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Summary. In this article, direct sum decomposition of group is mainly
discussed. In the second section, support of element of direct product group is
defined and its properties are formalized. It is formalized here that an element
of direct product group belongs to its direct sum if and only if support of the
element is finite. In the third section, product map and sum map are prepared.
In the fourth section, internal and external direct sum are defined. In the last
section, an equivalent form of internal direct sum is proved. We referred to [23],
[22], [8] and [18] in the formalization.
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1. Miscellanies

Let D be a non empty set and x be an element of D. Observe that the
functor 〈x〉 yields a finite sequence of elements of D. Let I be a set.
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A family of groups of I is an associative, group-like multiplicative magma
family of I. Let G be a group. Note that there exists a subgroup of G which is
commutative.

Now we state the proposition:

(1) Let us consider a set I, a family F of groups of I, and an object i. If
i ∈ I, then F (i) is a group.

Let I be a set, F be a family of groups of I, and i be an object. Assume
i ∈ I. One can verify that the functor F (i) yields a group. One can verify that
sumF is non empty and constituted functions.

Now we state the propositions:

(2) Let us consider a set I, and a function F . Suppose I = domF and for
every object i such that i ∈ I holds F (i) is a group. Then F is a family of
groups of I.

(3) Let us consider a set I, a family F of groups of I, and an element a of∏
F . Then dom a = I.

(4) Let us consider a non empty set I, a family F of groups of I, and an
element x of I. Then (the support of F )(x) = ΩF (x).

(5) Let us consider a non empty set I, a family F of groups of I, a function
x, and an element i of I. If x ∈

∏
F , then x(i) ∈ F (i). The theorem is a

consequence of (4).

(6) Let us consider groups G, H, and a subgroup I of H. Then every homo-
morphism from G to I is a homomorphism from G to H.

2. Support of Element of Direct Product Group

Let I be a set, F be a family of groups of I, and a be a function. The functor
support(a, F ) yielding a subset of I is defined by

(Def. 1) for every object i, i ∈ it iff a(i) 6= 1F (i) and i ∈ I.
Now we state the proposition:

(7) Let us consider a set I, a family F of groups of I, and an element a of
sumF . Then there exists a finite subset J of I and there exists a many
sorted set b indexed by J such that J = support(a, F ) and a = 1∏F+·b
and for every object j such that j ∈ I \J holds a(j) = 1F (j) and for every
object j such that j ∈ J holds a(j) = b(j).
Proof: Consider g being an element of

∏
(the support of F ), J being

a finite subset of I, b being a many sorted set indexed by J such that
g = 1∏F and a = g+·b and for every set j such that j ∈ J there exists
a group-like, non empty multiplicative magma G such that G = F (j) and
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b(j) ∈ the carrier of G and b(j) 6= 1G. dom1∏F = I. For every object j
such that j ∈ I \ J holds a(j) = 1F (j) by [13, (11)], [17, (6)]. For every
object j, j ∈ support(a, F ) iff j ∈ J by [13, (13)]. �

Let I be a set, F be a family of groups of I, and a be an element of sumF .
One can verify that support(a, F ) is finite.

Let G be a group and a be a function from I into G. The functor support a
yielding a subset of I is defined by

(Def. 2) for every object i, i ∈ it iff a(i) 6= 1G and i ∈ I.
We say that a is finite-support if and only if

(Def. 3) support a is finite.

Let us observe that there exists a function from I into G which is finite-
support. Let a be a finite-support function from I into G. One can verify that
support a is finite.

The functor
∏
a yielding an element of G is defined by the term

(Def. 4)
∏

(a� support a).

Now we state the propositions:

(8) Let us consider a set I, a family F of groups of I, and an element a of∏
F . Then a ∈ sumF if and only if support(a, F ) is finite.
Proof: Reconsider J = support(a, F ) as a finite subset of I. Set k = a�J .
Set x = 1∏F+·k. For every set j such that j ∈ J there exists a group-
like, non empty multiplicative magma G such that G = F (j) and k(j) ∈
the carrier of G and k(j) 6= 1G by [10, (49)], (5). domx = I. For every
object i such that i ∈ domx holds x(i) = a(i) by [13, (11)], [17, (6)], [13,
(13)], [10, (49)]. x = a. �

(9) Let us consider a set I, a group G, a family H of groups of I, a function
x from I into G, and an element y of

∏
H. Suppose x = y and for every

object i such that i ∈ I holds H(i) is a subgroup of G. Then supportx =
support(y,H).
Proof: For every object i such that i ∈ I holds 1H(i) = 1G by [28, (44)].
For every object i, i ∈ support(y,H) iff i ∈ supportx. �

(10) Let us consider a set I, a group G, a family F of groups of I, and an
object a. Suppose a ∈ sumF and for every object i such that i ∈ I holds
F (i) is a subgroup of G. Then a is a finite-support function from I into
G.
Proof: Reconsider b = a as an element of

∏
F . For every object i such

that i ∈ I holds ΩF (i) ⊆ ΩG. dom b = I. For every object z such that
z ∈ rng b holds z ∈ ΩG by (3), (5), [28, (40)]. support(b, F ) = support b.
�
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(11) Let us consider a non empty set I, and a family F of groups of I. Then
support(1∏F , F ) is empty.
Proof: For every object i, i /∈ support(1∏F , F ) by [17, (6)]. �

(12) Let us consider a non empty set I, a group G, and a function a from I
into G. If a = I 7−→ 1G, then support a is empty.
Proof: For every object i, i /∈ support a by [24, (7)]. �

(13) Let us consider a non empty set I, a group G, and a family F of groups
of I. Suppose for every element i of I, F (i) is a subgroup of G. Then
1∏F = I 7−→ 1G.
Proof: dom1∏F = I. For every object j such that j ∈ I holds 1∏F (j) =
(I 7−→ 1G)(j) by [17, (6)], [24, (7)], [28, (44)]. �

(14) Let us consider a non empty set I, a family F of groups of I, a group
G, and a finite-support function x from I into G. Suppose supportx = ∅
and for every object i such that i ∈ I holds F (i) is a subgroup of G. Then
x = 1∏F .
Proof: For every set i such that i ∈ I there exists a group-like, non empty
multiplicative magma G such that G = F (i) and x(i) = 1G by [28, (44)].
�

(15) Let us consider a set I, a group G, and a finite-support function x from
I into G. If supportx = ∅, then

∏
x = 1G.

(16) Let us consider a non empty set I, a group G, and a finite-support
function a from I into G. If a = I 7−→ 1G, then

∏
a = 1G. The theorem

is a consequence of (12) and (15).

Let us consider a non empty set I, a family F of groups of I, an element x of∏
F , an element i of I, and an element g of F (i). Now we state the propositions:

(17) If x = 1∏F +· (i, g), then support(x, F ) ⊆ {i}.
Proof: For every object j such that j ∈ support(x, F ) holds j ∈ {i} by
[20, (1)]. �

(18) If x = 1∏F +· (i, g) and g 6= 1F (i), then support(x, F ) = {i}. The
theorem is a consequence of (17).

Let us consider a non empty set I, a group G, an element i of I, an element
g of G, and a function a from I into G. Now we state the propositions:

(19) If a = (I 7−→ 1G) +· (i, g), then support a ⊆ {i}.
Proof: For every object j such that j ∈ support a holds j ∈ {i} by [7,
(32)], [24, (7)]. �

(20) If a = (I 7−→ 1G) +· (i, g) and g 6= 1G, then support a = {i}. The
theorem is a consequence of (19).

Now we state the propositions:
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(21) Let us consider a non empty set I, a group G, a finite-support function
a from I into G, an element i of I, and an element g of G. If a = (I 7−→
1G)+· (i, g), then

∏
a = g. The theorem is a consequence of (20) and (16).

(22) Let us consider a non empty set I, a family F of groups of I, a function
x, an element i of I, and an element g of F (i). Suppose support(x, F ) is
finite. Then support(x+· (i, g), F ) is finite.
Proof: Reconsider y = x +· (i, g) as a function. For every object j such
that j ∈ support(y, F ) holds j ∈ support(x, F ) ∪ {i} by [7, (32)]. �

(23) Let us consider a non empty set I, a group G, a function a from I into
G, an element i of I, and an element g of G. Suppose support a is finite.
Then support(a+· (i, g)) is finite.
Proof: Reconsider b = a +· (i, g) as a function from I into G. For every
object j such that j ∈ support b holds j ∈ support a ∪ {i} by [7, (32)]. �

Let us consider a non empty set I, a family F of groups of I, a function x,
an element i of I, and an element g of F (i). Now we state the propositions:

(24) If x ∈
∏
F , then x+· (i, g) ∈

∏
F .

Proof: domx = I. Set y = x +· (i, g). For every object j such that
j ∈ dom(the support of F ) holds y(j) ∈ (the support of F )(j) by [7, (31)],
(4), [7, (32)], [2, (9)]. �

(25) If x ∈ sumF , then x+· (i, g) ∈ sumF .
Proof: Set y = x +· (i, g). y ∈

∏
F . For every object j such that j ∈

support(y, F ) holds j ∈ support(x, F ) ∪ {i} by [7, (32)]. �

Now we state the propositions:

(26) Let us consider a non empty set I, a group G, a finite-support function
a from I into G, an element i of I, and an element g of G. Then a+· (i, g)
is a finite-support function from I into G. The theorem is a consequence
of (23).

(27) Let us consider a non empty set I, a family F of groups of I, an object
i, and functions a, b. Suppose i ∈ I and dom a = I and b = a+· (i,1F (i)).
Then support(b, F ) = support(a, F ) \ {i}.
Proof: For every object j, j ∈ support(b, F ) iff j ∈ support(a, F ) \ {i}
by [15, (11), (48)], [7, (32)], [15, (50)]. �

(28) Let us consider a non empty set I, a group G, an object i, and functions
a, b from I into G. Suppose i ∈ support a and b = a +· (i,1G). Then
support b = support a \ {i}.
Proof: For every object j, j ∈ support b iff j ∈ support a \ {i} by [15,
(11), (48)], [7, (32)], [15, (50)]. �

(29) Let us consider a non empty set I, a family F of groups of I, an object
i, an element a of sumF , and a function b. Suppose i ∈ support(a, F ) and
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b = a+· (i,1F (i)). Then support(b, F ) = support(a, F ) − 1. The theorem
is a consequence of (3) and (27).

(30) Let us consider a non empty set I, a group G, an object i, a finite-
support function a from I into G, and a function b from I into G. Suppose
i ∈ support a and b = a +· (i,1G). Then support b = support a − 1. The
theorem is a consequence of (28).

Let us consider a non empty set I, a family F of groups of I, and elements
a, b of

∏
F .

Let us assume that support(a, F ) misses support(b, F ). Now we state the
propositions:

(31) a+·b� support(b, F ) = a · b.
Proof: Reconsider c = a+·b� support(b, F ) as a function. Reconsider d =
a · b as an element of

∏
F . dom a = I. dom b = I. dom d = I. For every

object i such that i ∈ I holds c(i) = d(i) by (5), [13, (11)], [17, (1)], [13,
(13)]. �

(32) a · b = b · a.
Proof: Reconsider c = a · b as an element of

∏
F . Reconsider d = b · a

as an element of
∏
F . dom c = I. dom d = I. For every object i such that

i ∈ I holds c(i) = d(i) by (5), [17, (1)]. �

(33) Let us consider a non empty set I, a family F of groups of I, and an
element i of I. Then ProjGroup(F, i) is a subgroup of sumF .
Proof: Set S = ProjGroup(F, i). Set G = sumF . For every object x such
that x ∈ ΩS holds x ∈ ΩG by [28, (40)], (17), (8). �

(34) Let us consider a non empty set I, families F , G of groups of I, and
functions x, y. Suppose for every object i such that i ∈ I there exists
a homomorphism h1 from F (i) to G(i) such that y(i) = h1(x(i)). Then
support(y,G) ⊆ support(x, F ).
Proof: For every object i such that i ∈ support(y,G) holds
i ∈ support(x, F ) by [30, (31)]. �

3. Product Map and Sum Map

Let F , G be non-empty, non empty functions and h be a non empty function.
Assume domF = domG = domh and for every object i such that i ∈ domh
holds h(i) is a function from F (i) into G(i). The functor ProductMap(F,G, h)
yielding a function from

∏
F into

∏
G is defined by

(Def. 5) for every element x of
∏
F and for every object i such that i ∈ domh

there exists a function h1 from F (i) into G(i) such that h1 = h(i) and
(it(x))(i) = h1(x(i)).
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Let us consider non-empty, non empty functions F , G and a non empty
function h.

Let us assume that domF = domG = domh and for every object i such
that i ∈ domh there exists a function h1 from F (i) into G(i) such that h1 = h(i)
and h1 is onto. Now we state the propositions:

(35) ProductMap(F,G, h) is onto.
Proof: Set p = ProductMap(F,G, h). For every object i such that i ∈
domh holds h(i) is a function from F (i) into G(i). For every object y such
that y ∈

∏
G there exists an object x such that x ∈

∏
F and y = p(x) by

[2, (9)], [11, (11)], [10, (2)]. �

(36) ProductMap(F,G, h) is one-to-one.
Proof: Set p = ProductMap(F,G, h). For every object i such that i ∈
domh holds h(i) is a function from F (i) into G(i). For every objects x1,
x2 such that x1, x2 ∈

∏
F and p(x1) = p(x2) holds x1 = x2 by [2, (9)],

[11, (19)], [10, (2)]. �

(37) ProductMap(F,G, h) is bijective. The theorem is a consequence of (35)
and (36).

Now we state the proposition:

(38) Let us consider a non empty set I, families F , G of groups of I, a non
empty function h, an element x of

∏
F , and an element y of

∏
G. Sup-

pose I = domh and y = (ProductMap(the support of F, the support of
G, h))(x) and for every object i such that i ∈ I holds h(i) is a homomor-
phism from F (i) to G(i). Let us consider an object i. Suppose i ∈ I. Then
there exists a homomorphism h1 from F (i) to G(i) such that

(i) h1 = h(i), and

(ii) y(i) = h1(x(i)).

The theorem is a consequence of (4).

Let I be a non empty set, F , G be families of groups of I, and h be a non
empty function. Assume I = domh and for every object i such that i ∈ I holds
h(i) is a homomorphism from F (i) to G(i). The functor ProductMap(F,G, h)
yielding a homomorphism from

∏
F to

∏
G is defined by the term

(Def. 6) ProductMap(the support of F, the support of G, h).

Now we state the propositions:

(39) Let us consider a non empty set I, families F , G of groups of I, a non
empty function h, an element x of

∏
F , and an element y of

∏
G. Suppose

I = domh and y = (ProductMap(F,G, h))(x) and for every object i such
that i ∈ I holds h(i) is a homomorphism from F (i) to G(i). Let us consider
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an object i. Suppose i ∈ I. Then there exists a homomorphism h1 from
F (i) to G(i) such that

(i) h1 = h(i), and

(ii) y(i) = h1(x(i)).

The theorem is a consequence of (38).

(40) Let us consider a non empty set I, families F , G of groups of I, and
a non empty function h. Suppose I = domh and for every object i such
that i ∈ I there exists a homomorphism h1 from F (i) to G(i) such that
h1 = h(i) and h1 is bijective. Then ProductMap(F,G, h) is bijective. The
theorem is a consequence of (4) and (37).

Let I be a non empty set, F be a family of groups of I, and i be an element of
I. Observe that the functor ProjGroup(F, i) yields a strict subgroup of sumF .
Let F , G be families of groups of I and h be a non empty function. Assume
I = domh and for every object i such that i ∈ I holds h(i) is a homomorphism
from F (i) toG(i). The functor SumMap(F,G, h) yielding a homomorphism from
sumF to sumG is defined by the term

(Def. 7) ProductMap(F,G, h)� sumF .

Now we state the propositions:

(41) Let us consider a non empty set I, families F , G of groups of I, and
a non empty function h. Suppose I = domh and for every object i such
that i ∈ I there exists a homomorphism h1 from F (i) to G(i) such that
h1 = h(i) and h1 is bijective. Then SumMap(F,G, h) is bijective.
Proof: For every object i such that i ∈ I holds h(i) is a homomorphism
from F (i) toG(i). Set p = ProductMap(F,G, h). Set s = SumMap(F,G, h).
p is bijective. For every object y such that y ∈ ΩsumG holds y ∈ rng s by
[28, (40)], [30, (61)], (39), [30, (62)]. �

(42) Let us consider a non empty set I, families F , G of groups of I, and a
non empty function h. Suppose I = domh and for every object i such that
i ∈ I holds h(i) is a homomorphism from F (i) to G(i). Let us consider an
element i of I, an element f of F (i), and a homomorphism h1 from F (i) to
G(i). Suppose h1 = h(i). Then (SumMap(F,G, h))((1ProdHom(F, i))(f)) =
(1ProdHom(G, i))(h1(f)).
Proof: Set x = (1ProdHom(F, i))(f). Set y = (SumMap(F,G, h))(x).
dom y = I. Consider h2 being a homomorphism from F (i) to G(i) such
that h2 = h(i) and y(i) = h2(x(i)). For every element j of I such that
j 6= i holds y(j) = 1G(j) by [20, (1)], (39), [30, (31)]. �
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4. Definition of Internal and External Direct Sum Decomposition

Now we state the proposition:

(43) Let us consider a non empty set I, a group G, and an object i. Suppose
i ∈ I. Then there exists a family F of groups of I and there exists a
homomorphism h from sumF to G such that h is bijective and F =
(I 7−→ {1}G)+·({i} 7−→ G) and for every object j such that j ∈ I holds
1F (j) = 1G and for every element x of sumF , h(x) = x(i) and for every
element x of sumF , there exists a finite subset J of I and there exists a
many sorted set a indexed by J such that J ⊆ {i} and J = support(x, F )
and (support(x, F ) = ∅ or support(x, F ) = {i}) and x = 1∏F+·a and for
every object j such that j ∈ I \ J holds x(j) = 1F (j) and for every object
j such that j ∈ J holds x(j) = a(j).
Proof: Set v = I 7−→ {1}G. Set w = {i} 7−→ G. Set F = v+·w. For every
object j such that j ∈ I \ {i} holds F (j) = {1}G by [24, (7)]. For every
object j such that j ∈ I holds F (j) is a group. For every object j such that
j ∈ I holds 1F (j) = 1G by [28, (44)]. Define P[element of sumF, element
of G] ≡ $2 = $1(i). For every element x of sumF , there exists an element
y of G such that P[x, y] by [28, (40)], (5), [24, (13), (7)]. Consider h being
a function from sumF into G such that for every element x of sumF ,
P[x, h(x)] from [11, Sch. 3]. For every object y such that y ∈ ΩG there
exists an object x such that x ∈ ΩsumF and y = h(x) by [24, (7)], (24),
(17), (8). For every element x of sumF , support(x, F ) ⊆ {i} by [28, (40)],
(5), [28, (44)]. For every objects x1, x2 such that x1, x2 ∈ ΩsumF and
h(x1) = h(x2) holds x1 = x2 by [28, (40)], (3), (7), [10, (2)]. For every
elements x, y of sumF , h(x · y) = h(x) · h(y) by [28, (40)], (5), [28, (43)],
[17, (1)]. For every element x of sumF , there exists a finite subset J of I
and there exists a many sorted set a indexed by J such that J ⊆ {i} and
J = support(x, F ) and (support(x, F ) = ∅ or support(x, F ) = {i}) and
x = 1∏F+·a and for every object j such that j ∈ I \J holds x(j) = 1F (j)
and for every object j such that j ∈ J holds x(j) = a(j) by [15, (31)], (7).
�

Let I be a non empty set and G be a group. A direct sum components of G
and I is a family of groups of I and is defined by

(Def. 8) there exists a homomorphism h from sum it to G such that h is bijective.

Let F be a direct sum components of G and I. We say that F is internal if
and only if

(Def. 9) for every element i of I, F (i) is a subgroup of G and there exists a
homomorphism h from sumF to G such that h is bijective and for every
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finite-support function x from I into G such that x ∈ sumF holds h(x) =∏
x.

One can verify that there exists a direct sum components of G and I which
is internal.

5. Equivalent Expression of Internal Direct Sum Decomposition

Now we state the propositions:

(44) Let us consider a group G, and a non empty subset A of G. Suppose for
every elements x, y of G such that x, y ∈ A holds x · y = y ·x. Then gr(A)
is commutative.
Proof: For every elements x, y of G and for every elements i, j of Z such
that x, y ∈ A holds xi · yj = yj · xi by [27, (39)]. For every element y of
G and for every element j of Z such that y ∈ A for every finite sequence
F of elements of G for every finite sequence I of elements of Z such that
lenF = len I and rngF ⊆ A holds

∏
F I · yj = yj ·

∏
F I by [29, (21), (8)],

[32, (70)], [6, (4)]. For every elements x, g of G and for every element i
of Z such that x ∈ gr(A) and g ∈ A holds x · gi = gi · x by [29, (28)].
For every element x of G such that x ∈ gr(A) for every finite sequence
F of elements of G for every finite sequence I of elements of Z such that
lenF = len I and rngF ⊆ A holds

∏
F I · x = x ·

∏
F I by [29, (21), (8)],

[32, (70)], [6, (4)]. For every elements x, y of gr(A), x · y = y · x by [28,
(41)], [29, (28)], [28, (43)]. �

(45) Let us consider a group G, a subgroup H of G, a finite sequence a of
elements of G, and a finite sequence b of elements of H. If a = b, then∏
a =
∏
b.

Proof: Define P[natural number] ≡ for every finite sequence a of elements
of G for every finite sequence b of elements of H such that len a = $1 and
a = b holds

∏
a =

∏
b. P[0] by [29, (8)], [28, (44)]. For every natural

number k such that P[k] holds P[k + 1] by [6, (4), (17)], [26, (55)], [29,
(6)]. For every natural number k, P[k] from [4, Sch. 2]. �

(46) Let us consider a group G, an element h of G, and a finite sequence F of
elements of G. Suppose for every natural number k such that k ∈ domF
holds h · Fk = Fk · h. Then h ·

∏
F =

∏
F · h.

Proof: Define P[natural number] ≡ for every finite sequence F of ele-
ments of G such that lenF = $1 and for every natural number i such that
i ∈ domF holds h · Fi = Fi · h holds h ·

∏
F =

∏
F · h. P[0] by [29, (8)].

For every natural number k such that P[k] holds P[k+ 1] by [6, (4), (17),
(5)], [14, (80)]. For every natural number i, P[i] from [4, Sch. 2]. �
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(47) Let us consider a group G, and finite sequences F , F1, F2 of elements
of G. Suppose lenF = lenF1 and lenF = lenF2 and for every natural
numbers i, j such that i, j ∈ domF and i 6= j holds F1i ·F2j = F2j ·F1i and
for every natural number k such that k ∈ domF holds F (k) = F1k · F2k.
Then

∏
F =

∏
F1 ·
∏
F2.

Proof: Define P[natural number] ≡ for every finite sequences F , F1, F2 of
elements of G such that lenF = $1 and lenF = lenF1 and lenF = lenF2
and for every natural numbers i, j such that i, j ∈ domF and i 6= j holds
F1i · F2j = F2j · F1i and for every natural number k such that k ∈ domF
holds F (k) = F1k · F2k holds

∏
F =

∏
F1 ·
∏
F2. P[0] by [29, (8)]. For

every natural number k such that P[k] holds P[k+1] by [6, (4), (17), (5)],
[14, (80)]. For every natural number i, P[i] from [4, Sch. 2]. �

(48) Let us consider a group G, and a finite sequence a of elements of G.
Suppose for every object i such that i ∈ dom a holds a(i) = 1G. Then∏
a = 1G.
Proof: Set n = len a. a = n 7→ 1G by [24, (13)], [9, (57)], [10, (2)]. �

(49) Let us consider a finite set I, a group G, and a (the carrier of G)-valued,
total, I-defined function a. Suppose for every object i such that i ∈ I
holds a(i) = 1G. Then

∏
a = 1G.

Proof: Set c1 = CFS(I). Set a2 = a · c1. For every object i such that
i ∈ dom a2 holds a2(i) = 1G by [32, (27)], [10, (3), (12)]. �

(50) Let us consider a finite set A, a non empty set B, and a B-valued, total,
A-defined function f . Then f · CFS(A) is a finite sequence of elements
of B.

Let us consider a non empty set I, a group G, a finite-support function a
from I into G, and a finite subset W of I. Now we state the propositions:

(51) If support a ⊆W and for every elements i, j of I, a(i) ·a(j) = a(j) ·a(i),
then

∏
a =
∏

(a�W ).
Proof: Reconsider r = rng a as a non empty subset of G. For every
elements x, y of G such that x, y ∈ r holds x · y = y · x by [11, (113)]. �

(52) Suppose support a ⊆ W . Then there exists a finite-support function a1
from W into G such that

(i) a1 = a�W , and

(ii) support a = support a1, and

(iii)
∏
a =
∏
a1.

(53) Let us consider a non empty set I, a group G, a family F of groups of
I, elements s1, s2 of sumF , and finite-support functions x, y, x3 from I
into G. Suppose for every element i of I, F (i) is a subgroup of G and for
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every elements i, j of I and for every elements g1, g2 of G such that i 6= j
and g1 ∈ F (i) and g2 ∈ F (j) holds g1 · g2 = g2 · g1 and s1 = x and s2 = y
and s1 · s2 = x3. Then

∏
x3 =

∏
x ·
∏
y.

Proof: Reconsider W = supportx∪ support y as a finite subset of I. For
every object i such that i ∈ supportx3 holds i ∈W by (5), [28, (40), (43)],
[17, (1)]. For every function a from I into G and for every elements i, j of
I such that a ∈

∏
F holds a(i) · a(j) = a(j) · a(i).

∏
x =
∏

(x�W ).
∏
y =∏

(y�W ).
∏
x3 =

∏
(x3�W ). Set c1 = CFS(W ). Reconsider w1 = (x�W )·c1

as a finite sequence of elements of G. Reconsider w3 = (y�W ) ·c1 as a finite
sequence of elements of G. Reconsider w2 = (x3�W )·c1 as a finite sequence
of elements of G. For every natural numbers i, j such that i, j ∈ domw2
and i 6= j holds w1i ·w3j = w3j ·w1i by [10, (3), (12), (49)], (5). For every
natural number i such that i ∈ domw2 holds w2(i) = w1i ·w3i by [10, (3),
(12), (49)], (5).

∏
w2 =

∏
w1 ·
∏
w3. �

(54) Let us consider a non empty set I, a group G, and a family F of groups
of I. Then F is an internal direct sum components of G and I if and only
if for every element i of I, F (i) is a subgroup of G and for every elements
i, j of I and for every elements g1, g2 of G such that i 6= j and g1 ∈ F (i)
and g2 ∈ F (j) holds g1 · g2 = g2 · g1 and for every element y of G, there
exists a finite-support function x from I into G such that x ∈ sumF and
y =
∏
x and for every finite-support functions x1, x2 from I into G such

that x1, x2 ∈ sumF and
∏
x1 =

∏
x2 holds x1 = x2.

Proof: Define P[object, object] ≡ there exists a finite-support function
x from I into G such that $1 = x and $2 =

∏
x. For every element x of

sumF , there exists an element y of G such that P[x, y]. Consider h being
a function from sumF into G such that for every element x of sumF ,
P[x, h(x)] from [11, Sch. 3]. For every object y such that y ∈ ΩG there
exists an object x such that x ∈ ΩsumF and y = h(x). For every objects
x1, x2 such that x1, x2 ∈ ΩsumF and h(x1) = h(x2) holds x1 = x2. For
every finite-support function a from I into G such that a ∈ sumF holds
h(a) =

∏
a. For every elements x, y of sumF , h(x · y) = h(x) · h(y). �
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