Grzegorczyk's Logics. Part I ## Taneli Huuskonen¹ Department of Mathematics and Statistics University of Helsinki Finland **Summary.** This article is the second in a series formalizing some results in my joint work with Prof. Joanna Golińska-Pilarek ([9] and [10]) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([11]). This part presents the syntax and axioms of Grzegorczyk's *Logic of Descriptions* (LD) as originally proposed by him, as well as some theorems not depending on any semantic constructions. There are both some clear similarities and fundamental differences between LD and the non-Fregean logics introduced by Roman Suszko in [15]. In particular, we were inspired by Suszko's semantics for his non-Fregean logic SCI, presented in [16]. MSC: 03B60 03B35 Keywords: non-Fregean logic; logic of descriptions; non-classical propositional logic; equimeaning connective MML identifier: GRZLOG_1, version: 8.1.04 5.32.1240 The notation and terminology used in this paper have been introduced in the following articles: [3], [17], [14], [2], [8], [4], [5], [1], [6], [12], [19], [21], [20], [13], [18], and [7]. #### 1. The Construction of Grzegorczyk's LD Language From now on k, m, n denote elements of \mathbb{N} , i, j denote natural numbers, a, b, c denote objects, X, Y, Z denote sets, D, D_1 , D_2 denote non empty sets, and p, q, r, s denote finite sequences. ¹Work supported by Polish National Science Center (NCN) grant "Logic of language experience" nr 2011/03/B/HS1/04580. The functor VAR yielding a finite sequence-membered set is defined by the term (Def. 1) the set of all (0, k) where k is an element of N. Note that VAR is non empty and antichain-like. A variable is an element of VAR. The functors: 'not', &, and '=' yielding finite sequences are defined by terms - (Def. 2) $\langle 1 \rangle$, - (Def. 3) $\langle 2 \rangle$, - (Def. 4) $\langle 3 \rangle$, respectively. The functor GRZ-ops yielding a non empty, finite sequence-membered set is defined by the term (Def. 5) $\{\text{'not'}, \&, \text{'='}\}.$ Let us note that the functor GRZ-ops yields a Polish language. The functor GRZ-symbols yielding a non empty, finite sequence-membered set is defined by the term (Def. 6) $VAR \cup GRZ$ -ops. The functors: 'not', &, and '=' yield elements of GRZ-symbols. Now we state the proposition: - (1) (i) 'not $' \neq \&$, and - (ii) 'not' \neq '=', and - (iii) $\& \neq '='$. Observe that GRZ-symbols is non trivial and antichain-like. The functor GRZ-op-arity yielding a function from GRZ-ops into $\mathbb N$ is defined by (Def. 7) it('not') = 1 and it(&) = 2 and it('=') = 2. The functor GRZ-arity yielding a Polish arity-function of GRZ-symbols is defined by (Def. 8) for every a such that $a \in GRZ$ -symbols holds if $a \in GRZ$ -ops, then it(a) = GRZ-op-arity(a) and if $a \notin GRZ$ -ops, then it(a) = 0. Now we state the propositions: - (2) (i) GRZ-arity('not') = 1, and - (ii) GRZ-arity(&) = 2, and - (iii) GRZ-arity('=') = 2. - (3) The Polish atoms (GRZ-symbols, GRZ-arity) = VAR. The theorem is a consequence of (2). The functor GRZ-formula-set yielding a Polish language of GRZ-symbols is defined by the term (Def. 9) Polish-WFF-set(GRZ-symbols, GRZ-arity). A GRZ-formula is a Polish WFF of GRZ-symbols and GRZ-arity. One can verify that there exists a subset of GRZ-formula-set which is non empty. Let us consider n. The functor \mathbf{x}_n yielding a GRZ-formula is defined by the term (Def. 10) $\langle 0, n \rangle$. From now on φ , ψ , ϑ , η denote GRZ-formulas. Let us consider φ . The functor $\neg \varphi$ yielding a GRZ-formula is defined by the term (Def. 11) (Polish-unOp(GRZ-symbols, GRZ-arity, 'not'))(φ). Let us consider ψ . The functors: $\varphi \wedge \psi$ and $\varphi = \psi$ yielding GRZ-formulas are defined by terms - (Def. 12) (Polish-binOp(GRZ-symbols, GRZ-arity, &))(φ , ψ), - (Def. 13) (Polish-binOp(GRZ-symbols, GRZ-arity, '='))(φ, ψ), respectively. The functors: $\varphi \lor \psi$ and $\varphi \Rightarrow \psi$ yielding GRZ-formulas are defined by terms - (Def. 14) $\neg(\neg\varphi\wedge\neg\psi)$, - (Def. 15) $\varphi = (\varphi \wedge \psi),$ respectively. The functor $\varphi \Leftrightarrow \psi$ yielding a GRZ-formula is defined by the term (Def. 16) $(\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$. We say that φ is atomic if and only if (Def. 17) $\varphi \in \text{the Polish atoms}(GRZ-symbols, GRZ-arity).$ We say that φ is negative if and only if (Def. 18) Polish-WFF-head $\varphi = '$ not'. We say that φ is conjunctive if and only if (Def. 19) Polish-WFF-head $\varphi = \&$. We say that φ is an equality if and only if (Def. 20) Polish-WFF-head $\varphi = '='$. Let us consider φ . Now we state the propositions: - (4) φ is atomic if and only if $\varphi \in VAR$. - (5) φ is negative if and only if there exists ψ such that $\varphi = \neg \psi$. PROOF: If φ is negative, then there exists ψ such that $\varphi = \neg \psi$ by (2), [12, (80)]. \square - (6) φ is conjunctive if and only if there exists ψ and there exists ϑ such that $\varphi = \psi \wedge \vartheta$. - PROOF: If φ is conjunctive, then there exists ψ and there exists ϑ such that $\varphi = \psi \wedge \vartheta$ by (2), [12, (82)]. \square - (7) φ is an equality if and only if there exists ψ and there exists ϑ such that $\varphi = \psi = \vartheta$. - PROOF: If φ is an equality, then there exists ψ and there exists ϑ such that $\varphi = \psi = \vartheta$ by (2), [12, (82)]. \square - (8) φ is atomic or negative or conjunctive or an equality. The theorem is a consequence of (3). Let us observe that every GRZ-formula which is atomic is also non negative and every GRZ-formula which is atomic is also non conjunctive and every GRZ-formula which is atomic is also non equality and every GRZ-formula which is negative is also non conjunctive and every GRZ-formula which is negative is also non equality and every GRZ-formula which is conjunctive is also non equality. #### 2. Axioms and Rules The functors: GRZ-axioms and LD-specific axioms yielding non empty subsets of GRZ-formula-set are defined by conditions - (Def. 21) for every $a, a \in \text{GRZ-axioms}$ iff there exists φ and there exists ψ and there exists ϑ such that $a = \neg(\varphi \land \neg \varphi)$ or $a = (\neg \neg \varphi) = \varphi$ or $a = \varphi = (\varphi \land \varphi)$ or $a = (\varphi \land \psi) = (\psi \land \varphi)$ or $a = (\varphi \land (\psi \land \vartheta)) = ((\varphi \land \psi) \land \vartheta)$ or $a = (\varphi \land (\psi \lor \vartheta)) = (\varphi \land \psi \lor \varphi \land \vartheta)$ or $a = (\neg(\varphi \land \psi)) = (\neg \varphi \lor \neg \psi)$ or $a = (\varphi = \psi) = (\psi = \varphi)$ or $a = (\varphi = \psi) = ((\neg \varphi) = (\neg \psi))$, - (Def. 22) for every $a, a \in \text{LD-specific axioms}$ iff there exists φ and there exists ψ and there exists ϑ such that $a = \varphi = \psi \Rightarrow (\varphi \wedge \vartheta) = (\psi \wedge \vartheta)$ or $a = \varphi = \psi \Rightarrow (\varphi \vee \vartheta) = (\psi \vee \vartheta)$ or $a = \varphi = \psi \Rightarrow (\varphi = \vartheta) = (\psi = \vartheta)$, respectively. The functor LD-axioms yielding a non empty subset of GRZ-formula-set is defined by the term (Def. 23) GRZ-axioms \cup LD-specific axioms. A GRZ-rule is a relation between $2^{\text{GRZ-formula-set}}$ and GRZ-formula-set. In the sequel R, R_1 , R_2 denote GRZ-rules. Let us consider R_1 and R_2 . Note that the functor $R_1 \cup R_2$ yields a GRZ-rule. The functors: GRZ-MP, GRZ-ConjIntro, GRZ-ConjElimL, and GRZ-ConjElimR yielding GRZ-rules are defined by terms (Def. 24) the set of all $\langle \{\varphi, \varphi = \psi\}, \psi \rangle$ where φ is a GRZ-formula, ψ is a GRZ-formula, - (Def. 25) the set of all $\langle \{\varphi, \psi\}, \varphi \wedge \psi \rangle$ where φ is a GRZ-formula, ψ is a GRZ-formula, - (Def. 26) the set of all $\langle \{\varphi \land \psi\}, \varphi \rangle$ where φ is a GRZ-formula, ψ is a GRZ-formula, - (Def. 27) the set of all $\langle \{\varphi \land \psi\}, \psi \rangle$ where φ is a GRZ-formula, ψ is a GRZ-formula, respectively. The functor GRZ-rules yielding a GRZ-rule is defined by - (Def. 28) for every $a, a \in it$ iff $a \in GRZ$ -MP or $a \in GRZ$ -ConjIntro or $a \in GRZ$ -ConjElimL or $a \in GRZ$ -ConjElimR. A GRZ-formula sequence is a finite sequence of elements of GRZ-formula-set. A finite GRZ-formula set is a finite subset of GRZ-formula-set. From now on Γ , Γ_1 , Γ_2 denote non empty subsets of GRZ-formula-set, Δ , Δ_1 , Δ_2 denote subsets of GRZ-formula-set, P, P_1 , P_2 denote GRZ-formula sequences, and Σ , Σ_1 , Σ_2 denote finite GRZ-formula sets. Let us consider Σ_1 and Σ_2 . Observe that the functor $\Sigma_1 \cup \Sigma_2$ yields a finite GRZ-formula set. Let us consider Γ , R, P, and n. We say that (P, n) is a correct step w.r.t. Γ , R if and only if (Def. 29) $P(n) \in \Gamma$ or there exists a finite GRZ-formula set Q such that $\langle Q, P(n) \rangle \in R$ and for every q such that $q \in Q$ there exists k such that $k \in \text{dom } P$ and k < n and P(k) = q. We say that P is (Γ, R) -correct if and only if - (Def. 30) for every k such that $k \in \text{dom } P \text{ holds } (P, k)$ is a correct step w.r.t. Γ, R . Let a be an element of Γ . One can verify that the functor $\langle a \rangle$ yields a GRZ-formula sequence. Now we state the proposition: - (9) Let us consider an element a of Γ . Then $\langle a \rangle$ is (Γ, R) -correct. Let us consider Γ and R. Note that there exists a GRZ-formula sequence which is non empty and (Γ, R) -correct. Let us consider Σ . We say that Σ is (Γ, R) -correct if and only if (Def. 31) there exists P such that $\Sigma = \operatorname{rng} P$ and P is (Γ, R) -correct. Now we state the propositions: - (10) If P is (Γ, R) -correct and $P = P_1 \cap P_2$, then P_1 is (Γ, R) -correct. - (11) If P_1 is (Γ, R) -correct and P_2 is (Γ, R) -correct, then $P_1 \cap P_2$ is (Γ, R) -correct. - (12) If Σ_1 is (Γ, R) -correct and Σ_2 is (Γ, R) -correct, then $\Sigma_1 \cup \Sigma_2$ is (Γ, R) -correct. The theorem is a consequence of (11). - (13) If $\Gamma \subseteq \Gamma_1$ and $R \subseteq R_1$ and P is (Γ, R) -correct, then P is (Γ_1, R_1) -correct. Let us consider Γ, R , and φ . We say that $\Gamma, R \vdash \varphi$ if and only if - (Def. 32) there exists P such that $\varphi \in \operatorname{rng} P$ and P is (Γ, R) -correct. Let us consider Δ . We say that $\Gamma, R \vdash \Delta$ if and only if (Def. 33) for every φ such that $\varphi \in \Delta$ holds $\Gamma, R \vdash \varphi$. Let us consider Γ , R, and φ . Now we state the propositions: - (14) $\Gamma, R \vdash \varphi$ if and only if there exists Σ such that $\varphi \in \Sigma$ and Σ is (Γ, R) -correct. - (15) If $\varphi \in \Gamma$, then $\Gamma, R \vdash \varphi$. The theorem is a consequence of (9). Now we state the propositions: - (16) If $\Gamma, R \vdash \Sigma$, then there exists Σ_1 such that $\Sigma \subseteq \Sigma_1$ and Σ_1 is (Γ, R) -correct. PROOF: Define $\mathcal{X}[\text{set}] \equiv \text{there exists } \Sigma_1 \text{ such that } \$_1 \subseteq \Sigma_1 \text{ and } \Sigma_1 \text{ is } (\Gamma, R)\text{-correct. } \mathcal{X}[\emptyset].$ For every sets x, Δ such that $x \in \Sigma$ and $\Delta \subseteq \Sigma$ and $\mathcal{X}[\Delta]$ holds $\mathcal{X}[\Delta \cup \{x\}]$. $\mathcal{X}[\Sigma]$ from [8, Sch. 2]. \square - (17) If $\Gamma, R \vdash \Sigma$ and $\langle \Sigma, \varphi \rangle \in R$, then $\Gamma, R \vdash \varphi$. The theorem is a consequence of (16). - (18) If $\Gamma, R \vdash \varphi$, then $\varphi \in \Gamma$ or there exists Σ such that $\langle \Sigma, \varphi \rangle \in R$ and $\Gamma, R \vdash \Sigma$. - (19) If $\Gamma \subseteq \Gamma_1$ and $R \subseteq R_1$ and $\Gamma, R \vdash \varphi$, then $\Gamma_1, R_1 \vdash \varphi$. Let us consider Γ, φ , and ψ . Now we state the propositions: - (20) Γ , GRZ-rules $\vdash \varphi \land \psi$ if and only if Γ , GRZ-rules $\vdash \varphi$ and Γ , GRZ-rules $\vdash \psi$. The theorem is a consequence of (17). - (21) Suppose Γ , GRZ-rules $\vdash \varphi$ and Γ , GRZ-rules $\vdash \varphi = \psi$. Then Γ , GRZ-rules $\vdash \psi$. The theorem is a consequence of (17). - (22) Suppose Γ , GRZ-rules $\vdash \varphi$ and Γ , GRZ-rules $\vdash \varphi \Rightarrow \psi$. Then Γ , GRZ-rules $\vdash \psi$. The theorem is a consequence of (21) and (20). - (23) If Γ , GRZ-rules $\vdash \varphi \land \psi$, then Γ , GRZ-rules $\vdash \psi \land \varphi$. The theorem is a consequence of (20). Let us consider φ . We say that φ is GRZ-axiomatic if and only if (Def. 34) $\varphi \in GRZ$ -axioms. We say that φ is GRZ-provable if and only if (Def. 35) GRZ-axioms, GRZ-rules $\vdash \varphi$. We say that φ is LD-axiomatic if and only if (Def. 36) $\varphi \in \text{LD-axioms}$. We say that φ is LD-provable if and only if (Def. 37) LD-axioms, GRZ-rules $\vdash \varphi$. Observe that $\neg(\varphi \land \neg \varphi)$ is GRZ-axiomatic and $(\neg \neg \varphi) = \varphi$ is GRZ-axiomatic and $\varphi = (\varphi \land \varphi)$ is GRZ-axiomatic. Let us consider ψ . Observe that $(\varphi \wedge \psi) = (\psi \wedge \varphi)$ is GRZ-axiomatic and $(\neg(\varphi \wedge \psi)) = (\neg \varphi \vee \neg \psi)$ is GRZ-axiomatic and $(\varphi = \psi) = (\psi = \varphi)$ is GRZ-axiomatic and $(\varphi = \psi) = ((\neg \varphi) = (\neg \psi))$ is GRZ-axiomatic. Let us consider ϑ . Observe that $(\varphi \wedge (\psi \wedge \vartheta)) = ((\varphi \wedge \psi) \wedge \vartheta)$ is GRZ-axiomatic and $(\varphi \wedge (\psi \vee \vartheta)) = (\varphi \wedge \psi \vee \varphi \wedge \vartheta)$ is GRZ-axiomatic and $\varphi = \psi \Rightarrow (\varphi \wedge \vartheta) = (\psi \wedge \vartheta)$ is LD-axiomatic and $\varphi = \psi \Rightarrow (\varphi \vee \vartheta) = (\psi \vee \vartheta)$ is LD-axiomatic and $\varphi = \psi \Rightarrow (\varphi = \vartheta) = (\psi = \vartheta)$ is LD-axiomatic and every GRZ-formula which is GRZ-axiomatic is also LD-axiomatic and every GRZ-formula which is LD-axiomatic is also GRZ-provable and every GRZ-formula which is GRZ-provable is also LD-provable and there exists a GRZ-formula which is GRZ-provable, LD-axiomatic, and LD-provable. Now we state the proposition: (24) Suppose GRZ-axioms $\subseteq \Gamma$ and Γ , GRZ-rules $\vdash \varphi = \psi$. Then Γ , GRZ-rules $\vdash \psi = \varphi$. The theorem is a consequence of (15) and (21). ### 3. Provability Let us consider φ and ψ . Now we state the propositions: - (25) If $\varphi = \psi$ is GRZ-provable, then $\psi = \varphi$ is GRZ-provable. - (26) If $\varphi = \psi$ is LD-provable, then $\psi = \varphi$ is LD-provable. Now we state the propositions: - (27) If $\varphi = \psi$ is LD-provable and $\psi = \vartheta$ is LD-provable, then $\varphi = \vartheta$ is LD-provable. The theorem is a consequence of (24), (22), and (21). - (28) $\varphi = \varphi$ is LD-provable. The theorem is a consequence of (24) and (27). Let us consider φ and ψ . We say that $\varphi =_{\text{LD}} \psi$ if and only if (Def. 38) $\varphi = \psi$ is LD-provable. One can check that the predicate is reflexive and symmetric. Now we state the proposition: (29) If $\varphi =_{LD} \psi$, then $\neg \varphi =_{LD} \neg \psi$. The theorem is a consequence of (21). The scheme BinReplace deals with a non empty set \mathcal{X} and a binary functor \mathcal{F} yielding an element of \mathcal{X} and a binary predicate \mathcal{R} and states that - (Sch. 1) For every elements a, b, c, d of \mathcal{X} such that $\mathcal{R}[a, b]$ and $\mathcal{R}[c, d]$ holds $\mathcal{R}[\mathcal{F}(a, c), \mathcal{F}(b, d)]$ provided - for every elements a, b, c of \mathcal{X} such that $\mathcal{R}[a, b]$ and $\mathcal{R}[b, c]$ holds $\mathcal{R}[a, c]$ and - for every elements a, b of \mathcal{X} , $\mathcal{R}[\mathcal{F}(a,b),\mathcal{F}(b,a)]$ and - for every elements a, b, c of \mathcal{X} such that $\mathcal{R}[a, b]$ holds $\mathcal{R}[\mathcal{F}(a, c), \mathcal{F}(b, c)]$. Let us consider φ, ψ, ϑ , and η . Let us assume that $\varphi =_{LD} \psi$ and $\vartheta =_{LD} \eta$. Now we state the propositions: (30) $\varphi \wedge \vartheta =_{LD} \psi \wedge \eta$. PROOF: Define $\mathcal{F}(GRZ\text{-formula}, GRZ\text{-formula}) = \$_1 \land \$_2$. Define $\mathcal{P}[GRZ\text{-formula}, GRZ\text{-formula}] \equiv \$_1 = \$_2$ is LD-provable. For every φ , ψ , and ϑ such that $\mathcal{P}[\varphi, \psi]$ and $\mathcal{P}[\psi, \vartheta]$ holds $\mathcal{P}[\varphi, \vartheta]$. For every φ , ψ , ϑ , and η such that $\mathcal{P}[\varphi, \psi]$ and $\mathcal{P}[\vartheta, \eta]$ holds $\mathcal{P}[\mathcal{F}(\varphi, \vartheta), \mathcal{F}(\psi, \eta)]$ from BinReplace. \square (31) $\varphi = \vartheta =_{LD} \psi = \eta$. PROOF: Define $\mathcal{F}(GRZ\text{-formula}, GRZ\text{-formula}) = \$_1 = \$_2$. Define $\mathcal{P}[GRZ\text{-formula}, GRZ\text{-formula}] \equiv \$_1 = \$_2$ is LD-provable. For every φ , ψ , and ϑ such that $\mathcal{P}[\varphi, \psi]$ and $\mathcal{P}[\psi, \vartheta]$ holds $\mathcal{P}[\varphi, \vartheta]$. For every φ , ψ , ϑ , and η such that $\mathcal{P}[\varphi, \psi]$ and $\mathcal{P}[\vartheta, \eta]$ holds $\mathcal{P}[\mathcal{F}(\varphi, \vartheta), \mathcal{F}(\psi, \eta)]$ from BinReplace. \square The functor LD-IdR yielding an equivalence relation of GRZ-formula-set is defined by (Def. 39) for every φ and ψ , $\langle \varphi, \psi \rangle \in it$ iff $\varphi =_{LD} \psi$. Note that there exists a family of subsets of GRZ-formula-set which is non empty. The functor LD-IdClasses yielding a non empty family of subsets of GRZ-formula-set is defined by the term (Def. 40) Classes LD-IdR. An LD-identity class is an element of LD-IdClasses. Let us consider φ . The functor LD-IdClassOf φ yielding an LD-identity class is defined by the term (Def. 41) $[\varphi]_{\text{LD-IdR}}$. Now we state the proposition: (32) $\varphi =_{LD} \psi$ if and only if LD-IdClassOf $\varphi = LD$ -IdClassOf ψ . PROOF: If $\varphi =_{LD} \psi$, then LD-IdClassOf $\varphi = LD$ -IdClassOf ψ by [14, (18), (23)]. \square The scheme UnOpCongr deals with a non empty set \mathcal{X} and a unary functor \mathcal{F} yielding an element of \mathcal{X} and an equivalence relation \mathcal{E} of \mathcal{X} and states that (Sch. 2) There exists a unary operation f on Classes $\mathcal E$ such that for every element x of $\mathcal X$, $f([x]_{\mathcal E}) = [\mathcal F(x)]_{\mathcal E}$ provided • for every elements x, y of \mathcal{X} such that $\langle x, y \rangle \in \mathcal{E}$ holds $\langle \mathcal{F}(x), \mathcal{F}(y) \rangle \in \mathcal{E}$. The scheme BinOpCongr deals with a non empty set \mathcal{X} and a binary functor \mathcal{F} yielding an element of \mathcal{X} and an equivalence relation \mathcal{E} of \mathcal{X} and states that - (Sch. 3) There exists a binary operation f on Classes \mathcal{E} such that for every elements x, y of \mathcal{X} , $f([x]_{\mathcal{E}}, [y]_{\mathcal{E}}) = [\mathcal{F}(x, y)]_{\mathcal{E}}$ provided - for every elements x_1, x_2, y_1, y_2 of \mathcal{X} such that $\langle x_1, x_2 \rangle, \langle y_1, y_2 \rangle \in \mathcal{E}$ holds $\langle \mathcal{F}(x_1, y_1), \mathcal{F}(x_2, y_2) \rangle \in \mathcal{E}$. From now on x, y, z denote LD-identity classes. Now we state the proposition: (33) There exists φ such that $x = \text{LD-IdClassOf } \varphi$. Let us consider x. We say that x is LD-provable if and only if - (Def. 42) there exists φ such that $x = \text{LD-IdClassOf } \varphi$ and φ is LD-provable. The functor $\neg x$ yielding an LD-identity class is defined by - (Def. 43) there exists φ such that $x = \text{LD-IdClassOf } \varphi$ and $it = \text{LD-IdClassOf } \neg \varphi$. One can verify that the functor is involutive. Let us consider y. The functor $x \wedge y$ yielding an LD-identity class is defined by - (Def. 44) there exists φ and there exists ψ such that $x = \text{LD-IdClassOf } \varphi$ and $y = \text{LD-IdClassOf } \psi$ and $it = \text{LD-IdClassOf}(\varphi \wedge \psi)$. Note that the functor is commutative and idempotent. The functor x=y yielding an LD-identity class is defined by (Def. 45) there exists φ and there exists ψ such that $x = \text{LD-IdClassOf } \varphi$ and $y = \text{LD-IdClassOf } \psi$ and $it = \text{LD-IdClassOf } \varphi = \psi$. One can check that the functor is commutative. The functor $x \vee y$ yielding an LD-identity class is defined by the term (Def. 46) $\neg (\neg x \land \neg y)$. Let us observe that the functor is commutative and idempotent. The functor $x \Rightarrow y$ yielding an LD-identity class is defined by the term (Def. 47) $x=(x \wedge y)$. Let φ be an LD-provable GRZ-formula. Let us observe that LD-IdClassOf φ is LD-provable. Now we state the proposition: (34) If LD-IdClassOf φ is LD-provable, then φ is LD-provable. The theorem is a consequence of (32) and (21). Let us consider x and y. Now we state the propositions: - (35) $x \wedge y$ is LD-provable if and only if x is LD-provable and y is LD-provable. The theorem is a consequence of (34) and (20). - (36) x=y is LD-provable if and only if x=y. The theorem is a consequence of (34) and (32). Now we state the proposition: - (37) LD-IdClassOf $\neg \varphi = \neg$ LD-IdClassOf φ . Let us consider φ and ψ . Now we state the propositions: - (38) LD-IdClassOf($\varphi \wedge \psi$) = LD-IdClassOf $\varphi \wedge$ LD-IdClassOf ψ . - (39) LD-IdClassOf $\varphi = \psi = \text{(LD-IdClassOf }\varphi) = \text{(LD-IdClassOf }\psi).$ - (40) LD-IdClassOf($\varphi \lor \psi$) = LD-IdClassOf $\varphi \lor$ LD-IdClassOf ψ . - (41) LD-IdClassOf($\varphi \Rightarrow \psi$) = LD-IdClassOf $\varphi \Rightarrow$ LD-IdClassOf ψ . Now we state the propositions: - (42) $(x \wedge y) \wedge z = x \wedge (y \wedge z)$. The theorem is a consequence of (33) and (32). - (43) $x \Rightarrow y$ is LD-provable if and only if $x = x \land y$. - (44) If $x \Rightarrow y$ is LD-provable and $y \Rightarrow z$ is LD-provable, then $x \Rightarrow z$ is LD-provable. The theorem is a consequence of (36) and (42). - (45) If $\varphi \Rightarrow \psi$ is LD-provable and $\psi \Rightarrow \vartheta$ is LD-provable, then $\varphi \Rightarrow \vartheta$ is LD-provable. The theorem is a consequence of (41), (34), and (44). Let us consider x, y, and z. Now we state the propositions: - $(46) \quad x \vee (y \vee z) = (x \vee y) \vee z.$ - (47) $x \wedge (y \vee z) = x \wedge y \vee x \wedge z$. The theorem is a consequence of (33), (32), and (40). - (48) $x \lor y \land z = (x \lor y) \land (x \lor z)$. The theorem is a consequence of (47). Let us consider x and y. Now we state the propositions: - (49) $x \Rightarrow y$ is LD-provable and $y \Rightarrow x$ is LD-provable if and only if x = y. The theorem is a consequence of (36). - (50) If x is LD-provable, then $x \vee y$ is LD-provable. The theorem is a consequence of (33), (35), (47), and (48). #### References - [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990. - [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990. - [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990. - [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990. - [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. - [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990. - [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990. - [8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990. - [9] Joanna Golińska-Pilarek and Taneli Huuskonen. Logic of descriptions. A new approach to the foundations of mathematics and science. Studies in Logic, Grammar and Rhetoric, 40(27), 2012. - [10] Joanna Golińska-Pilarek and Taneli Huuskonen. Grzegorczyk's non-Fregean logics. In Rafał Urbaniak and Gillman Payette, editors, Applications of Formal Philosophy: The Road Less Travelled, Logic, Reasoning and Argumentation. Springer, 2015. - [11] Andrzej Grzegorczyk. Filozofia logiki i formalna LOGIKA NIESYMPLIFIKACYJNA. Zagadnienia Naukoznawstwa, XLVII(4), 2012. In Polish. - [12] Taneli Huuskonen. Polish notation. Formalized Mathematics, 23(3):161–176, 2015. doi:1 0.1515/forma-2015-0014. - [13] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990. - [14] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990. - [15] Roman Suszko. Non-Fregean logic and theories. Analele Universitatii Bucuresti. Acta Logica, 9:105–125, 1968. - [16] Roman Suszko. Semantics for the sentential calculus with identity. *Studia Logica*, 28: 77–81, 1971. - [17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990. - [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. - [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990. - [20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990. - [21] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85–89, 1990. Received April 30, 2015