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Summary. In this article, we formalize in the Mizar system [3] the notion
of the derivative of polynomials over the field of real numbers [4]. To define it,
we use the derivative of functions between reals and reals [9].
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1. PRELIMINARIES

From now on ¢ denotes a complex, r denotes a real number, m, n denote
natural numbers, and f denotes a complex-valued function.
Now we state the propositions:

(1) 0+f=1F.
(2) f-0=/.
Let f be a complex-valued function. Observe that 0 + f reduces to f and
f — 0 reduces to f.
Now we state the propositions:
3) ¢+ f=(domf+—rc)+f.
4) f—c=f—(domfr— c).
) c-f=(domfr—c)-f.
6)
7)

f + (dom f —— 0) = f. The theorem is a consequence of (3).
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f — (dom f —— 0) = f. The theorem is a consequence of (4).
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8) °=R+— 1.
PROOF: Reconsider s = 1 as an element of R. (I = R —— s by [8, (34)],
[10, (7)]. O

2. DIFFERENTIABILITY OF REAL FUNCTIONS

One can check that every function from R into R which is differentiable is
also continuous.
Let f be a differentiable function from R into R. The functor f’ yielding
a function from R into R is defined by the term
(Def. 1) fig.
Now we state the propositions:
(9) Let us consider a function f from R into R. Then f is differentiable if
and only if for every r, f is differentiable in r.
(10) Let us consider a differentiable function f from R into R. Then f/(r) =
Fof
Let f be a function from R into R. Observe that f is differentiable if and
only if the condition (Def. 2) is satisfied.
(Def. 2) for every r, f is differentiable in r.
Let us note that every function from R into R which is constant is also
differentiable.
Now we state the proposition:
(11) Let us consider a constant function f from R into R. Then f' =R +— 0.
PROOF: Reconsider z = 0 as an element of R. f/ = R — z by [9], (22)],
[10, (7)]. O
One can verify that idg is differentiable as a function from R into R.
Now we state the proposition:
(12) idg =R+ 1.
PROOF: Set f = idg. Reconsider z = 1 as an element of R. f/ =R +—— 2
by [9, (17)], [10, (7)]. O
Let us consider n. One can verify that [ is differentiable.
Now we state the proposition:
(13) (O =n- (@O 1.

From now on f, g denote differentiable functions from R into R.

Left-side f’(r) is the value of the derivative defined in this article for differentiable functions
f :R+— R, and right-side f’(r) is the value of the derivative defined for partial functions in [9].
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Let us consider f and g. Let us observe that f + g is differentiable as a func-
tion from R into R and f — ¢ is differentiable as a function from R into R and
f - g is differentiable as a function from R into R.

Let us consider r. One can verify that r + f is differentiable as a function
from R into R and r - f is differentiable as a function from R into R and f —r is
differentiable as a function from R into R and — f is differentiable as a function
from R into R and f2 is differentiable as a function from R into R.

Now we state the propositions:

r-f) = ’. The theorem is a consequence of (9) and (10).
!/

s

(14) (f+9) = f’ + ¢’. The theorem is a consequence of (9) and (10).

(15) (f—g) = f'—¢'. The theorem is a consequence of (9) and (10).

(16) (f-g9) =g-f +f-g. The theorem is a consequence of (9) and (10).
17 (r+f) = f’ The theorem is a consequence of (11), (3), (14), and (6).
(18) (f—nr) = f’ The theorem is a consequence of (11), (4), (15), and (7).
(19) (

(20) (=

3. POLYNOMIALS

In the sequel L denotes a non empty zero structure and x denotes an element
of L.
Now we state the proposition:
(21) Let us consider a (the carrier of L)-valued function f, and an object a.
Then Support(f +- (a,z)) € Support f U {a}.
PROOF: a = z or z € Support f by [2, (32), (30)]. O
Let us consider L and x. Let f be a finite-Support sequence of L and a be
an object. Observe that f +- (a, ) is finite-Support as a sequence of L.
Now we state the proposition:
(22) Let us consider a polynomial p over L. If p # 0.L, then lenp —' 1 =
lenp — 1.
Let L be a non empty zero structure and = be an element of L. Let us note
that (x) is constant and (x,0r) is constant.
Now we state the proposition:
(23) Let us consider a non empty zero structure L, and a constant polynomial
p over L. Then

(i) p=0.L, or
(if) p = (p(0)).
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Let us consider L, x, and n. The functor seq(n,z) yielding a sequence of L
is defined by the term
(Def. 3) 0.L +- (n,x).
Observe that seq(n, z) is finite-Support.
Now we state the propositions:
(24) (seq(n,x))(n) = x.
(25) If m # n, then (seq(n,x))(m) = 0r.
(26) the length of seq(n,x) is at most n + 1.
(27) If & # 0p, then lenseq(n,x) = n + 1.
PROOF: Set p = seq(n, z). For every m such that the length of p is at most
m holds n +1 < m by (24), [, (13)]. O

(28) seq(n,0r) = 0.L. The theorem is a consequence of (24).

(29) Let us consider a right zeroed, non empty additive loop structure L, and
elements z, y of L. Then seq(n, x)+seq(n,y) = seq(n, x+y). The theorem
is a consequence of (24) and (25).

(30) Let us consider an add-associative, right zeroed, right complementa-
ble, non empty additive loop structure L, and an element x of L. Then
—seq(n, z) = seq(n, —x). The theorem is a consequence of (24) and (25).

(31) Let us consider an add-associative, right zeroed, right complementa-
ble, non empty additive loop structure L, and elements x, y of L. Then
seq(n, z) —seq(n,y) = seq(n, z —y). The theorem is a consequence of (30)
and (29).

Let L be a non empty zero structure and p be a sequence of L. Let us
consider n. The functor p | n yielding a sequence of L is defined by the term

(Def. 4) p+-(n,0r).
Let p be a polynomial over L. Let us note that p [ n is finite-Support.

Let us consider a non empty zero structure L and a sequence p of L. Now
we state the propositions:

(32) (pIn)(n)=0r.
(33) If m # n, then (p [ n)(m) = p(m).
Now we state the proposition:

(34) Let us consider a non empty zero structure L. Then 0.L [ n = 0.L. The
theorem is a consequence of (32).

Let L be a non empty zero structure. Let us consider n. One can verify that
0.L | n reduces to 0.L.

Let us consider a non empty zero structure L and a polynomial p over L.
Now we state the propositions:
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(35) If n>lenp—'1, then p [ n = p. The theorem is a consequence of (32).
(36) If p # 0.L, then len(p | (lenp —' 1)) < lenp.
PROOF: Set m =lenp —' 1. m = lenp — 1. the length of p | m is at most
lenp by [2, (32)], [7, (8)]. O
Now we state the proposition:
(37) Let us consider an add-associative, right zeroed, right complementable,
non empty additive loop structure L, and a polynomial p over L. Then
p | (lenp —' 1) 4+ Leading-Monomial p = p. The theorem is a consequence
of (32).
Let L be a non empty zero structure and p be a constant polynomial over
L. Observe that Leading-Monomial p is constant.
Now we state the proposition:
(38) Let us consider an add-associative, right zeroed, right complementable,
distributive, unital, non empty double loop structure L, and elements z,
y of L. Then eval(seq(n,x),y) = (seq(n,x))(n) - power(y,n). The theorem
is a consequence of (28), (27), and (25).

4. DIFFERENTIABILITY OF POLYNOMIALS OVER REALS

In the sequel p, ¢ denote polynomials over Rg.
Now we state the propositions:

(39) Let us consider an element 7 of Rg. Then power(r,n) = r".
PROOF: Define P[natural number] = power(r, $1) = 1. For every natural
number n, P[n] from [I, Sch. 2]. O

(40) O™ = FPower(1g,,n).
PrOOF: Reconsider f = FPower(lg,,n) as a function from R into R.
O™ = f by [8, (36)], (39). O

Let us consider an element r of Rp. Now we state the propositions:

(41) FPower(r,n + 1) = FPower(r,n) - idg.

(42) FPower(r,n) is a differentiable function from R into R.
PROOF: Define P[natural number| = FPower(r, $1) is a differentiable func-
tion from R into R. P[0] by [6, (66)]. For every natural number n such that
P[n] holds P[n + 1]. For every natural number n, P[n| from [I, Sch. 2]. O

(43) power(r,n) = (O")(r). The theorem is a consequence of (40).
Let us consider p. The functor p’ yielding a sequence of R is defined by
(Def. 5) for every natural number n, it(n) =p(n+1)-(n+1).

Note that p’ is finite-Support.
Now we state the propositions:
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(44) If p # 0.Rp, then lenp’ =lenp — 1.
PROOF: Set = lenp — 1. Set d = p'. the length of d is at most = by [7,
(8)]. For every n such that the length of d is at most n holds = < n by
AT (7], [ (10)], [T, (21)]. O

(45) If p # 0.Rp, then lenp = lenp’ + 1. The theorem is a consequence of
(44).

(46) Let us consider a constant polynomial p over Rg. Then p’ = 0.Rp. The
theorem is a consequence of (45).

47) (p+q) =p"+d.

(48) (-p)'=—p.

(49) (p—q)' =p' — ¢. The theorem is a consequence of (47) and (48).
(50) Leading-Monomial p’ = 0.Rg +- (lenp —' 2, p(lenp —' 1) - (lenp —' 1)).

PROOF: Set [ = Leading-Monomial p. Set m = lenp—'1. Set k = lenp—'2.
Reconsider a = p(m)-m as an element of Rp. Set f = 0.F +- (k,a). ' = f
by 1 (53)], [2, (31), (32)], [10; (7)]. O

(51) Let us consider elements r, s of Rp. Then (r, s)’ = (s).

Let us consider p. The functor Eval(p) yielding a function from R into R is
defined by the term
(Def. 6) Polynomial-Function(Rp, p).
Let us note that Eval(p) is differentiable.
Now we state the propositions:
(52) Eval(0.Rp) =R +— 0.
PrOOF: Eval(0.F) = R — 0(¢ R) by [5, (17)], [10, (7)]. O
(53) Let us consider an element 7 of Rp. Then Eval((r)) = R —— r.
PRrOOF: Eval((r)) =R —— r(e R) by [6, (37)], [10, (7)]. O
(54) If p is constant, then Eval(p)’ = R —— 0. The theorem is a consequence
of (23), (52), and (11).
(55) Eval(p + ¢) = Eval(p) + Eval(q).
(56) Eval(—p) = —Eval(p).
(57) Eval(p — q) = Eval(p) — Eval(q). The theorem is a consequence of (55)
and (56).
(58) Eval(Leading-Monomial p) = FPower(p(lenp —' 1),lenp —' 1).
PROOF: Set | = Leading-Monomial p. Set m = lenp —' 1. Reconsider f =
FPower(p(m), m) as a function from R into R. Eval(l) = f by [5}, (22)]. O

(59) Eval(Leading-Monomial p) = p(lenp — 1) - (C'"P="1),
PROOF: Set | = Leading-Monomial p. Set m = lenp —' 1. Set f = p(m) -
(@m). Eval(l) = f by (39), B, (36)], [5, (22)]. U
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(60) Let us consider an element r of Rp. Then Eval(seq(n,r)) = r-(0O"). The

theorem is a consequence of (24), (43), and (38).

(61) Eval(p)’ = Eval(p’).

(10]

(11]

PROOF: Define P[natural number| = for every p such that lenp < $; holds
Eval(p)’ = Eval(p’). P[0] by [B} (5)], (46), (52), (54). If P[n], then P[n+1]
by (36), [5, (3)], [L, (13)], (37). P[n] from [Il Sch. 2]. O

Let us consider p. Let us observe that Eval(p)’ is differentiable.
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