. �

(28) Let us consider a Z-lattice L, a dual v of L, and an element a of ZR.
Then a · v is a dual of L.
Proof: For every vector x of DivisibleMod(L) such that x ∈ Embedding(L)
holds (ScProductDM(L))(a · v, x) ∈ ZR by [12, (6)]. �

Let L be a Z-lattice. The functor DualSet(L) yielding a non empty subset
of DivisibleMod(L) is defined by the term

(Def. 6) the set of all v where v is a dual of L.

Note that DualSet(L) is linearly closed.
The functor DualLatMod(L) yielding a strict, non empty structure of Z-

lattice over ZR is defined by
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(Def. 7) the carrier of it = DualSet(L) and the addition of it = (the addition of
DivisibleMod(L)) � DualSet(L) and the zero of it = 0DivisibleMod(L) and
the left multiplication of it = (the left multiplication of DivisibleMod(L))�
((the carrier of ZR)×DualSet(L)) and the scalar product of it =
ScProductDM(L)�(DualSet(L)×DualSet(L)).

Now we state the propositions:

(29) Let us consider a Z-lattice L. Then DualLatMod(L) is a submodule of
DivisibleMod(L).

(30) Let us consider a Z-lattice L, a vector v of DivisibleMod(L), and a basis
I of Embedding(L). Suppose for every vector u of DivisibleMod(L) such
that u ∈ I holds (ScProductDM(L))(v, u) ∈ ZR. Then v is a dual of L.
Proof: Define P[natural number] ≡ for every finite subset I of Embedding
(L) such that I = $1 and I is linearly independent and for every vector
u of DivisibleMod(L) such that u ∈ I holds (ScProductDM(L))(v, u) ∈
ZR for every vector w of DivisibleMod(L) such that w ∈ Lin(I) holds
(ScProductDM(L))(v, w) ∈ ZR. P[0] by [15, (67), (66)], [12, (6)]. For every
natural number n such that P[n] holds P[n+ 1] by [26, (41)], [2, (44)], [1,
(30)], [9, (31)]. For every natural number n, P[n] from [3, Sch. 2]. �

Let L be a rational, positive definite Z-lattice and I be a basis of EMLat(L).
The functor DualBasis(I) yielding a subset of DivisibleMod(L) is defined by

(Def. 8) for every vector v of DivisibleMod(L), v ∈ it iff there exists a vec-
tor u of EMLat(L) such that u ∈ I and (ScProductDM(L))(u, v) = 1
and for every vector w of EMLat(L) such that w ∈ I and u 6= w holds
(ScProductDM(L))(w, v) = 0.

The functor B2DB(I) yielding a function from I into DualBasis(I) is defined
by

(Def. 9) dom it = I and rng it = DualBasis(I) and for every vector v of EMLat(L)
such that v ∈ I holds (ScProductDM(L))(v, it(v)) = 1 and for every vector
w of EMLat(L) such that w ∈ I and v 6= w holds
(ScProductDM(L))(w, it(v)) = 0.

Observe that B2DB(I) is onto and one-to-one.
Now we state the proposition:

(31) Let us consider a rational, positive definite Z-lattice L, and a basis I of

EMLat(L). Then I = DualBasis(I).

Let L be a rational, positive definite Z-lattice and I be a basis of EMLat(L).
Note that DualBasis(I) is finite.

Let L be a non trivial, rational, positive definite Z-lattice.
Note that DualBasis(I) is non empty.
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Now we state the propositions:

(32) Let us consider a rational, positive definite Z-lattice L, a basis I of
EMLat(L), a vector v of DivisibleMod(L), and a linear combination l of
DualBasis(I). If v ∈ I, then (ScProductDM(L))(v,

∑
l) = l((B2DB(I))(v)).

The theorem is a consequence of (19), (17), and (18).

(33) Let us consider a rational, positive definite Z-lattice L, a basis I of
EMLat(L), and a vector v of DivisibleMod(L). If v is a dual of L, then
v ∈ Lin(DualBasis(I)).
Proof: Set f = (B2DB(I))−1. Define P[object, object] ≡ if $1 ∈ DualBasis
(I), then $2 = (ScProductDM(L))(f($1), v) and if $1 /∈ DualBasis(I), then
$2 = 0ZR . For every object x such that x ∈ the carrier of DivisibleMod(L)
there exists an object y such that y ∈ the carrier of ZR and P[x, y]
by [7, (33), (3)], [13, (24)], [14, (25)]. Consider l being a function from
DivisibleMod(L) into the carrier of ZR such that for every object x such
that x ∈ the carrier of DivisibleMod(L) holds P[x, l(x)] from [8, Sch. 1].
The support of l ⊆ DualBasis(I) by [24, (2)]. Consider b being a fini-
te sequence such that rng b = I and b is one-to-one. For every natu-
ral number n such that n ∈ dom b holds (ScProductDM(L))(bn, v) =
(ScProductDM(L))(bn,

∑
l) by [12, (20)], [14, (25)], [7, (3)], [18, (14)].

�

Let L be a rational, positive definite Z-lattice and I be a basis of EMLat(L).
Let us note that DualBasis(I) is linearly independent.

The functor DualLat(L) yielding a strict Z-lattice is defined by

(Def. 10) the carrier of it = DualSet(L) and 0it = 0DivisibleMod(L) and the addition
of it = (the addition of DivisibleMod(L)) � (the carrier of it) and the left
multiplication of it = (the left multiplication of DivisibleMod(L))�((the
carrier of ZR)× (the carrier of it)) and the scalar product of it =
ScProductDM(L) � (the carrier of it).

Now we state the propositions:

(34) Let us consider a rational, positive definite Z-lattice L, and a vector v
of DivisibleMod(L). Then v ∈ DualLat(L) if and only if v is a dual of L.

(35) Let us consider a rational, positive definite Z-lattice L. Then DualLat(L)
is a submodule of DivisibleMod(L).

Let us consider a Z-lattice L. Now we state the propositions:

(36) Every basis of EMLat(L) is a basis of Embedding(L).

(37) Every basis of Embedding(L) is a basis of EMLat(L).

(38) Let us consider a rational, positive definite Z-lattice L, a basis I of
EMLat(L), and a vector v of DivisibleMod(L). If v ∈ DualBasis(I), then
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v is a dual of L.
Proof: Consider u being a vector of EMLat(L) such that u ∈ I and
(ScProductDM(L))(u, v) = 1 and for every vector w of EMLat(L) such
that w ∈ I and u 6= w holds (ScProductDM(L))(w, v) = 0. Reconsider
J = I as a basis of Embedding(L). For every vector w of DivisibleMod(L)
such that w ∈ J holds (ScProductDM(L))(v, w) ∈ ZR by [12, (6)]. �

(39) Let us consider a rational, positive definite Z-lattice L, and a basis I of
EMLat(L). Then DualBasis(I) is a basis of DualLat(L).
Proof: Reconsider D = DualLat(L) as a submodule of DivisibleMod(L).
For every vector v of DivisibleMod(L) such that v ∈ DualBasis(I) holds
v ∈ the carrier of DualLat(L). For every vector v of DivisibleMod(L) such
that v ∈ the vector space structure of D holds v ∈ Lin(DualBasis(I)). For
every vector v of DivisibleMod(L) such that v ∈ Lin(DualBasis(I)) holds
v ∈ the vector space structure of D by [25, (7)], (36), (32), [7, (3)]. �

(40) Let us consider a rational, positive definite Z-lattice L, an ordered ba-
sis b of EMLat(L), and a basis I of EMLat(L). Suppose I = rng b. Then
B2DB(I) · b is an ordered basis of DualLat(L). The theorem is a consequ-
ence of (39).

(41) Let us consider a positive definite, finite rank, free Z-lattice L, an or-
dered basis b of L, and an ordered basis e of EMLat(L). Suppose e =
MorphsZQ(L) · b. Then GramMatrix(InnerProductL, b) = GramMatrix
(InnerProduct EMLat(L), e).
Proof: For every natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of
GramMatrix(InnerProductL, b) holds (GramMatrix(InnerProductL, b))i,j
= (GramMatrix(InnerProduct EMLat(L), e))i,j by [9, (87)], [7, (13)]. �

(42) Let us consider a positive definite, finite rank, free Z-lattice L. Then
GramDet(InnerProductL) = GramDet(InnerProduct EMLat(L)). The the-
orem is a consequence of (41).

(43) Let us consider a rational, positive definite Z-lattice L. Then rankL =
rank DualLat(L). The theorem is a consequence of (39) and (31).

(44) Let us consider an integral, positive definite Z-lattice L. Then EMLat(L)
is a Z-sublattice of DualLat(L).
Proof: DualLat(L) is a submodule of DivisibleMod(L). For every vector
v of DivisibleMod(L) such that v ∈ EMLat(L) holds v ∈ DualLat(L) by
(36), [12, (28), (8)], (30). �

(45) Let us consider a Z-lattice L, and an ordered basis b of L. Suppose
GramMatrix(InnerProductL, b) is a square matrix over ZR of dimension
dim(L). Then L is integral.
Proof: Set I = rng b. For every vectors v, u of L such that v, u ∈ I holds
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〈〈v, u〉〉 ∈ Z by [6, (10)], [16, (49)], [9, (87)], [16, (1)]. �

(46) Let us consider a Z-lattice L, a finite subset I of L, and a vector u of L.
Suppose for every vector v of L such that v ∈ I holds 〈〈v, u〉〉 ∈ Q. Let us
consider a vector v of L. If v ∈ Lin(I), then 〈〈v, u〉〉 ∈ Q.
Proof: Define P[natural number] ≡ for every finite subset I of L such
that I = $1 and for every vector v of L such that v ∈ I holds 〈〈v, u〉〉 ∈ Q
for every vector v of L such that v ∈ Lin(I) holds 〈〈v, u〉〉 ∈ Q. P[0] by [15,
(67)], [11, (12)]. For every natural number n such that P[n] holds P[n+1]
by [9, (40)], [15, (72)], [2, (44)], [9, (31)]. For every natural number n, P[n]
from [3, Sch. 2]. �

(47) Let us consider a Z-lattice L, and a basis I of L. Suppose for every
vectors v, u of L such that v, u ∈ I holds 〈〈v, u〉〉 ∈ Q. Let us consider
vectors v, u of L. Then 〈〈v, u〉〉 ∈ Q.
Proof: Define P[natural number] ≡ for every finite subset I of L such
that I = $1 and for every vectors v, u of L such that v, u ∈ I holds
〈〈v, u〉〉 ∈ Q for every vectors v, u of L such that v, u ∈ Lin(I) holds
〈〈v, u〉〉 ∈ Q. P[0] by [15, (67)], [11, (12)]. For every natural number n such
that P[n] holds P[n + 1] by [9, (40)], [15, (72)], [2, (44)], [9, (31)]. For
every natural number n, P[n] from [3, Sch. 2]. �

(48) Let us consider a Z-lattice L, and a basis I of L. Suppose for every
vectors v, u of L such that v, u ∈ I holds 〈〈v, u〉〉 ∈ Q. Then L is rational.
The theorem is a consequence of (47).

(49) Let us consider a Z-lattice L, and an ordered basis b of L. Suppose
GramMatrix(InnerProductL, b) is a square matrix over FQ of dimension
dim(L). Then L is rational.
Proof: Set I = rng b. For every vectors v, u of L such that v, u ∈ I holds
〈〈v, u〉〉 ∈ Q by [6, (10)], [16, (49)], [9, (87)], [16, (1)]. �

Let L be a rational, positive definite Z-lattice. One can check that DualLat(L)
is rational.

Now we state the propositions:

(50) Let us consider a rational Z-lattice L, a Z-lattice L1, and an orde-
red basis b of L1. Suppose L1 is a submodule of DivisibleMod(L) and
the scalar product of L1 = ScProductDM(L) � (the carrier of L1). Then
GramMatrix(InnerProductL1, b) is a square matrix over FQ of dimension
dim(L1). The theorem is a consequence of (1).

(51) Let us consider a rational, positive definite Z-lattice L, and an ordered
basis b of DualLat(L). Then GramMatrix(InnerProduct DualLat(L), b) is
a square matrix over FQ of dimension dim(L). The theorem is a consequ-
ence of (35), (43), and (50).
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(52) Let us consider a positive definite Z-lattice L, and a Z-lattice L1. Suppose
L1 is a submodule of DivisibleMod(L) and the scalar product of L1 =
ScProductDM(L) � (the carrier of L1). Then L1 is positive definite.

Proof: For every vector v of L1 such that v 6= 0L1 holds ‖v‖ > 0 by [14,
(25)], [7, (49)], [13, (29)], [12, (13), (6), (8)]. �

Let L be a rational, positive definite Z-lattice. Note that DualLat(L) is
positive definite.

Let L be a non trivial, rational, positive definite Z-lattice. Let us note that
DualLat(L) is non trivial.
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