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Summary. The main purpose of this article is to introduce the categorical
concept of pullback in Mizar. In the first part of this article we redefine hom-
sets, monomorphisms, epimorpshisms and isomorphisms [7] within a free-object
category [1] and it is shown there that ordinal numbers can be considered as
categories. Then the pullback is introduced in terms of its universal property and
the Pullback Lemma is formalized [15]. In the last part of the article we formalize
the pullback of functors [14] and it is also shown that it is not possible to write
an equivalent definition in the context of the previous Mizar formalization of
category theory [8].
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1. Preliminaries

One can verify that every set which is ordinal is also non pair.
Let C be an empty category structure. Let us note that Mor C is empty.
Let C be a non empty category structure. Note that Mor C is non empty.
Let C be an empty category structure with identities. Let us note that Ob C

is empty.
Let C be a non empty category structure with identities. Observe that Ob C

is non empty.
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Let C be category structure with identities and a be an object of C . One
can check that id-a is identity.

Now we state the propositions:

(1) Let us consider a category structure C , and a morphism f of C . Suppose
C is not empty. Then f ∈ the carrier of C .

(2) Let us consider category structure C with identities, and an object a of
C . Suppose C is not empty. Then a ∈ the carrier of C .

(3) Let us consider a composable category structure C , and morphisms f1,
f2, f3 of C . Suppose f1 . f2 and f2 . f3 and f2 is identity. Then f1 . f3.

(4) Let us consider a composable category structure C with identities, and
morphisms f1, f2 of C . Suppose f1 . f2. Then

(i) dom(f1 ◦ f2) = dom f2, and

(ii) cod(f1 ◦ f2) = cod f1.

(5) Let us consider a non empty, composable category structure C with
identities, and morphisms f1, f2 of C . Then f1 .f2 if and only if dom f1 =
cod f2.

(6) Let us consider a composable category structure C with identities, and
a morphism f of C . If f is identity, then dom f = f and cod f = f .

(7) Let us consider a composable category structure C with identities, and
morphisms f1, f2 of C . Suppose f1.f2 and f1 is identity and f2 is identity.
Then f1 = f2.

Let us consider a non empty, composable category structure C with identities
and morphisms f1, f2 of C . Now we state the propositions:

(8) If dom f1 = f2, then f1 . f2 and f1 ◦ f2 = f1.

(9) If f1 = cod f2, then f1 . f2 and f1 ◦ f2 = f2.

Now we state the propositions:

(10) Let us consider categories C1, C2, C3, C4, a functor F from C1 to C2,
a functor G from C2 to C3, and a functor H from C3 to C4. Suppose F
is covariant and G is covariant and H is covariant. Then H ◦ (G ◦ F) =
(H ◦ G) ◦ F .

(11) Let us consider categories C , D , and a functor F from C to D . Suppose
F is covariant. Then

(i) F ◦ idC = F , and

(ii) idD ◦ F = F .

(12) Let us consider composable category structures C , D with identities.
Then C ∼= D if and only if there exists a functor F from C to D such that
F is covariant and bijective. The theorem is a consequence of (5).



Categorical pullbacks 3

(13) Let us consider empty category structures C , D with identities. Then
C ∼= D .

Let us consider category structures C , D with identities. Now we state the
propositions:

(14) Suppose C ∼= D . Then

(i) Mor C = Mor D , and

(ii) Ob C = Ob D .

(15) If C ∼= D and C is empty, then D is empty. The theorem is a consequence
of (14).

2. Hom-sets

Let C be a category structure and a, b be objects of C . The functor hom(a, b)
yielding a subset of Mor C is defined by the term

(Def. 1) {f , where f is a morphism of C : there exist morphisms f1, f2 of C such
that a = f1 and b = f2 and f . f1 and f2 . f}.

Let C be a non empty, composable category structure with identities. Ob-
serve that the functor hom(a, b) yields a subset of Mor C and is defined by the
term

(Def. 2) {f , where f is a morphism of C : dom f = a and cod f = b}.

Let C be a category structure. Assume hom(a, b) 6= ∅.
A morphism from a to b is a morphism of C and is defined by

(Def. 3) it ∈ hom(a, b).

Let C be category structure with identities and a be an object of C . Assume
hom(a, a) 6= ∅. Observe that the functor id-a yields a morphism from a to a.
Let C be a non empty category structure with identities. Note that hom(a, a)
is non empty.

Let C be a composable category structure with identities, a, b, c be objects
of C , f be a morphism from a to b, and g be a morphism from b to c. Assume
hom(a, b) 6= ∅ and hom(b, c) 6= ∅. The functor g · f yielding a morphism from a

to c is defined by the term

(Def. 4) g ◦ f .

Now we state the propositions:

(16) Let us consider a category structure C , objects a, b of C , and a morphism
f from a to b. Suppose hom(a, b) 6= ∅. Then there exist morphisms f1, f2
of C such that

(i) a = f1, and
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(ii) b = f2, and

(iii) f . f1, and

(iv) f2 . f .

(17) Let us consider a composable category structure C with identities, ob-
jects a, b, c of C , a morphism f1 from a to b, and a morphism f2 from b

to c. Suppose hom(a, b) 6= ∅ and hom(b, c) 6= ∅. Then f2 . f1. The theorem
is a consequence of (16) and (3).

(18) Let us consider a composable category structure C with identities, ob-
jects a, b of C , and a morphism f from a to b. Suppose hom(a, b) 6= ∅.
Then

(i) f · id-a = f , and

(ii) id-b · f = f .

The theorem is a consequence of (17).

(19) Let us consider a non empty, composable category structure C with
identities, and a morphism f of C . Then f ∈ hom(dom f, cod f).

(20) Let us consider a non empty, composable category structure C with
identities, objects a, b of C , and a morphism f of C . Then f ∈ hom(a, b)
if and only if dom f = a and cod f = b.

(21) Let us consider a non empty, composable category structure C with
identities, and an object a of C . Then a ∈ hom(a, a). The theorem is a
consequence of (6).

(22) Let us consider a composable category structure C with identities, and
objects a, b, c of C . Suppose hom(a, b) 6= ∅ and hom(b, c) 6= ∅. Then
hom(a, c) 6= ∅. The theorem is a consequence of (16) and (3).

(23) Let us consider a category C , objects a, b, c, d of C , a morphism f1
from a to b, a morphism f2 from b to c, and a morphism f3 from c to
d. Suppose hom(a, b) 6= ∅ and hom(b, c) 6= ∅ and hom(c, d) 6= ∅. Then
f3 · (f2 · f1) = (f3 · f2) · f1. The theorem is a consequence of (22) and (17).

(24) Let us consider a composable category structure C with identities, ob-
jects a, b, c of C , a morphism f1 from a to b, and a morphism f2 from b

to c. Suppose hom(a, b) 6= ∅ and hom(b, c) 6= ∅. Then

(i) if f1 is identity, then f2 · f1 = f2, and

(ii) if f2 is identity, then f2 · f1 = f1.

Proof: f2 . f1. If f1 is identity, then f2 · f1 = f2 by [17, (22), (23)]. �
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3. Monomorphisms, Epimorphisms and Isomorphisms

Let C be a composable category structure with identities, a, b be objects of
C , and f be a morphism from a to b. We say that f is monomorphic if and only
if

(Def. 5) hom(a, b) 6= ∅ and for every object c of C such that hom(c, a) 6= ∅ for
every morphisms g1, g2 from c to a such that f · g1 = f · g2 holds g1 = g2.

We say that f is epimorphic if and only if

(Def. 6) hom(a, b) 6= ∅ and for every object c of C such that hom(b, c) 6= ∅ for
every morphisms g1, g2 from b to c such that g1 · f = g2 · f holds g1 = g2.

Now we state the proposition:

(25) Let us consider a composable category structure C with identities, ob-
jects a, b of C , and a morphism f1 from a to b. Suppose hom(a, b) 6= ∅ and
f1 is identity. Then f1 is monomorphic. The theorem is a consequence of
(24).

Let us consider a category C , objects a, b, c of C , a morphism f1 from a to
b, and a morphism f2 from b to c. Now we state the propositions:

(26) If f1 is monomorphic and f2 is monomorphic, then f2·f1 is monomorphic.
The theorem is a consequence of (22) and (23).

(27) If f2 · f1 is monomorphic and hom(a, b) 6= ∅ and hom(b, c) 6= ∅, then f1
is monomorphic. The theorem is a consequence of (23).

Let C be a composable category structure with identities, a, b be objects of
C , and f be a morphism from a to b. We say that f is a section if and only if

(Def. 7) hom(a, b) 6= ∅ and hom(b, a) 6= ∅ and there exists a morphism g from b

to a such that g · f = id-a.

We say that f is a retraction if and only if

(Def. 8) hom(a, b) 6= ∅ and hom(b, a) 6= ∅ and there exists a morphism g from b

to a such that f · g = id-b.

Now we state the propositions:

(28) Let us consider a category C , objects a, b of C , and a morphism f

from a to b. If f is a section, then f is monomorphic. The theorem is a
consequence of (23) and (18).

(29) Let us consider a composable category structure C with identities, ob-
jects a, b of C , and a morphism f1 from a to b. Suppose hom(a, b) 6= ∅
and f1 is identity. Then f1 is epimorphic. The theorem is a consequence
of (24).

Let us consider a category C , objects a, b, c of C , a morphism f1 from a to
b, and a morphism f2 from b to c. Now we state the propositions:
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(30) If f1 is epimorphic and f2 is epimorphic, then f2 · f1 is epimorphic. The
theorem is a consequence of (22) and (23).

(31) If f2 · f1 is epimorphic and hom(a, b) 6= ∅ and hom(b, c) 6= ∅, then f2 is
epimorphic. The theorem is a consequence of (23).

(32) Let us consider a category C , objects a, b of C , and a morphism f

from a to b. If f is a retraction, then f is epimorphic. The theorem is a
consequence of (23) and (18).

Let C be a composable category structure with identities, a, b be objects of
C , and f be a morphism from a to b. We say that f is isomorphism if and only
if

(Def. 9) hom(a, b) 6= ∅ and hom(b, a) 6= ∅ and there exists a morphism g from b

to a such that g · f = id-a and f · g = id-b.

We say that a and b are isomorphic if and only if

(Def. 10) there exists a morphism f from a to b such that f is isomorphism.

Note that a and b are isomorphic if and only if the condition (Def. 11) is
satisfied.

(Def. 11) hom(a, b) 6= ∅ and hom(b, a) 6= ∅ and there exists a morphism f from a

to b and there exists a morphism g from b to a such that g · f = id-a and
f · g = id-b.

Now we state the proposition:

(33) Let us consider a category C , objects a, b of C , and a morphism f from
a to b. If f is isomorphism, then f is monomorphic and epimorphic. The
theorem is a consequence of (28) and (32).

4. Ordinal Numbers as Categories

Let C be a category structure. We say that C is a preorder if and only if

(Def. 12) for every objects a, b of C and for every morphisms f1, f2 of C such that
f1, f2 ∈ hom(a, b) holds f1 = f2.

Observe that every category structure which is empty is also a preorder and
there exists a category structure which is strict and preorder and every compo-
sable category structure with identities which is a preorder is also associative.

Let C be category structure with identities. The functor RelOb C yielding
a binary relation on Ob C is defined by the term

(Def. 13) {〈〈a, b〉〉, where a, b are objects of C : there exists a morphism f of C
such that f ∈ hom(a, b)}.

Let C be an empty category structure with identities. Let us note that
RelOb C is empty.
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Now we state the propositions:

(34) Let us consider a composable category structure C with identities. Then

(i) dom RelOb C = Ob C , and

(ii) rng RelOb C = Ob C .

The theorem is a consequence of (6) and (19).

(35) Let us consider composable category structures C1, C2 with identities.
Suppose C1 ∼= C2. Then RelOb C1 and RelOb C2 are isomorphic. The
theorem is a consequence of (15), (34), and (20).

Let C be a non empty, composable category structure with identities. One
can verify that RelOb C is non empty.

Now we state the propositions:

(36) Let us consider preorder, composable category structure C with identi-
ties. Suppose C is not empty. Then there exists a function F from C into
RelOb C such that

(i) F is bijective, and

(ii) for every morphism f of C , F(f) = 〈〈dom f, cod f〉〉.
Proof: Reconsider C1 = C as a non empty, composable category struc-
ture with identities. Define P[object, object] ≡ for every morphism f of
C1 such that $1 = f holds $2 = 〈〈dom f, cod f〉〉. For every element x of
the carrier of C1, there exists an element y of RelOb C1 such that P[x, y].
Consider F being a function from the carrier of C1 into RelOb C1 such
that for every element x of the carrier of C1, P[x,F(x)] from [10, Sch. 3].
For every object y such that y ∈ RelOb C holds y ∈ rngF by (20), [9, (3)].
For every objects x1, x2 such that x1, x2 ∈ domF and F(x1) = F(x2)
holds x1 = x2. �

(37) Let us consider an ordinal number O. Then there exists a strict, a pre-
order category C such that

(i) Ob C = O, and

(ii) for every objects o1, o2 of C such that o1 ∈ o2 holds hom(o1, o2) =
{〈〈o1, o2〉〉}, and

(iii) RelOb C = ⊆O, and

(iv) Mor C = O ∪ {〈〈o1, o2〉〉, where o1, o2 are elements of O : o1 ∈ o2}.
The theorem is a consequence of (6), (20), and (21).

Let O be an ordinal number and C be a composable category structure with
identities. We say that C is O-ordered if and only if

(Def. 14) RelOb C and ⊆O are isomorphic.
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Let O be a non empty, ordinal number. Let us observe that every composable
category structure with identities which is O-ordered is also non empty.

Let O be an ordinal number. Note that there exists a composable category
structure with identities which is strict, O-ordered, and preorder.

Let O be an empty, ordinal number. Let us observe that every composable
category structure with identities which is O-ordered is also empty.

Now we state the proposition:

(38) Let us consider ordinal numbers O1, O2, a O1-ordered, a preorder cate-
gory C1, and a O2-ordered, a preorder category C2. Then O1 = O2 if and
only if C1 ∼= C2.
Proof: If O1 = O2, then C1 ∼= C2 by (13), [4, (39), (41)], (36). If C1 ∼= C2,
then O1 = O2 by (35), [4, (42), (40)], [5, (10)]. �

Let O be an ordinal number. The functor O yielding a strict, O-ordered, a
preorder category is defined by the term

(Def. 15) the strict, O-ordered, a preorder category.

Now we state the proposition:

(39) There exists a morphism f of 2 such that

(i) f is not identity, and

(ii) Ob2 = {dom f, cod f}, and

(iii) Mor2 = {dom f, cod f, f}, and

(iv) dom f , cod f , f are mutually different.

Proof: Consider C being a strict, a preorder category such that Ob C = 2
and for every objects o1, o2 of C such that o1 ∈ o2 holds hom(o1, o2) =
{〈〈o1, o2〉〉} and RelOb C = ⊆2 and Mor C = 2∪{〈〈o1, o2〉〉, where o1, o2 are
elements of 2 : o1 ∈ o2}. C ∼= 2. Consider F being a functor from C to 2,
G being a functor from 2 to C such that F is covariant and G is covariant
and G ◦ F = idC and F ◦ G = id2. Reconsider g = 〈〈0, 1〉〉 as a morphism
of C . g is not identity by [17, (22)]. Set f = F(g). f is not identity by [9,
(18)], [17, (34)]. Ob2 = 2. Consider x, y being objects such that x 6= y

and Ob2 = {x, y}. dom f 6= cod f . For every object x, x ∈ Mor2 iff
x ∈ {dom f, cod f, f} by [17, (22)], [9, (18)], [17, (34)], [2, (50), (49)]. �

Let C be a non empty category and f be a morphism of C . The functorMf
yielding a covariant functor from 2 to C is defined by

(Def. 16) for every morphism g of 2 such that g is not identity holds it(g) = f .

Now we state the proposition:

(40) Let us consider a non empty category C , and a morphism f of C . Sup-
pose f is identity. Let us consider a morphism g of 2. Then (Mf)(g) = f .
The theorem is a consequence of (39) and (6).
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5. Pullbacks

Let C be a category, c, c1, c2, d be objects of C , and f1 be a morphism from
c1 to c. Assume hom(c1, c) 6= ∅. Let f2 be a morphism from c2 to c. Assume
hom(c2, c) 6= ∅. Let p1 be a morphism from d to c1. Assume hom(d, c1) 6=
∅. Let p2 be a morphism from d to c2. Assume hom(d, c2) 6= ∅. We say that
〈d, p1, p2〉 is a pullback of f1, f2 if and only if

(Def. 17) f1 · p1 = f2 · p2 and for every object d1 of C and for every morphism
g1 from d1 to c1 and for every morphism g2 from d1 to c2 such that
hom(d1, c1) 6= ∅ and hom(d1, c2) 6= ∅ and f1 ·g1 = f2 ·g2 holds hom(d1, d) 6=
∅ and there exists a morphism h from d1 to d such that p1 · h = g1 and
p2 · h = g2 and for every morphism h1 from d1 to d such that p1 · h1 = g1
and p2 · h1 = g2 holds h = h1.

Now we state the proposition:

(41) Let us consider a category C , objects c, c1, c2, d, e of C , a morphism
f1 from c1 to c, a morphism f2 from c2 to c, a morphism p1 from d to
c1, a morphism p2 from d to c2, a morphism q1 from e to c1, and a mor-
phism q2 from e to c2. Suppose hom(c1, c) 6= ∅ and hom(c2, c) 6= ∅ and
hom(d, c1) 6= ∅ and hom(d, c2) 6= ∅ and hom(e, c1) 6= ∅ and hom(e, c2) 6= ∅
and 〈d, p1, p2〉 is a pullback of f1, f2 and 〈e, q1, q2〉 is a pullback of f1, f2.
Then d and e are isomorphic. The theorem is a consequence of (23) and
(18).

Let us consider a category C , objects c, c1, c2, d of C , a morphism f1 from c1
to c, a morphism f2 from c2 to c, a morphism p1 from d to c1, and a morphism
p2 from d to c2. Now we state the propositions:

(42) Suppose hom(c1, c) 6= ∅ and hom(c2, c) 6= ∅ and hom(d, c1) 6= ∅ and
hom(d, c2) 6= ∅ and 〈d, p1, p2〉 is a pullback of f1, f2.
Then 〈d, p2, p1〉 is a pullback of f2, f1.

(43) Suppose hom(c1, c) 6= ∅ and hom(c2, c) 6= ∅ and hom(d, c1) 6= ∅ and
hom(d, c2) 6= ∅ and 〈d, p1, p2〉 is a pullback of f1, f2 and f1 is monomor-
phic. Then p2 is monomorphic. The theorem is a consequence of (22) and
(23).

(44) Suppose hom(c1, c) 6= ∅ and hom(c2, c) 6= ∅ and hom(d, c1) 6= ∅ and
hom(d, c2) 6= ∅ and 〈d, p1, p2〉 is a pullback of f1, f2 and f1 is isomorphism.
Then p2 is isomorphism. The theorem is a consequence of (22), (23), and
(18).

(45) Let us consider a category C , objects c1, c1, c2, c3, c4, c5, c6 of C , a
morphism f1 from c1 to c2, a morphism f2 from c2 to c3, a morphism
f3 from c1 to c4, a morphism f4 from c2 to c5, a morphism f5 from
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c3 to c6, a morphism f6 from c4 to c5, and a morphism f7 from c5 to
c6. Suppose hom(c1, c2) 6= ∅ and hom(c2, c3) 6= ∅ and hom(c1, c4) 6=
∅ and hom(c2, c5) 6= ∅ and hom(c3, c6) 6= ∅ and hom(c4, c5) 6= ∅ and
hom(c5, c6) 6= ∅ and 〈c2, f2, f4〉 is a pullback of f5, f7. Then 〈c1, f1, f3〉
is a pullback of f4, f6 if and only if 〈c1, f2 · f1, f3〉 is a pullback of f5, f7 ·f6
and f4 · f1 = f6 · f3. The theorem is a consequence of (22) and (23).

6. Pullbacks of Functors

Let C , D be categories and F be a functor from C to D . We say that F is
monomorphic if and only if

(Def. 18) F is covariant and for every category B and for every functors G1, G2
from B to C such that G1 is covariant and G2 is covariant and F ◦ G1 =
F ◦ G2 holds G1 = G2.

We say that F is isomorphism if and only if

(Def. 19) F is covariant and there exists a functor G from D to C such that G is
covariant and G ◦ F = idC and F ◦ G = idD .

Let C , C1, C2, D be categories and F1 be a functor from C1 to C . Assume F1
is covariant. Let F2 be a functor from C2 to C . Assume F2 is covariant. Let P1
be a functor from D to C1. Assume P1 is covariant. Let P2 be a functor from D
to C2. Assume P2 is covariant. We say that 〈D ,P1,P2〉 is a pullback of F1,F2
if and only if

(Def. 20) F1◦P1 = F2◦P2 and for every category D1 and for every functor G1 from
D1 to C1 and for every functor G2 from D1 to C2 such that G1 is covariant
and G2 is covariant and F1 ◦G1 = F2 ◦G2 there exists a functor H from D1
to D such that H is covariant and P1 ◦ H = G1 and P2 ◦ H = G2 and for
every functor H1 from D1 to D such that H1 is covariant and P1◦H1 = G1
and P2 ◦ H1 = G2 holds H = H1.

Now we state the proposition:

(46) Let us consider categories C , C1, C2, D , E , a functor F1 from C1 to C , a
functor F2 from C2 to C , a functor P1 from D to C1, a functor P2 from D to
C2, a functor Q1 from E to C1, and a functor Q2 from E to C2. Suppose F1
is covariant and F2 is covariant and P1 is covariant and P2 is covariant and
Q1 is covariant and Q2 is covariant and 〈D ,P1,P2〉 is a pullback of F1,F2
and 〈E ,Q1,Q2〉 is a pullback of F1,F2. Then D ∼= E .
Proof: There exists a functor F8 from D to E and there exists a functor G3
from E to D such that F8 is covariant and G3 is covariant and G3◦F8 = idD

and F8 ◦ G3 = idE by (10), (11), [17, (35)]. �
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Let us consider categories C , C1, C2, D , a functor F1 from C1 to C , a functor
F2 from C2 to C , a functor P1 from D to C1, and a functor P2 from D to C2.
Now we state the propositions:

(47) Suppose F1 is covariant and F2 is covariant and P1 is covariant and P2
is covariant and 〈D ,P1,P2〉 is a pullback of F1,F2.
Then 〈D ,P2,P1〉 is a pullback of F2,F1.

(48) Suppose F1 is covariant and F2 is covariant and P1 is covariant and P2 is
covariant and 〈D ,P1,P2〉 is a pullback of F1,F2 and F1 is monomorphic.
Then P2 is monomorphic.
Proof: For every category D1 and for every functors Q1, Q2 from D1 to
D such that Q1 is covariant and Q2 is covariant and P2 ◦ Q1 = P2 ◦ Q2
holds Q1 = Q2 by [17, (35)], (10). �

(49) Suppose F1 is covariant and F2 is covariant and P1 is covariant and P2 is
covariant and 〈D ,P1,P2〉 is a pullback of F1,F2 and F1 is isomorphism.
Then P2 is isomorphism. The theorem is a consequence of (10) and (11).

(50) Let us consider categories C1, C2, C3, C4, C5, C6, a functor F1 from C1
to C2, a functor F2 from C2 to C3, a functor F3 from C1 to C4, a functor
F4 from C2 to C5, a functor F5 from C3 to C6, a functor F6 from C4 to
C5, and a functor F7 from C5 to C6. Suppose F1 is covariant and F2 is
covariant and F3 is covariant and F4 is covariant and F5 is covariant and
F6 is covariant and F7 is covariant and 〈C2,F2,F4〉 is a pullback of F5,F7.
Then 〈C1,F1,F3〉 is a pullback of F4,F6 if and only if 〈C1,F2 ◦ F1,F3〉
is a pullback of F5,F7 ◦ F6 and F4 ◦ F1 = F6 ◦ F3.
Proof: For every category D1 and for every functor G1 from D1 to C2
and for every functor G2 from D1 to C4 such that G1 is covariant and G2
is covariant and F4 ◦ G1 = F6 ◦ G2 there exists a functor H from D1 to C1
such that H is covariant and F1 ◦ H = G1 and F3 ◦ H = G2 and for every
functor H1 from D1 to C1 such that H1 is covariant and F1 ◦H1 = G1 and
F3 ◦ H1 = G2 holds H = H1 by [17, (35)], (10). �

(51) Let us consider categories C , C1, C2, a functor F1 from C1 to C , and
a functor F2 from C2 to C . Suppose F1 is covariant and F2 is cova-
riant. Then there exists a strict category D and there exists a func-
tor P1 from D to C1 and there exists a functor P2 from D to C2 such
that the carrier of D = {〈〈f1, f2〉〉, where f1 is a morphism of C1, f2 is
a morphism of C2 : f1 ∈ the carrier of C1 and f2 ∈ the carrier of C2 and
F1(f1) = F2(f2)} and the composition of D = {〈〈〈〈f1, f2〉〉, f3〉〉, where
f1, f2, f3 are morphisms of D : f1, f2, f3 ∈ the carrier of D and for every
morphisms f11, f12, f13 of C1 and for every morphisms f21, f22, f23 of C2
such that f1 = 〈〈f11, f21〉〉 and f2 = 〈〈f12, f22〉〉 and f3 = 〈〈f13, f23〉〉 holds
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f11 . f12 and f21 . f22 and f13 = f11 ◦ f12 and f23 = f21 ◦ f22} and P1 is
covariant and P2 is covariant and 〈D ,P1,P2〉 is a pullback of F1,F2.
Proof: Reconsider c7 = {〈〈f1, f2〉〉, where f1 is a morphism of C1, f2 is
a morphism of C2 : f1 ∈ the carrier of C1 and f2 ∈ the carrier of C2 and
F1(f1) = F2(f2)} as a set. Set c8 = {〈〈〈〈x1, x2〉〉, x3〉〉, where x1, x2, x3 are
elements of c7 : x1, x2, x3 ∈ c7 and for every morphisms f11, f12, f13 of
C1 and for every morphisms f21, f22, f23 of C2 such that x1 = 〈〈f11, f21〉〉
and x2 = 〈〈f12, f22〉〉 and x3 = 〈〈f13, f23〉〉 holds f11 . f12 and f21 . f22 and
f13 = f11 ◦ f12 and f23 = f21 ◦ f22}. For every object x such that x ∈ c8
holds x ∈ (c7 × c7) × c7. For every objects x, y1, y2 such that 〈〈x, y1〉〉,
〈〈x, y2〉〉 ∈ c8 holds y1 = y2. Set D = 〈〈c7, c8〉〉. For every morphisms g1,
g2 of D such that g1 . g2 there exist morphisms f11, f12, f13 of C1 and
there exist morphisms f21, f22, f23 of C2 such that g1 = 〈〈f11, f21〉〉 and
g2 = 〈〈f12, f22〉〉 and F1(f11) = F2(f21) and F1(f12) = F2(f22) and f11 . f12
and f21 .f22 and f13 = f11 ◦f12 and f23 = f21 ◦f22 and g1 ◦g2 = 〈〈f13, f23〉〉
by (1), [17, (1)], [9, (1)]. For every morphisms g1, g2 of D such that there
exist morphisms f11, f12 of C1 and there exist morphisms f21, f22 of C2
such that g1 = 〈〈f11, f21〉〉 and g2 = 〈〈f12, f22〉〉 and F1(f11) = F2(f21) and
F1(f12) = F2(f22) and f11 . f12 and f21 . f22 holds g1 . g2 by (1), [17, (1)].
For every morphisms g, g1, g2 of D such that g1 . g2 holds g1 ◦ g2 . g iff
g2 . g. For every morphisms g, g1, g2 of D such that g1 . g2 holds g . g1 ◦ g2
iff g .g1. For every morphism g1 of D such that g1 ∈ the carrier of D there
exists a morphism g of D such that g . g1 and g is left identity by (2),
[17, (31), (32)]. For every morphism g1 of D such that g1 ∈ the carrier of
D there exists a morphism g of D such that g1 . g and g is right identity
by (2), [17, (31), (32)]. For every morphisms g1, g2, g3 of D such that
g1 . g2 and g2 . g3 and g1 ◦ g2 . g3 and g1 . g2 ◦ g3 holds g1 ◦ (g2 ◦ g3) =
(g1 ◦ g2) ◦ g3. For every object x, x ∈ c8 iff x ∈ {〈〈〈〈f1, f2〉〉, f3〉〉, where
f1, f2, f3 are morphisms of D : f1, f2, f3 ∈ the carrier of D and for every
morphisms f11, f12, f13 of C1 and for every morphisms f21, f22, f23 of C2
such that f1 = 〈〈f11, f21〉〉 and f2 = 〈〈f12, f22〉〉 and f3 = 〈〈f13, f23〉〉 holds
f11 .f12 and f21 .f22 and f13 = f11 ◦f12 and f23 = f21 ◦f22}. There exists
a functor P1 from D to C1 and there exists a functor P2 from D to C2
such that P1 is covariant and P2 is covariant and F1 ◦P1 = F2 ◦P2 and for
every category D1 and for every functor G1 from D1 to C1 and for every
functor G2 from D1 to C2 such that G1 is covariant and G2 is covariant and
F1 ◦ G1 = F2 ◦ G2 there exists a functor H from D1 to D such that H is
covariant and P1 ◦H = G1 and P2 ◦H = G2 and for every functor H1 from
D1 to D such that H1 is covariant and P1 ◦ H1 = G1 and P2 ◦ H1 = G2
holds H = H1 by [17, (31)], [9, (13)], (1), [17, (32), (34)]. Consider P1
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being a functor from D to C1, P2 being a functor from D to C2 such
that P1 is covariant and P2 is covariant and F1 ◦ P1 = F2 ◦ P2 and for
every category D1 and for every functor G1 from D1 to C1 and for every
functor G2 from D1 to C2 such that G1 is covariant and G2 is covariant and
F1 ◦ G1 = F2 ◦ G2 there exists a functor H from D1 to D such that H is
covariant and P1 ◦H = G1 and P2 ◦H = G2 and for every functor H1 from
D1 to D such that H1 is covariant and P1 ◦ H1 = G1 and P2 ◦ H1 = G2
holds H = H1. �

Let C , C1, C2 be categories and F1 be a functor from C1 to C . Assume F1
is covariant. Let F2 be a functor from C2 to C . Assume F2 is covariant.

A pullback of F1, F2 is a triple object and is defined by

(Def. 21) there exists a strict category D and there exists a functor P1 from D to C1
and there exists a functor P2 from D to C2 such that it = 〈〈D , P1, P2〉〉 and
P1 is covariant and P2 is covariant and 〈D ,P1,P2〉 is a pullback of F1,F2.

Assume F1 is covariant. Assume F2 is covariant. The functor [[F1,F2]] yiel-
ding a strict category is defined by the term

(Def. 22) the pullback of F1, F21,3.
Assume F1 is covariant. Assume F2 is covariant. The functor π1(F1 � F2)

yielding a functor from [[F1,F2]] to C1 is defined by the term

(Def. 23) the pullback of F1, F22,3.
The functor π2(F1 � F2) yielding a functor from [[F1,F2]] to C2 is defined by
the term

(Def. 24) the pullback of F1, F23,3.
Let us consider categories C , C1, C2, a functor F1 from C1 to C , and a functor

F2 from C2 to C . Let us assume that F1 is covariant and F2 is covariant. Now
we state the propositions:

(52) (i) π1(F1 � F2) is covariant, and

(ii) π2(F1 � F2) is covariant, and

(iii) 〈[[F1,F2]], π1(F1 � F2), π2(F1 � F2)〉 is a pullback of F1,F2.
(53) [[F1,F2]] ∼= [[F2,F1]]. The theorem is a consequence of (52), (47), and

(46).

(54) There exist object-categories C , C1, C2 and there exists a functor F1
from C1 to C and there exists a functor F2 from C2 to C such that there
exists no object-category D and there exists a functor P1 from D to C1
and there exists a functor P2 from D to C2 such that F1 ·P1 = F2 ·P2 and
for every object-category D1 and for every functor G1 from D1 to C1 and
for every functor G2 from D1 to C2 such that F1 · G1 = F2 · G2 there exists
a functor H from D1 to D such that P1 · H = G1 and P2 · H = G2 and for
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every functor H1 from D1 to D such that P1 · H1 = G1 and P2 · H1 = G2
holds H = H1. The theorem is a consequence of (39) and (40).
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