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Summary. In the first part of this article we formalize the concepts of
terminal and initial object, categorical product [4] and natural transformation
within a free-object category [1]. In particular, we show that this definition of
natural transformation is equivalent to the standard definition [13]. Then we
introduce the exponential object using its universal property and we show the
isomorphism between the exponential object of categories and the functor cate-
gory [12].
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The notation and terminology used in this paper have been introduced in the
following articles: [2], [5], [15], [16], [17], [10], [6], [7], [11], [18], [19], [3], [8], [21],
[22], [14], [20], and [9].

1. Preliminaries

Now we state the propositions:

(1) Let us consider a composable, associative category structure C , and
morphisms f1, f2, f3 of C . Suppose f1 .f2 and f2 .f3. Then (f1 ◦f2)◦f3 =
f1 ◦ (f2 ◦ f3).

(2) Let us consider a composable, associative category structure C , and
morphisms f1, f2, f3, f4 of C . Suppose f1 .f2 and f2 .f3 and f3 .f4. Then

(i) ((f1 ◦ f2) ◦ f3) ◦ f4 = (f1 ◦ f2) ◦ (f3 ◦ f4), and

(ii) ((f1 ◦ f2) ◦ f3) ◦ f4 = (f1 ◦ (f2 ◦ f3)) ◦ f4, and
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(iii) ((f1 ◦ f2) ◦ f3) ◦ f4 = f1 ◦ ((f2 ◦ f3) ◦ f4), and

(iv) ((f1 ◦ f2) ◦ f3) ◦ f4 = f1 ◦ (f2 ◦ (f3 ◦ f4)).

The theorem is a consequence of (1).

(3) Let us consider a composable category structure C , and morphisms f ,
f1, f2 of C . Suppose f1 . f2. Then

(i) f1 ◦ f2 . f iff f2 . f , and

(ii) f . f1 ◦ f2 iff f . f1.

(4) Let us consider a composable category structure C with identities, and
morphisms f1, f2 of C . Suppose f1 . f2. Then

(i) if f1 is identity, then f1 ◦ f2 = f2, and

(ii) if f2 is identity, then f1 ◦ f2 = f1.

Proof: If f1 is identity, then f1 ◦ f2 = f2 by [16, (6), (5), (9)]. �

(5) Let us consider a non empty category structure C with identities, and
a morphism f of C . Then there exist morphisms f1, f2 of C such that

(i) f1 is identity, and

(ii) f2 is identity, and

(iii) f1 . f , and

(iv) f . f2.

(6) Let us consider a category structure C , objects a, b of C , and a morphism
f from a to b. Suppose hom(a, b) = {f}. Let us consider a morphism g

from a to b. Then f = g.

(7) Let us consider a category structure C , objects a, b of C , and a morphism
f from a to b. Suppose hom(a, b) 6= ∅ and for every morphism g from a to
b, f = g. Then hom(a, b) = {f}.

(8) Let us consider an object x, and a category structure C . Suppose the carri-
er of C = {x} and the composition of C = {〈〈〈〈x, x〉〉, x〉〉}. Then C is a non
empty category.
Proof: For every object y, y ∈ the composition of the discrete category
of {x} iff y ∈ {〈〈〈〈x, x〉〉, x〉〉} by [22, (2)], [9, (29)], [15, (24)], (4). �

(9) Let us consider categories C1, C2, and a functor F from C1 to C2. If F
is isomorphism, then F is bijective.

(10) Let us consider composable category structures C1, C2, C3 with identi-
ties. Suppose C1 ∼= C2 and C2 ∼= C3. Then C1 ∼= C3.

(11) Let us consider categories C1, C2. Suppose C1 ∼= C2. Then C1 is empty
if and only if C2 is empty.
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Let C1 be an empty category structure with identities and C2 be category
structure with identities. Note that every functor from C1 to C2 is covariant.

Now we state the propositions:

(12) Let us consider category structures C1, C2 with identities, a morphism
f of C1, and a functor F from C1 to C2. Suppose F is covariant and f is
identity. Then F(f) is identity.

(13) Let us consider category structures C1, C2 with identities, morphisms
f1, f2 of C1, and a functor F from C1 to C2. Suppose F is covariant and
f1 . f2. Then

(i) F(f1) . F(f2), and

(ii) F(f1 ◦ f2) = F(f1) ◦ F(f2).

(14) Let us consider an object-category C , a morphism f of C , and a mor-
phism g of alter C . Suppose f = g. Then

(i) dom g = iddom f , and

(ii) cod g = idcod f .

Proof: Consider d1 being a morphism of alter C such that dom g = d1
and g . d1 and d1 is identity. Reconsider d2 = iddom f as a morphism of
alter C . For every morphism f1 of alter C such that f1 . d2 holds f1 ◦ d2 =
f1 by [15, (40)], [5, (22)]. Consider c1 being a morphism of alter C such
that cod g = c1 and c1 . g and c1 is identity. Reconsider c2 = idcod f as
a morphism of alter C . For every morphism f1 of alter C such that f1 . c2
holds f1 ◦ c2 = f1 by [15, (40)], [5, (22)]. �

(15) There exists a morphism f of 1 such that

(i) f is identity, and

(ii) Ob1 = {f}, and

(iii) Mor1 = {f}.
Proof: Consider C being a strict, a preorder category such that Ob C = 1
and for every objects o1, o2 of C such that o1 ∈ o2 holds hom(o1, o2) =
{〈〈o1, o2〉〉} and RelOb C = ⊆1 and Mor C = 1∪{〈〈o1, o2〉〉, where o1, o2 are
elements of 1 : o1 ∈ o2}. Consider F being a functor from C to 1, G being
a functor from 1 to C such that F is covariant and G is covariant and
G ◦ F = idC and F ◦ G = id1. Reconsider g = 0 as a morphism of C . Set
f = F(g). Consider x being an object such that Ob1 = {x}. For every
object x, x ∈ Mor1 iff x ∈ {f} by [15, (22)], [6, (18)], [15, (34)], [2, (49)].
�

(16) Let us consider a non empty category C , and morphisms f1, f2 of C . If
Mf1 =Mf2 , then f1 = f2.
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(17) Let us consider a non empty category C , covariant functors F1, F2 from 2
to C , and a morphism f of 2. Suppose f is not identity and F1(f) = F2(f).
Then F1 = F2.
Proof: Consider f1 being a morphism of 2 such that f1 is not identity
and Ob2 = {dom f1, cod f1} and Mor2 = {dom f1, cod f1, f1} and dom f1,
cod f1, f1 are mutually different. For every object x such that x ∈ domF1
holds F1(x) = F2(x) by [15, (22), (32)]. �

(18) There exist morphisms f1, f2 of 3 such that

(i) f1 is not identity, and

(ii) f2 is not identity, and

(iii) cod f1 = dom f2, and

(iv) Ob3 = {dom f1, cod f1, cod f2}, and

(v) Mor3 = {dom f1, cod f1, cod f2, f1, f2, f2 ◦ f1}, and

(vi) dom f1,cod f1,cod f2,f1,f2,f2 ◦ f1 are mutually different.

Proof: Consider C being a strict, a preorder category such that Ob C = 3
and for every objects o1, o2 of C such that o1 ∈ o2 holds hom(o1, o2) =
{〈〈o1, o2〉〉} and RelOb C = ⊆3 and Mor C = 3∪{〈〈o1, o2〉〉, where o1, o2 are
elements of 3 : o1 ∈ o2}. Consider F being a functor from C to 3, G being
a functor from 3 to C such that F is covariant and G is covariant and
G ◦ F = idC and F ◦ G = id3. Reconsider g1 = 〈〈0, 1〉〉 as a morphism of
C . g1 is not identity by [15, (22)]. Set f1 = F(g1). Reconsider g2 = 〈〈1,
2〉〉 as a morphism of C . g2 is not identity by [15, (22)]. Set f2 = F(g2).
f1 is not identity by [6, (18)], [15, (34)]. f2 is not identity by [6, (18)],
[15, (34)]. For every object x, x ∈ Ob3 iff x ∈ {dom f1, cod f1, cod f2} by
[15, (34)], [6, (18)], [15, (22)], [2, (51)]. For every object x, x ∈ Mor3 iff
x ∈ {dom f1, cod f1, cod f2, f1, f2, f2 ◦ f1} by [15, (22)], [6, (18)], [15, (34)],
[2, (51), (49), (50)]. g2◦g1 is not identity by [15, (22)]. f2◦f1 is not identity
by [6, (18)], [15, (34)]. F is bijective. �

Let C be a non empty category and f1, f2 be morphisms of C . Assume
f1 . f2. The functor Cf1,f2 yielding a covariant functor from 3 to C is defined by

(Def. 1) for every morphisms g1, g2 of 3 such that g1 . g2 and g1 is not identity
and g2 is not identity holds it(g1) = f1 and it(g2) = f2.
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2. Terminal Objects

Let C be a category structure and a be an object of C . We say that a is
terminal if and only if

(Def. 2) for every object b of C , hom(b, a) 6= ∅ and there exists a morphism f

from b to a such that for every morphism g from b to a, f = g.

Now we state the propositions:

(19) Let us consider a category structure C , and an object b of C . Then b is
terminal if and only if for every object a of C , there exists a morphism f

from a to b such that hom(a, b) = {f}. The theorem is a consequence of
(7) and (6).

(20) Let us consider category structure C with identities, and an object a of
C . Suppose a is terminal. Let us consider a morphism h from a to a. Then
id-a = h.

(21) Let us consider a composable category structure C with identities, and
objects a, b of C . If a is terminal and b is terminal, then a and b are
isomorphic. The theorem is a consequence of (20).

(22) Let us consider a category C , and objects a, b of C . If b is terminal and
a and b are isomorphic, then a is terminal.

(23) Let us consider a composable category structure C with identities, ob-
jects a, b of C , and a morphism f from a to b. Suppose hom(a, b) 6= ∅ and
a is terminal. Then f is monomorphic.

Let C be a category. We say that C has terminal objects if and only if

(Def. 3) there exists an object a of C such that a is terminal.

Now we state the proposition:

(24) 1 has terminal objects.
Proof: Consider f being a morphism of 1 such that f is identity and
Ob1 = {f} and Mor1 = {f}. For every objects a, b of 1, every morphism
of 1 is a morphism from a to b by [16, (20)]. �

One can verify that there exists a category which has terminal objects.
Let C be a category. We say that C is terminal if and only if

(Def. 4) for every category B, there exists a functor F from B to C such that F
is covariant and for every functor G from B to C such that G is covariant
holds F = G.

Let us note that 1 is non empty and terminal and there exists a category
which is strict, non empty, and terminal and there exists a category which is
strict and non terminal.

Now we state the propositions:



356 marco riccardi

(25) Let us consider terminal categories C , D . Then C ∼= D .
Proof: There exists a functor F from C to D and there exists a functor
G from D to C such that F is covariant and G is covariant and G◦F = idC

and F ◦ G = idD by [15, (35)]. �

(26) Let us consider categories C , D . Suppose C is terminal and C ∼= D .
Then D is terminal.
Proof: Consider F being a functor from C to D , G being a functor from
D to C such that F is covariant and G is covariant and G ◦ F = idC and
F ◦ G = idD . Consider F1 being a functor from B to C such that F1 is
covariant and for every functor G from B to C such that G is covariant
holds F1 = G. Set F2 = F ◦ F1. For every functor G1 from B to D such
that G1 is covariant holds F2 = G1 by [15, (35)], [16, (10), (11)]. �

(27) Let us consider a category C . Then C is non empty and trivial if and
only if C ∼= 1. The theorem is a consequence of (15), (4), and (26).

(28) Let us consider non empty categories C , D . Suppose C is trivial and D
is trivial. Then C ∼= D . The theorem is a consequence of (27) and (10).

Note that every category which is non empty and trivial is also terminal and
every category which is terminal is also non empty and trivial.

Let C be a category. The functor C → 1 yielding a covariant functor from
C to 1 is defined by

(Def. 5) not contradiction.

Now we state the proposition:

(29) Let us consider categories C , C1, C2, a functor F1 from C to C1, and
a functor F2 from C to C2. Suppose F1 is covariant and F2 is covariant.
Then C1→ 1 ◦F1 = C2→ 1 ◦F2.

3. Initial Objects

Let C be a category structure and a be an object of C . We say that a is
initial if and only if

(Def. 6) for every object b of C , hom(a, b) 6= ∅ and there exists a morphism f

from a to b such that for every morphism g from a to b, f = g.

Now we state the propositions:

(30) Let us consider a category structure C , and an object b of C . Then b

is initial if and only if for every object a of C , there exists a morphism f

from b to a such that hom(b, a) = {f}. The theorem is a consequence of
(7) and (6).
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(31) Let us consider category structure C with identities, and an object a of
C . Suppose a is initial. Let us consider a morphism h from a to a. Then
id-a = h.

(32) Let us consider a composable category structure C with identities, and
objects a, b of C . If a is initial and b is initial, then a and b are isomorphic.
The theorem is a consequence of (31).

(33) Let us consider a category C , and objects a, b of C . If b is initial and b

and a are isomorphic, then a is initial.

(34) Let us consider a composable category structure C with identities, ob-
jects a, b of C , and a morphism f from a to b. Suppose hom(a, b) 6= ∅ and
b is initial. Then f is epimorphic.

Let C be a category. We say that C has initial objects if and only if

(Def. 7) there exists an object a of C such that a is initial.

Now we state the proposition:

(35) 1 has initial objects.
Proof: Consider f being a morphism of 1 such that f is identity and
Ob1 = {f} and Mor1 = {f}. For every objects a, b of 1, every morphism
of 1 is a morphism from a to b by [16, (20)]. �

Let us note that there exists a category which has initial objects.
Let C be a category. We say that C is initial if and only if

(Def. 8) for every category C1, there exists a functor F from C to C1 such that
F is covariant and for every functor F1 from C to C1 such that F1 is
covariant holds F = F1.

One can verify that 0 is empty and initial and there exists a category which
is strict, empty, and initial and there exists a category which is strict and non
initial.

Now we state the propositions:

(36) Let us consider initial categories C , D . Then C ∼= D .
Proof: There exists a functor F from C to D and there exists a functor
G from D to C such that F is covariant and G is covariant and G◦F = idC

and F ◦ G = idD by [15, (35)]. �

(37) Let us consider categories C , D . Suppose C is initial and C ∼= D . Then
D is initial.
Proof: Consider F being a functor from C to D , G being a functor from
D to C such that F is covariant and G is covariant and G ◦ F = idC and
F ◦ G = idD . Consider F1 being a functor from C to B such that F1 is
covariant and for every functor G from C to B such that G is covariant
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holds F1 = G. Set F2 = F1 ◦ G. For every functor G1 from D to B such
that G1 is covariant holds F2 = G1 by [15, (35)], [16, (10), (11)]. �

Let us note that every category which is empty is also initial.
Let C be a category. The functor 0→C yielding a covariant functor from

0 to C is defined by

(Def. 9) not contradiction.

Now we state the proposition:

(38) Let us consider categories C , C1, C2, a functor F1 from C1 to C , and
a functor F2 from C2 to C . Suppose F1 is covariant and F2 is covariant.
Then F1 ◦ 0→C1 = F2 ◦ 0→C2.

4. Categorical Products

Let C be a category, a, b, c be objects of C , and p1 be a morphism from
c to a. Assume hom(c, a) 6= ∅. Let p2 be a morphism from c to b. Assume
hom(c, b) 6= ∅. We say that 〈c, p1, p2〉 is a product of a and b if and only if

(Def. 10) for every object c1 of C and for every morphism q1 from c1 to a and for
every morphism q2 from c1 to b such that hom(c1, a) 6= ∅ and hom(c1, b) 6=
∅ holds hom(c1, c) 6= ∅ and there exists a morphism h from c1 to c such
that p1 · h = q1 and p2 · h = q2 and for every morphism h1 from c1 to c
such that p1 · h1 = q1 and p2 · h1 = q2 holds h = h1.

Now we state the propositions:

(39) Let us consider a category C , objects c1, c2, a, b of C , a morphism p1
from a to c1, a morphism p2 from a to c2, a morphism q1 from b to c1, and
a morphism q2 from b to c2. Suppose hom(a, c1) 6= ∅ and hom(a, c2) 6= ∅
and hom(b, c1) 6= ∅ and hom(b, c2) 6= ∅ and 〈a, p1, p2〉 is a product of
c1 and c2 and 〈b, q1, q2〉 is a product of c1 and c2. Then a and b are
isomorphic.
Proof: There exists a morphism f from a to b and there exists a morphism
g from b to a such that hom(a, b) 6= ∅ and hom(b, a) 6= ∅ and g · f = id-a
and f · g = id-b by [16, (23), (18)]. �

(40) Let us consider a category C , objects c1, c2, d of C , a morphism p1 from
d to c1, and a morphism p2 from d to c2. Suppose hom(d, c1) 6= ∅ and
hom(d, c2) 6= ∅ and 〈d, p1, p2〉 is a product of c1 and c2. Then 〈d, p2, p1〉
is a product of c2 and c1.

Let C be a category. We say that C has binary products if and only if

(Def. 11) for every objects a, b of C , there exists an object d of C and there exists
a morphism p1 from d to a and there exists a morphism p2 from d to b
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such that hom(d, a) 6= ∅ and hom(d, b) 6= ∅ and 〈d, p1, p2〉 is a product of
a and b.

Now we state the proposition:

(41) 1 has binary products.
Proof: Set C = 1. Consider f being a morphism of 1 such that f is
identity and Ob1 = {f} and Mor1 = {f}. For every objects o1, o2 of C ,
every morphism of C is a morphism from o1 to o2 by [16, (20)]. Reconsider
p1 = f as a morphism from a to a. Reconsider p2 = f as a morphism from
a to b. For every object c1 of C and for every morphism q1 from c1 to
a and for every morphism q2 from c1 to b such that hom(c1, a) 6= ∅ and
hom(c1, b) 6= ∅ holds hom(c1, a) 6= ∅ and there exists a morphism h from
c1 to a such that p1 · h = q1 and p2 · h = q2 and for every morphism h1
from c1 to a such that p1 · h1 = q1 and p2 · h1 = q2 holds h = h1. �

Observe that there exists a category which has binary products.
Let C be a category with binary products and c1, c2 be objects of C .
A categorical product of c1 and c2 is a triple object and is defined by

(Def. 12) there exists an object d of C and there exists a morphism p1 from d to
c1 and there exists a morphism p2 from d to c2 such that it = 〈〈d, p1, p2〉〉
and hom(d, c1) 6= ∅ and hom(d, c2) 6= ∅ and 〈d, p1, p2〉 is a product of c1
and c2.

The functor c1 × c2 yielding an object of C is defined by the term

(Def. 13) (the categorical product of c1 and c2)1,3.

The functor π1(c1� c2) yielding a morphism from c1× c2 to c1 is defined by
the term

(Def. 14) (the categorical product of c1 and c2)2,3.

The functor π2(c1� c2) yielding a morphism from c1× c2 to c2 is defined by the
term

(Def. 15) (the categorical product of c1 and c2)3,3.

Now we state the propositions:

(42) Let us consider a category C with binary products, and objects a, b of
C . Then

(i) 〈a× b, π1(a� b), π2(a� b)〉 is a product of a and b, and

(ii) hom(a× b, a) 6= ∅, and

(iii) hom(a× b, b) 6= ∅.

(43) Let us consider a category C with binary products, and objects a, b, c
of C . Suppose hom(c, a) 6= ∅ and hom(c, b) 6= ∅. Then hom(c, a × b) 6= ∅.
The theorem is a consequence of (42).
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(44) Let us consider a category C with binary products, and objects a, b, c, d
of C . Suppose hom(a, b) 6= ∅ and hom(c, d) 6= ∅. Then hom(a×c, b×d) 6= ∅.
The theorem is a consequence of (42).

Let C be a category with binary products, a, b, c, d be objects of C , and f

be a morphism from a to b. Assume hom(a, b) 6= ∅. Let g be a morphism from c

to d. Assume hom(c, d) 6= ∅. The functor f × g yielding a morphism from a× c
to b× d is defined by

(Def. 16) f · π1(a� c) = π1(b� d) · it and g · π2(a� c) = π2(b� d) · it .
Let C1, C2, D be categories and P1 be a functor from D to C1. Assume P1

is covariant. Let P2 be a functor from D to C2. Assume P2 is covariant. We say
that 〈D , P1, P2〉 is a product of C1 and C2 if and only if

(Def. 17) for every category D1 and for every functor G1 from D1 to C1 and for
every functor G2 from D1 to C2 such that G1 is covariant and G2 is covariant
there exists a functorH from D1 to D such thatH is covariant and P1◦H =
G1 and P2 ◦ H = G2 and for every functor H1 from D1 to D such that H1
is covariant and P1 ◦ H1 = G1 and P2 ◦ H1 = G2 holds H = H1.

Now we state the propositions:

(45) Let us consider categories C1, C2, A , B, a functor P1 from A to C1,
a functor P2 from A to C2, a functor Q1 from B to C1, and a functor
Q2 from B to C2. Suppose P1 is covariant and P2 is covariant and Q1 is
covariant and Q2 is covariant and 〈A , P1, P2〉 is a product of C1 and C2
and 〈B, Q1, Q2〉 is a product of C1 and C2. Then A ∼= B.
Proof: There exists a functor F4 from A to B and there exists a functor
G3 from B to A such that F4 is covariant and G3 is covariant and G3◦F4 =
idA and F4 ◦ G3 = idB by [16, (10), (11)], [15, (35)]. �

(46) Let us consider categories C1, C2, D , a functor P1 from D to C1, and
a functor P2 from D to C2. Suppose P1 is covariant and P2 is covariant
and 〈D , P1, P2〉 is a product of C1 and C2. Then 〈D , P2, P1〉 is a product
of C2 and C1.

Let C , C1, C2 be categories, F1 be a functor from C1 to C , and F2 be
a functor from C2 to C . We introduce the notation F1�F2 as a synonym of
[[F1,F2]].

Now we state the proposition:

(47) Let us consider categories C1, C2. Then 〈C1→ 1� C2→ 1, π1((C1→ 1)�
(C2→ 1)), π2((C1→ 1) � (C2→ 1))〉 is a product of C1 and C2.
Proof: Set F1 = C1→ 1. Set F2 = C2→ 1. For every category D1 and
for every functor G1 from D1 to C1 and for every functor G2 from D1 to C2
such that G1 is covariant and G2 is covariant there exists a functor H from
D1 to F1�F2 such that H is covariant and π1(F1 � F2) ◦ H = G1 and
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π2(F1 � F2) ◦ H = G2 and for every functor H1 from D1 to F1�F2 such
that H1 is covariant and π1(F1�F2)◦H1 = G1 and π2(F1�F2)◦H1 = G2
holds H = H1 by [16, (52)], (29). �

Let C1, C2 be categories.
A categorical product of C1 and C2 is a triple object and is defined by

(Def. 18) there exists a strict category D and there exists a functor P1 from D to
C1 and there exists a functor P2 from D to C2 such that it = 〈〈D , P1, P2〉〉
and P1 is covariant and P2 is covariant and 〈D , P1, P2〉 is a product of
C1 and C2.

The functor C1 × C2 yielding a strict category is defined by the term

(Def. 19) (the categorical product of C1 and C2)1,3.

The functor π1(C1� C2) yielding a functor from C1×C2 to C1 is defined by
the term

(Def. 20) (the categorical product of C1 and C2)2,3.

The functor π2(C1�C2) yielding a functor from C1×C2 to C2 is defined by the
term

(Def. 21) (the categorical product of C1 and C2)3,3.

Now we state the proposition:

(48) Let us consider categories C1, C2. Then 〈C1×C2, π1(C1�C2), π2(C1�C2)〉
is a product of C1 and C2.

Let C1, C2 be categories. Note that π1(C1�C2) is covariant and π2(C1�C2)
is covariant.

Now we state the proposition:

(49) Let us consider categories C1, C2. Then C1×C2 is not empty if and only
if C1 is not empty and C2 is not empty. The theorem is a consequence of
(48).

Let C1 be an empty category and C2 be a category. One can verify that
C1 × C2 is empty.

Let C1 be a category and C2 be an empty category. Observe that C1×C2 is
empty.

Let C1 be a non empty category and C2 be a non empty category. One can
verify that C1 × C2 is non empty.

Let C1, C2, D1, D2 be categories, F1 be a functor from C1 to D1, and F2
be a functor from C2 to D2. Assume F1 is covariant and F2 is covariant. The
functor F1 ×F2 yielding a functor from C1 × C2 to D1 ×D2 is defined by

(Def. 22) it is covariant and F1◦π1(C1�C2) = π1(D1�D2)◦it and F2◦π2(C1�C2) =
π2(D1 � D2) ◦ it .

Now we state the propositions:
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(50) Let us consider categories A1, A2, B1, B2, C1, C2, a functor F1 from
A1 to B1, a functor F2 from A2 to B2, a functor G1 from B1 to C1, and
a functor G2 from B2 to C2. Suppose F1 is covariant and G1 is covariant
and F2 is covariant and G2 is covariant. Then (G1 × G2) ◦ (F1 × F2) =
(G1 ◦ F1)× (G2 ◦ F2).

(51) Let us consider categories C1, C2. Then idC1 × idC2 = idC1×C2 .

Let x, y be objects. We introduce the notation KuratowskiPair(x, y) as a
synonym of 〈〈x, y〉〉.

Let C1, C2 be categories, f1 be a morphism of C1, and f2 be a morphism of
C2. The functor 〈〈f1, f2〉〉 yielding a morphism of C1 × C2 is defined by

(Def. 23) (i) π1(C1 � C2)(it) = f1 and π2(C1 � C2)(it) = f2, if C1 is not empty
and C2 is not empty,

(ii) it = the morphism of C1 × C2, otherwise.

Now we state the propositions:

(52) Let us consider categories C1, C2, and a morphism f of C1 × C2. Then
there exists a morphism f1 of C1 and there exists a morphism f2 of C2
such that f = 〈〈f1, f2〉〉.

(53) Let us consider non empty categories C1, C2, morphisms f1, g1 of C1,
and morphisms f2, g2 of C2. Suppose 〈〈f1, f2〉〉 = 〈〈g1, g2〉〉. Then

(i) f1 = g1, and

(ii) f2 = g2.

Let us consider categories C1, C2, morphisms f1, g1 of C1, and morphisms
f2, g2 of C2. Now we state the propositions:

(54) 〈〈f1, f2〉〉 . 〈〈g1, g2〉〉 if and only if f1 . g1 and f2 . g2.

(55) Suppose f1 . g1 and f2 . g2. Then 〈〈f1, f2〉〉 ◦ 〈〈g1, g2〉〉 = 〈〈f1 ◦ g1, f2 ◦ g2〉〉.
The theorem is a consequence of (54) and (13).

Now we state the propositions:

(56) Let us consider categories C1, C2, a morphism f1 of C1, a morphism f2
of C2, and a morphism f of C1 × C2. Suppose f = 〈〈f1, f2〉〉 and C1 is not
empty and C2 is not empty. Then f is identity if and only if f1 is identity
and f2 is identity. The theorem is a consequence of (52), (54), (55), and
(4).

(57) Let us consider non empty categories C1, C2, categories D1, D2, a functor
F1 from C1 to D1, a functor F2 from C2 to D2, a morphism c1 of C1, and
a morphism c2 of C2. Suppose F1 is covariant and F2 is covariant. Then
(F1 ×F2)(〈〈c1, c2〉〉) = 〈〈F1(c1), F2(c2)〉〉.
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5. Natural Transformations

Let C1, C2 be categories, F1, F2 be functors from C1 to C2, and τ be a functor
from C1 to C2. We say that τ is a natural transformation of F1 and F2 if and
only if

(Def. 24) for every morphisms f1, f2 of C1 such that f1.f2 holds τ(f1).F1(f2) and
F2(f1).τ(f2) and τ(f1◦f2) = τ(f1)◦F1(f2) and τ(f1◦f2) = F2(f1)◦τ(f2).

Now we state the propositions:

(58) Let us consider categories C1, C2, functors F1, F2 from C1 to C2, and
a functor τ from C1 to C2. Suppose F1 is covariant and F2 is covariant.
Then τ is a natural transformation of F1 and F2 if and only if for every
morphisms f , f1, f2 of C1 such that f1 is identity and f2 is identity and
f1 . f and f . f2 holds τ(f1) .F1(f) and F2(f) . τ(f2) and τ(f) = τ(f1) ◦
F1(f) and τ(f) = F2(f) ◦ τ(f2).
Proof: For every morphisms g1, g2 of C1 such that g1 . g2 holds τ(g1) .
F1(g2) and F2(g1) . τ(g2) and τ(g1 ◦ g2) = τ(g1) ◦ F1(g2) and τ(g1 ◦ g2) =
F2(g1) ◦ τ(g2) by [15, (1)], (5), (3), (13). �

(59) Let us consider non empty categories C1, C2, covariant functors F1, F2
from C1 to C2, and a function τ from Ob C1 into Mor C2. Then there
exists a functor τ1 from C1 to C2 such that τ = τ1� Ob C1 and τ1 is a
natural transformation of F1 and F2 if and only if for every object a
of C1, τ(a) ∈ hom(F1(a),F2(a)) and for every objects a1, a2 of C1 and
for every morphism f from a1 to a2 such that hom(a1, a2) 6= ∅ holds
τ(a2) ◦ F1(f) = F2(f) ◦ τ(a1).
Proof: Define P[object, object] ≡ for every morphism f of C1 such that
$1 = f holds $2 = τ(cod f) ◦ F1(f). For every object x such that x ∈
the carrier of C1 there exists an object y such that y ∈ the carrier of
C2 and P[x, y]. Consider τ1 being a function from the carrier of C1 into
the carrier of C2 such that for every object x such that x ∈ the carrier of C1
holds P[x, τ1(x)] from [7, Sch. 1]. For every object x such that x ∈ dom τ

holds τ(x) = (τ1� Ob C1)(x) by [15, (22)], [16, (20)], [15, (32)], [16, (5),
(6)]. For every morphisms f , f1, f2 of C1 such that f1 is identity and f2 is
identity and f1 . f and f . f2 holds τ1(f1) .F1(f) and F2(f) . τ1(f2) and
τ1(f) = τ1(f1) ◦ F1(f) and τ1(f) = F2(f) ◦ τ1(f2) by [15, (22)], [16, (20),
(6)], [15, (32)]. �

(60) Let us consider object-categories C , D , functors F1, F2 from C to D , and
functors G1, G2, τ from alter C to alter D . Suppose F1 = G1 and F2 = G2
and τ is a natural transformation of G1 and G2. Then (IdMap C ) · τ is
a natural transformation from F1 to F2.
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Proof: For every object a of C , τ(ida) ∈ hom(F1(a),F2(a)) by [15, (41),
(24), (42)]. Reconsider τ1 = τ as a function from the carrier’ of C into
the carrier’ of D . There exists a transformation t from F1 to F2 such that
t = (IdMap C ) · τ1 and for every objects a, b of C such that hom(a, b) 6= ∅
for every morphism f from a to b, t(b) · F1f = F2f · t(a) by [6, (13)], [5,
(1), (15), (21)]. Consider t being a transformation from F1 to F2 such that
t = (IdMap C ) · τ1 and for every objects a, b of C such that hom(a, b) 6= ∅
for every morphism f from a to b, t(b) · F1f = F2f · t(a). �

Let C , D be categories and F1, F2 be functors from C to D . We say that
F1 is naturally transformable to F2 if and only if

(Def. 25) there exists a functor τ from C to D such that τ is a natural transfor-
mation of F1 and F2.

Assume F1 is naturally transformable to F2.
A natural transformation from F1 to F2 is a functor from C to D and is

defined by

(Def. 26) it is a natural transformation of F1 and F2.
Now we state the proposition:

(61) Let us consider categories C , D , and a functor F from C to D . Suppose
F is covariant. Then F is a natural transformation of F and F . The
theorem is a consequence of (58).

Let C , D be categories and F , F1, F2 be functors from C to D . Assume
F1 is naturally transformable to F and F is naturally transformable to F2 and
F is covariant and F1 is covariant and F2 is covariant. Let τ1 be a natural
transformation from F1 to F and τ2 be a natural transformation from F to F2.
The functor τ2 ◦ τ1 yielding a natural transformation from F1 to F2 is defined
by

(Def. 27) for every morphisms f , f1, f2 of C such that f1 is identity and f2 is
identity and f . f1 and f2 . f holds it(f) = (τ2(f2) ◦ F(f)) ◦ τ1(f1).

Now we state the proposition:

(62) Let us consider categories C , D , and functors F , F1, F2 from C to D .
Suppose F1 is naturally transformable to F and F is naturally transfor-
mable to F2 and covariant and F1 is covariant and F2 is covariant. Then
F1 is naturally transformable to F2.

Let C1, C2 be categories. The functor Functors(C2,C1) yielding a strict ca-
tegory is defined by

(Def. 28) the carrier of it = {〈〈〈〈F1, F2〉〉, τ〉〉, where F1,F2 are functors from C1
to C2, τ is a natural transformation from F1 to F2 : F1 is covariant and
F2 is covariant and F1 is naturally transformable to F2} and the composi-
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tion of it = {〈〈〈〈x2, x1〉〉, x3〉〉, where x1, x2, x3 are elements of the carrier
of it : there exist functors F1,F2,F3 from C1 to C2 and there exists
a natural transformation τ1 from F1 to F2 and there exists a natural
transformati-on τ2 from F2 to F3 such that x1 = 〈〈〈〈F1, F2〉〉, τ1〉〉 and x2 =
〈〈〈〈F2, F3〉〉, τ2〉〉 and x3 = 〈〈〈〈F1, F3〉〉, τ2 ◦ τ1〉〉}.

Let C1 be a non empty category and C2 be an empty category. One can
verify that Functors(C2,C1) is empty.

Let C1 be an empty category and C2 be a category. Let us observe that
Functors(C2,C1) is non empty and trivial.

Let C1 be a non empty category and C2 be a non empty category. Let us
note that Functors(C2,C1) is non empty.

Now we state the proposition:

(63) Let us consider non empty categories C1, C2, and morphisms f1, f2 of
Functors(C2,C1). Then f1 . f2 if and only if there exist covariant functors
F , F1, F2 from C1 to C2 and there exists a natural transformation τ1
from F1 to F and there exists a natural transformation τ2 from F to F2
such that f1 = 〈〈〈〈F , F2〉〉, τ2〉〉 and f2 = 〈〈〈〈F1, F〉〉, τ1〉〉 and f1 ◦ f2 = 〈〈〈〈F1,
F2〉〉, τ2 ◦ τ1〉〉 and for every morphisms g1, g2 of C1 such that g2 . g1 holds
τ2(g2) . τ1(g1) and (τ2 ◦ τ1)(g2 ◦ g1) = τ2(g2) ◦ τ1(g1).
Proof: If f1 . f2, then there exist covariant functors F , F1, F2 from C1
to C2 and there exists a natural transformation τ1 from F1 to F and there
exists a natural transformation τ2 from F to F2 such that f1 = 〈〈〈〈F ,
F2〉〉, τ2〉〉 and f2 = 〈〈〈〈F1, F〉〉, τ1〉〉 and f1 ◦ f2 = 〈〈〈〈F1, F2〉〉, τ2 ◦ τ1〉〉 and for
every morphisms g1, g2 of C1 such that g2 . g1 holds τ2(g2) . τ1(g1) and
(τ2 ◦ τ1)(g2 ◦ g1) = τ2(g2) ◦ τ1(g1) by [6, (1)], (5), (58), [16, (5)]. �

Let us consider non empty categories C1, C2 and a morphism f of Functors(C2,
C1). Now we state the propositions:

(64) f is identity if and only if there exists a covariant functor F from C1 to
C2 such that f = 〈〈〈〈F , F〉〉, F〉〉.
Proof: Set C = Functors(C2,C1). If f is identity, then there exists a co-
variant functor F from C1 to C2 such that f = 〈〈〈〈F , F〉〉, F〉〉 by [15, (24)],
(63), (61), (5). Consider F being a covariant functor from C1 to C2 such
that f = 〈〈〈〈F , F〉〉, F〉〉. For every morphism f1 of C such that f . f1 holds
f ◦ f1 = f1 by (63), (5), (4), [7, (12)]. �

(65) There exist covariant functors F1, F2 from C1 to C2 and there exists
a natural transformation τ from F1 to F2 such that f = 〈〈〈〈F1, F2〉〉, τ〉〉
and dom f = 〈〈〈〈F1, F1〉〉, F1〉〉 and cod f = 〈〈〈〈F2, F2〉〉, F2〉〉. The theorem is
a consequence of (63) and (64).
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6. Exponential Objects

Let C be a category with binary products, a, b, c be objects of C , and e be
a morphism from c× a to b. Assume hom(c× a, b) 6= ∅. We say that 〈c, e〉 is an
exponent of a and b if and only if

(Def. 29) for every object d of C and for every morphism f from d × a to b such
that hom(d× a, b) 6= ∅ holds hom(d, c) 6= ∅ and there exists a morphism h

from d to c such that f = e · (h× id-a) and for every morphism h1 from d

to c such that f = e · (h1 × id-a) holds h = h1.

Now we state the propositions:

(66) Let us consider a category C with binary products, objects a1, a2, b1,
b2, c1, c2 of C , a morphism f1 from a1 to b1, a morphism f2 from a2
to b2, a morphism g1 from b1 to c1, and a morphism g2 from b2 to c2.
Suppose hom(a1, b1) 6= ∅ and hom(b1, c1) 6= ∅ and hom(a2, b2) 6= ∅ and
hom(b2, c2) 6= ∅. Then (g1× g2) · (f1× f2) = g1 · f1× (g2 · f2). The theorem
is a consequence of (42) and (44).

(67) Let us consider a category C with binary products, and objects a, b of
C . Then id-a× id-b = id-(a× b). The theorem is a consequence of (42).

(68) Let us consider a category C with binary products, objects a, b, c1, c2
of C , a morphism e1 from c1 × a to b, and a morphism e2 from c2 × a to
b. Suppose hom(c1 × a, b) 6= ∅ and hom(c2 × a, b) 6= ∅ and 〈c1, e1〉 is an
exponent of a and b and 〈c2, e2〉 is an exponent of a and b. Then c1 and
c2 are isomorphic.
Proof: There exists a morphism f from c1 to c2 such that f is isomor-
phism by (44), [16, (23)], (66), [16, (18)]. �

Let C be a category with binary products. We say that C has exponential
objects if and only if

(Def. 30) for every objects a, b of C , there exists an object c of C and there exists
a morphism e from c× a to b such that hom(c× a, b) 6= ∅ and 〈c, e〉 is an
exponent of a and b.

One can check that 1 has binary products.
Now we state the proposition:

(69) 1 has exponential objects.
Proof: Set C = 1. Consider f being a morphism of 1 such that f is
identity and Ob1 = {f} and Mor1 = {f}. For every objects o1, o2 of C ,
every morphism of C is a morphism from o1 to o2 by [16, (20)]. For every
objects a, b of C , there exists an object c of C and there exists a morphism
e from c× a to b such that hom(c× a, b) 6= ∅ and 〈c, e〉 is an exponent of
a and b. �
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Let us observe that there exists a category with binary products which has
exponential objects.

Let C be a category with exponential objects binary products and a, b be
objects of C .

A categorical exponent of a and b is a pair object and is defined by

(Def. 31) there exists an object c of C and there exists a morphism e from c × a
to b such that it = 〈〈c, e〉〉 and hom(c× a, b) 6= ∅ and 〈c, e〉 is an exponent
of a and b.

The functor ba yielding an object of C is defined by the term

(Def. 32) (the categorical exponent of a and b)1.

The functor eval(a, b) yielding a morphism from ba×a to b is defined by the
term

(Def. 33) (the categorical exponent of a and b)2.

Now we state the propositions:

(70) Let us consider a category C with exponential objects binary products,
and objects a, b of C . Then

(i) hom(ba × a, b) 6= ∅, and

(ii) 〈ba, eval(a, b)〉 is an exponent of a and b.

(71) Let us consider a category C with exponential objects binary products,
and objects a, b, c of C . Suppose hom(c × a, b) 6= ∅. Then there exists
a function L from hom(c× a, b) into hom(c, ba) such that

(i) for every morphism f from c×a to b and for every morphism h from
c to ba such that h = L(f) holds eval(a, b) · (h× id-a) = f , and

(ii) L is bijective.

Proof: hom(ba × a, b) 6= ∅ and 〈ba, eval(a, b)〉 is an exponent of a and
b. Define P[object, object] ≡ for every morphism f from c × a to b such
that f = $1 there exists a morphism h from c to ba such that h = $2 and
f = eval(a, b) · (h × id-a) and for every morphism h1 from c to ba such
that f = eval(a, b) · (h1× id-a) holds h = h1. For every object x such that
x ∈ hom(c × a, b) there exists an object y such that y ∈ hom(c, ba) and
P[x, y]. Consider L being a function from hom(c × a, b) into hom(c, ba)
such that for every object x such that x ∈ hom(c× a, b) holds P[x, L(x)]
from [7, Sch. 1]. There exists an object y such that y ∈ hom(c, ba). For
every morphism f from c× a to b and for every morphism h from c to ba

such that h = L(f) holds eval(a, b) · (h× id-a) = f . For every objects x1,
x2 such that x1, x2 ∈ hom(c× a, b) and L(x1) = L(x2) holds x1 = x2. For
every object y such that y ∈ hom(c, ba) holds y ∈ rngL by [6, (3)]. �
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Let A , B, C be categories and E be a functor from C ×A to B. Assume
E is covariant. We say that 〈C , E〉 is an exponent of A and B if and only if

(Def. 34) for every category D and for every functor F from D × A to B such
that F is covariant there exists a functor H from D to C such that H is
covariant and F = E ◦ (H × idA ) and for every functor H1 from D to C
such that H1 is covariant and F = E ◦ (H1 × idA ) holds H = H1.

Let C1, C2 be categories.
A categorical exponent of C1 and C2 is a pair object and is defined by

(Def. 35) there exists a category C and there exists a functor E from C × C1 to
C2 such that it = 〈〈C , E〉〉 and E is covariant and 〈C , E〉 is an exponent of
C1 and C2.

The functor C2
C1 yielding a category is defined by the term

(Def. 36) (the categorical exponent of C1 and C2)1.

The functor eval(C1,C2) yielding a functor from C2
C1 × C1 to C2 is defined

by the term

(Def. 37) (the categorical exponent of C1 and C2)2.

Now we state the propositions:

(72) Let us consider categories C1, C2. Then 〈C2C1 , eval(C1,C2)〉 is an expo-
nent of C1 and C2.

(73) Let us consider categories A , B, C1, C2, a functor E1 from C1 × A to
B, and a functor E2 from C2 × A to B. Suppose E1 is covariant and E2
is covariant and 〈C1, E1〉 is an exponent of A and B and 〈C2, E2〉 is an
exponent of A and B. Then C1 ∼= C2.
Proof: There exists a functor F from C1 to C2 and there exists a functor G
from C2 to C1 such that F is covariant and G is covariant and G ◦F = idC1

and F ◦ G = idC2 by [16, (10)], (50), [16, (11)], [15, (35)]. �

Let C1, C2 be categories. Observe that eval(C1,C2) is covariant.
Let C1 be a non empty category and C2 be an empty category. Let us note

that C2
C1 is empty.

Let C1 be an empty category and C2 be a category. Let us observe that C2
C1

is non empty and trivial.
Let C1 be a non empty category and C2 be a non empty category. One can

verify that C2
C1 is non empty.

Now we state the proposition:

(74) Let us consider categories C1, C2. Then Functors(C2,C1) ∼= C2
C1 . The

theorem is a consequence of (28), (72), and (73).
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