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Introduction to Diophantine Approximation
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Summary. In this article we formalize some results of Diophantine appro-
ximation, i.e. the approximation of an irrational number by rationals. A typical
example is finding an integer solution (x, y) of the inequality |xθ − y| ¬ 1/x,
where θ is a real number. First, we formalize some lemmas about continued
fractions. Then we prove that the inequality has infinitely many solutions by
continued fractions. Finally, we formalize Dirichlet’s proof (1842) of existence of
the solution [12], [1].
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The notation and terminology used in this paper have been introduced in the
following articles: [24], [2], [6], [22], [14], [5], [11], [7], [8], [28], [20], [26], [3], [25],
[19], [4], [9], [32], [15], [13], [21], [30], [31], [18], [23], [29], and [10].

1. Irrational Numbers and Continued Fractions

From now on i, j, k, m, n, m1, n1 denote natural numbers, a, r, r1, r2 denote
real numbers, m0, c3, c1 denote integers, and x1, x2, o denote objects.

Now we state the proposition:

(1) (i) r = (rfs r)(0), and

(ii) r = (scf r)(0) + (1/(rfs r)(1)), and

(iii) (rfs r)(n) = (scf r)(n) + (1/(rfs r)(n+1)).

Let us assume that r is irrational. Now we state the propositions:
c© 2015 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)101

http://www.degruyter.com/view/j/forma
http://zbmath.org/classification/?q=cc:11A55
http://zbmath.org/classification/?q=cc:11J68
http://zbmath.org/classification/?q=cc:03B35
http://fm.mizar.org/miz/diophan1.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/


102 yasushige watase

(2) (rfs r)(n) is irrational.
Proof: Reconsider r3 = (rfs r)(n) as a real number. (scf r3)(m) = (scf r)
(n+m) and (rfs r3)(m) = (rfs r)(n+m). Consider n1 such that for every
m1 such that m1 ­ n1 holds (scf r3)(m1) = 0. For every m1 such that
m1 ­ n1 holds (scf r)(n + m1) = 0. For every m such that m ­ n1 + n

holds (scf r)(m) = 0 by [28, (3)]. �

(3) (i) (rfs r)(n) 6= 0, and

(ii) (rfs r)(1) · (rfs r)(2) 6= 0, and

(iii) (scf r)(1) · (rfs r)(2) + 1 6= 0.
Proof: (rfs r)(n) 6= 0 by [21, (28), (42)]. (rfs r)(1) 6= 0 and (rfs r)(2) 6= 0.
(rfs r)(1) = (scf r)(1) + (1/(rfs r)(1+1)). �

(4) (i) (scf r)(n) < (rfs r)(n) < (scf r)(n) + 1, and

(ii) 1 < (rfs r)(n+ 1).
The theorem is a consequence of (2) and (1).

(5) 0 < (scf r)(n+ 1). The theorem is a consequence of (4).

Let us consider r and n. Observe that (cn r)(n) is integer.
Let us assume that r is irrational. Now we state the propositions:

(6) (cd r)(n+ 1) ­ (cd r)(n).
Proof: Define P[natural number] ≡ (cd r)($1) ¬ (cd r)($1 + 1). P[0] by
(4), [28, (7)]. For every natural number n such that P[n] holds P[n+1] by
(4), [28, (7)], [21, (51)]. For every natural number n, P[n] from [3, Sch. 2].
�

(7) (cd r)(n) ­ 1.
Proof: Define P[natural number] ≡ (cd r)($1) ­ 1. For every natural
number n such that P[n] holds P[n+1]. For every natural number n, P[n]
from [3, Sch. 2]. �

(8) (cd r)(n + 2) > (cd r)(n + 1). The theorem is a consequence of (5) and
(7).

(9) (cd r)(n) ­ n.
Proof: Define P[natural number] ≡ (cd r)($1) ­ $1. For every natural
number n such that P[n] holds P[n + 1] by (7), (5), [21, (40)]. For every
natural number n, P[n] from [3, Sch. 2]. �

Now we state the proposition:

(10) If c3 = (cn r)(n) and c1 = (cd r)(n) and c3 6= 0, then c3 and c1 are
relatively prime.

Let us assume that r is irrational. Now we state the propositions:

(11) (i) (cd r)(n+ 1) · (rfs r)(n+ 2) + (cd r)(n) > 0, and
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(ii) (cd r)(n+ 1) · (rfs r)(n+ 2)− (cd r)(n) > 0.
The theorem is a consequence of (7), (4), and (6).

(12) (cd r)(n+ 1) · ((cd r)(n+ 1) · (rfs r)(n+ 2) + (cd r)(n)) > 0. The theorem
is a consequence of (7) and (11).

(13) r = (cn r)(n+ 1) · (rfs r)(n+ 2) + (cn r)(n)/(cd r)(n+1)·(rfs r)(n+2)+(cd r)(n).
Proof: Define P[natural number] ≡ r = (cn r)($1 + 1) · (rfs r)($1 + 2) +
(cn r)($1)/(cd r)($1+1)·(rfs r)($1+2)+(cd r)($1). P[0]. For every natural number
n such that P[n] holds P[n + 1]. For every natural number n, P[n] from
[3, Sch. 2]. �

(14) ((cn r)(n+ 1)/(cd r)(n+1))− r =
(−1)n/(cd r)(n+1)·((cd r)(n+1)·(rfs r)(n+2)+(cd r)(n)). The theorem is a consequ-
ence of (7), (11), and (13).

Now we state the propositions:

(15) If r is irrational and n is even and n > 0, then r > (cn r)(n)/(cd r)(n).
The theorem is a consequence of (12) and (14).

(16) If r is irrational and n is odd, then r < (cn r)(n)/(cd r)(n). The theorem
is a consequence of (12) and (14).

(17) Suppose r is irrational and n > 0. Then |r − ((cn r)(n)/(cd r)(n))| + |r −
((cn r)(n+1)/(cd r)(n+1))| = |((cn r)(n)/(cd r)(n))−((cn r)(n+1)/(cd r)(n+1))|.
The theorem is a consequence of (15) and (16).

Let us assume that r is irrational. Now we state the propositions:

(18) |r − ((cn r)(n)/(cd r)(n))| > 0.

(19) (cd r)(n + 2) ­ 2 · (cd r)(n). The theorem is a consequence of (5), (7),
and (6).

(20) |r− ((cn r)(n+ 1)/(cd r)(n+1))| < 1/(cd r)(n+1)·(cd r)(n+2). The theorem is a
consequence of (7), (4), and (14).

(21) (i) |r · (cd r)(n+ 1)− (cn r)(n+ 1)| < |r · (cd r)(n)− (cn r)(n)|, and

(ii) |r − ((cn r)(n+ 1)/(cd r)(n+1))| < |r − ((cn r)(n)/(cd r)(n))|.
The theorem is a consequence of (13), (11), (4), (7), (18), and (6).

Now we state the propositions:

(22) If r is irrational and m > n, then |r − ((cn r)(n)/(cd r)(n))| > |r −
((cn r)(m)/(cd r)(m))|.
Proof: Define P[natural number] ≡ |r − ((cn r)(n)/(cd r)(n))| > |r −
((cn r)(n+ 1 + $1)/(cd r)(n+1+$1))|. P[0]. For every natural number k such
that P[k] holds P[k+1]. For every natural number k, P[k] from [3, Sch. 2].
�

(23) If r is irrational, then |r − ((cn r)(n)/(cd r)(n))| < 1/(cd r)(n)2 .
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Proof: |r − ((cn r)(n)/(cd r)(n))| < 1/(cd r)(n)2 by [28, (43)], (7), [16, (1)],
(6). �

(24) Let us consider a subset S of Q, and r. Suppose r is irrational and
S = {p, where p is an element of Q : |r − p| < 1/(den p)2}. Then S is
infinite.
Proof: Define F(natural number) = (cn r)($1 + 1)/(cd r)($1+1). Consider
f being a sequence of real numbers such that for every natural number n,
f(n) = F(n) from [17, Sch. 1]. For every real number o such that o ∈ rng f
holds o ∈ S by [21, (50)], (7), [15, (28)], [16, (1)]. f is one-to-one. �

(25) If r is irrational, then cocf r is convergent and lim cocf r = r.
Proof: For every real number p such that 0 < p there exists n such that
for every m such that n ¬ m holds |(cocf r)(m)− r| < p by [27, (25)], [28,
(3)], [17, (8)], [6, (52)]. �

2. Integer Solution of |xθ − y| ¬ 1/x

Let us observe that there exists a natural number which is greater than 1.
From now on t denotes a greater than 1 natural number.
Let us consider t. The functor EDI(t) yielding a sequence of subsets of R is

defined by

(Def. 1) for every natural number n, it(n) = [n/t, n+ 1/t[.

Now we state the propositions:

(26) (The partial unions of EDI(t))(i) = [0, i+ 1/t[.
Proof: Define P[natural number] ≡ (the partial unions of EDI(t))($1) =
[0, $1 + 1/t[. For every natural number k such that P[k] holds P[k + 1].
For every natural number n, P[n] from [3, Sch. 2]. �

(27) Let us consider a real number r, and a natural number i. If br · tc = i,
then r ∈ (EDI(t))(i).

(28) If r1, r2 ∈ (EDI(t))(i), then |r1 − r2| < t−1.

(29) (The partial unions of EDI(t))(t − 1) = [0, 1[. The theorem is a conse-
quence of (26).

(30) Let us consider a real number r. Suppose r ∈ [0, 1[. Then there exists a
natural number i such that

(i) i ¬ t− 1, and

(ii) r ∈ (EDI(t))(i).

The theorem is a consequence of (29).

(31) Let us consider a real number r, and a natural number i. If r ∈ (EDI(t))(i),
then br · tc = i.
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(32) Let us consider a real number r. Suppose r ∈ [0, 1[. Then there exists a
natural number i such that

(i) i ¬ t− 1, and

(ii) br · tc = i.

The theorem is a consequence of (30) and (31).

Let us consider t and a. The functor FDP(t, a) yielding a finite sequence of
elements of Zt is defined by

(Def. 2) len it = t+ 1 and for every i such that i ∈ dom it holds it(i) = bfrac((i−
1) · a) · tc.

Let us note that rng FDP(t, a) is non empty.
Now we state the proposition:

(33) rng FDP(t, a) ∈ dom FDP(t, a).

Let us consider t and a. One can verify that FDP(t, a) is non one-to-one.

3. Proof of Dirichlet’s Theorem

Now we state the proposition:

(34) Dirichlet’s approximation theorem:
There exist integers x, y such that

(i) |x · a− y| < 1/t, and

(ii) 0 < x ¬ t.
The theorem is a consequence of (27) and (28).
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