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Summary. In this article, we describe the differential equations on func-
tions from R into real Banach space. The descriptions are based on the article
[20]. As preliminary to the proof of these theorems, we proved some properties
of differentiable functions on real normed space. For the proof we referred to
descriptions and theorems in the article [21I] and the article [32]. And applying
the theorems of Riemann integral introduced in the article [22], we proved the
ordinary differential equations on real Banach space. We referred to the methods
of proof in [30].
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1. SOME PROPERTIES OF DIFFERENTIABLE FUNCTIONS ON REAL NORMED
SPACE

From now on Y denotes a real normed space.
Now we state the propositions:
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(1) Let us consider a real normed space Y, a function J from (€1, - ||) into
R, a point zg of (€1, - ||), an element yo of R, a partial function g from
R to Y, and a partial function f from (€', || - ||) to Y. Suppose

(i) J =proj(1,1), and
(ii) xo € dom f, and
(ili) yo € dom g, and
(iv) zo = (yo), and
) f=g-J.

Then f is continuous in zq if and only if g is continuous in y9. PROOF: If
f is continuous in xg, then g is continuous in yo by [14} (2)], [6, (39)], [37,

(36)]. O
(2) Let us consider a real normed space Y, a function I from R into (€1, [|-||),
a point xg of (€1, | -]}, an element yo of R, a partial function g from R to

Y, and a partial function f from (€1, - ||) to Y. Suppose

(i) I = (proj(1,1) qua function)~!, and

(ii) xo € dom f, and
(iii) yo € dom g, and
(iv) xo = (yo), and

V) f-I=g
Then f is continuous in zg if and only if g is continuous in yg. PROOF:
If f is continuous in xg, then g is continuous in yo by [14}, (1)], [21}, (33)],
[26, (15)]. O

(3) Let us consider a function I from R into (€4, - ||).

Suppose I = (proj(1,1) qua function)~!. Then

(i) for every rest R of (€', -[|), Y, R- I is a rest of ¥, and

(ii) for every linear operator L from (E!,]-||) into Y, L-T is a linear of Y.
PROOF: For every rest R of (€, - [), ¥, R- I is a rest of Y by [I5,
(23)], [B, (47)], [14, (3)]. Reconsider Ly = L as a function from R! into
Y. Reconsider L1 = Lg - I as a partial function from R to Y. Reconsider
r = L1(jj) as a point of Y. For every real number p, Ly, = p-r by [6]
(13)], [14, (3)], [6} (12)]. O

(4) Let us consider a function J from (€L, - ||) into R. Suppose J =

proj(1,1). Then

(i) for every rest R of Y, R-J is a rest of (£1,]-|), Y, and

(ii) for every linear L of Y, L - J is a Lipschitzian linear operator from
(4,1 ) into V-
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PROOF: For every rest R of Y, R-J is a rest of (€%, -), Y by [14, (4)],
[15, (6)], [5, (47)]. Consider r being a point of ¥ such that for every real
number p, L, = p-r. U

(5) Let us consider a function I from R into (€1, ||-||), a point zg of (€L, |- |,

an element yy of R, a partial function g from R to Y, and a partial function
f from (€1, ]|-||) to Y. Suppose

(i) I = (proj(1,1) qua function)™*

, and
(ii) xo € dom f, and

(iii) yo € domg, and

(iv) o = (yo), and

(v) f-I=g,and

(vi) f is differentiable in xg.

Then

(vii) g is differentiable in yg, and

(viii) ¢'(y0) = f'(x0)((1)), and
(ix) for every element 7 of R, f/(z0)((r)) =1 ¢'(yo)-

The theorem is a consequence of (3). PROOF: Consider N; being a ne-
ighbourhood of zg such that N; C dom f and there exists a point L of
the real norm space of bounded linear operators from (&1, || - ||) into Y
and there exists a rest R of (€%,] - ), Y such that for every point x of
(EL,]] - ||) such that z € Ny holds fi — fu, = L(z — 20) + Ry_z,. Con-
sider e being a real number such that 0 < e and {z, where z is a point
of (L] -11) = Iz — wol| < e} € Ny. Consider L being a point of the real
norm space of bounded linear operators from (£, - ||) into Y, R being a
rest of (€1, - ), Y such that for every point x3 of (£, - ||) such that
x3 € Ny holds fr, — fz, = L(z3 — x0) + Rgs—a,- Reconsider Rg = R - I as
a rest of Y. Reconsider Lo = L - I as a linear of Y. Set N = {z, where
z is a point of (€L, || - ||) : ||z — zo|| < e}. N C the carrier of (€1, - ||). Set
No = {z, where z is an element of R : |z — yo| < e}. Jyo — €, 50 + €[ C Ny
by [28, (1)]. No C ]Jyo — e,y0 + €[ by [28, (1)]. For every real number y;
such that y; € Nog holds (f - 1)y, — (f - I)yy = Loy,—y, + Roy,—y, by [6}
(12), [7, (35), [, (3)). O

(6) Let us consider a function I from R into (€1, ||-||), a point zg of (€L, |- |,
a real number g, a partial function g from R to Y, and a partial function
f from (€', ]| -||) to Y. Suppose

(i) I = (proj(1,1) qua function)™*

, and
(ii) xo € dom f, and

(iii) yo € domg, and
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(iv) zo = (o), and

V) f-I=g.

Then f is differentiable in xg if and only if g is differentiable in yy. The
theorem is a consequence of (5) and (4). PROOF: Reconsider J = proj(1,1)
as a function from (€Y, - ||) into R. Consider Ny being a neighbourhood
of yo such that Ny C dom(f-I) and there exists a linear L of Y and there
exists a rest R of Y such that for every real number y such that y € Ny
holds (f 1)y — (f 1)y, = Ly—y, + Ry—y,. Consider eg being a real number
such that 0 < eg and Ny = |yo—eo, yo+eo[. Reconsider e = ej as an element
of R. Set N = {z, where z is a point of (€L, ||-||) : ||z — 0] < e}. Consider
L being a linear of Y, R being a rest of Y such that for every real number
y1 such that y; € No holds (f-1)y, —(f-1)yy = Ly, —yo+ Ry, —y,- Reconsider
Ry = R-J as arest of (€1,]-]), Y. Reconsider Ly = L-J as a Lipschitzian
linear operator from (€1, ||-||) into Y. N C the carrier of (€1, |-||). For every
point y of (€, |||} such that y € N holds f, — fu, = Lo(y — z0) + Roy—z,
by 6, (13)], [ (35)], [4, (4)]. O

(7) Let us consider a function J from (€1, ||-||) into R, a point xq of (1, -],

an element yg of R, a partial function g from R to Y, and a partial function
f from (EL,] - ||) to Y. Suppose

(i) J =proj(1,1), and

(ii) xo € dom f, and

(iii) yo € domg, and

(iv) 2o = (yo), and

V) f=g-J
Then f is differentiable in xg if and only if g is differentiable in yy. The
theorem is a consequence of (6).

(8) Let us consider a function I from R into (£, ||-]|), a point zq of (L, |||},

an element yy of R, a partial function g from R to Y, and a partial function
f from (€1, ]]-||) to Y. Suppose

(i) I = (proj(1,1) qua function)_l, and
(ii) xo € dom f, and

(iv) o = (yo), and
(v) f-I=g,and
(vi) f is differentiable in xg.

)

(iii) yo € dom g, and
)
)

Then ||¢'(vo)|| = ||f'(z0)||- The theorem is a consequence of (5). PROOF:
Reconsider d; = f’(xg) as a Lipschitzian linear operator from (&1, || - ||)
into Y. Set A = PreNorms(d;). For every real number r such that r € A
holds r < [|g"(yo) || by [14, (1), (4)]. O
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Let us consider real numbers a, b, z and points p, ¢, = of (€1, -||). Now we
state the propositions:

(9) Suppose p = (a) and ¢ = (b) and z = (z). Then
(i) if z € ]a, b[, then = € |p, q[, and

(i) if = € |p, ¢q[, then a # b and if a < b, then z € ]a,b] and if a > b, then
z € 1b,al.

(10) Suppose p = (a) and ¢ = (b) and = = (z). Then
(i) if z € [a,b], then z € [p, ¢], and
(ii) if = € [p, ¢|, then if a < b, then z € [a,b] and if a > b, then z € [b, a].

Now we state the propositions:

(11) Let us consider real numbers a, b, points p, ¢ of (€%, |- ||), and a function
I from R into (€%, ]| - ||). Suppose

) p = (o), and

(ii) ¢ = (b), and

(iii) I = (proj(1,1) qua function)~?.
Then

(iv) if a < b, then I°[a,b] = [p, q], and
(v) if a < b, then I°]a,b] = |p, ¢q|.

The theorem is a consequence of (10) and (9).

(12) Let us consider a real normed space Y, a partial function g from R to
the carrier of Y, and real numbers a, b, M. Suppose

(i) a < b, and
(ii) [a,b] € dom g, and

(iii) for every real number x such that = € [a,b] holds g is continuous in
xz, and

(iv) for every real number x such that x € ]a,b] holds g is differentiable
in z, and

(v) for every real number x such that x € Ja, b[ holds ||¢'(z)| < M.

Then ||gy — gal| < M - |b — a|. The theorem is a consequence of (11), (10),

(1), (9), (7), and (8).
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2. DIFFERENTIAL EQUATIONS

In the sequel X, Y denote real Banach spaces, Z denotes an open subset

of R, a, b, ¢, d, e, r, xp denote real numbers, yy denotes a vector of X, and GG
denotes a function from X into X.

Now we state the propositions:

(13) Let us consider a real Banach space X, a partial function F' from R to

the carrier of X, and a continuous partial function f from R to the carrier
of X. Suppose

(i) [a,b] € dom f, and
(i) ]a,b[ € dom F', and

(iii) for every real number z such that = € Ja,b[ holds F, = /f(x)d:v,
and ‘
(iv) zg € ]a,b[, and
(v) f is continuous in zg.
Then
(vi) F' is differentiable in xg, and
(vil) F'(z0) = fa,-

(14) Let us consider a partial function F' from R to the carrier of X and a
continuous partial function f from R to the carrier of X. Suppose

(i) dom f = [a, b], and
(ii) dom F' = [a,b], and

¢
(iii) for every real number ¢ such that ¢ € [a,b] holds F; = /f(x)dx.

Let us consider a real number z. If z € [a, b], then F is continuous in z.

(15) Let us consider a continuous partial function f from R to the carrier of

X. If a € dom f, then /f(:v)dz = Ox.

Let us consider a continuous partial function f from R to the carrier of X and
a partial function g from R to the carrier of X. Now we state the propositions:

(16) Suppose a < b and dom f = [a, b] and for every real number ¢ such that

t
t € [a,b] holds g = yo + /f(az)d:c. Then g, = yo.
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(17) Suppose dom f = [a,b] and dom g = [a,b] and Z = ]a,b[ and for every
t

real number ¢ such that ¢t € [a, b] holds g; = yo + / f(x)dx. Then

(i) g is continuous and differentiable on Z, and
(ii) for every real number ¢ such that ¢t € Z holds ¢'(t) = f;.
Let us consider a partial function f from R to the carrier of X. Now we state
the propositions:
(18) Suppose a < b and [a,b] C dom f and for every real number z such that

x € [a,b] holds f is continuous in x and f is differentiable on |a, b and for
every real number = such that = € |a, b[ holds f/'(z) = 0x. Then f, = f,.

(19) Suppose [a,b] C dom f and for every real number z such that z € [a, ]
holds f is continuous in = and f is differentiable on ]a, b[ and for every real
number x such that x € Ja,b[ holds f’(z) = O0x. Then f[]a,b] is constant.

Now we state the propositions:
(20) Let us consider a continuous partial function f from R to the carrier of
X. Suppose

(i) [a,b] = dom f, and
(ii) fl]a,b[ is constant.
Let us consider a real number z. If z € [a, b], then f, = f,.

(21) Let us consider continuous partial functions y, G from R to the carrier
of X and a partial function g from R to the carrier of X. Suppose

(i) a < b, and

(ii) Z =]a,b[, and

(iii) domy = [a, b], and

(iv) domg = [a, b], and

(v) dom Gy = [a, b], and

(vi) y is differentiable on Z, and
i)
)

(vii) Ya = yo, and
(viii) for every real number ¢ such that ¢ € Z holds 3/ (t) = G14, and

(ix) for every real number ¢ such that ¢ € [a, b] holds g; = yo+/ Gi(z)dzx

a
Then y = g. The theorem is a consequence of (17), (16), (19), and (20).
PROOF: Reconsider h = y — g as a continuous partial function from R
to the carrier of X. For every real number z such that £ € dom h holds
h, = 0x by [35, (15)]. For every element x of R such that € domy holds

y(z) = g(x) by [35, (21)]. O
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Let X be a real Banach space, yy be a vector of X, G be a function from
X into X, and a, b be real numbers. Assume a < b and G is continuous on
dom G. The functor Fredholm(G, a, b, y) yielding a function from the R-norm
space of continuous functions of [a, b] and X into the R-norm space of continuous
functions of [a,b] and X is defined by
(Def. 1) Let us consider a vector = of the R-norm space of continuous functions
of [a,b] and X. Then there exist continuous partial functions f, g, G1 from
R to the carrier of X such that

(i) x = f, and

¢
(vi) for every real number ¢ such that ¢ € [a, b] holds ¢g; = yo+/ Gi(x)dx.

Now we state the propositions:

(22) Suppose a < band 0 < r and for every vectors y1, y2 of X, |Gy, =Gy, || <
7+|ly1 —y2||. Let us consider vectors u, v of the R-norm space of continuous
functions of [a,b] and X and continuous partial functions g, h from R to
the carrier of X. Suppose

(i) g = (Fredholm(G, a,b,yo))(u), and

(ii) h = (Fredholm(G, a,b,yo))(v).
Let us consider a real number ¢. Suppose t € [a,b]. Then |g; — h| <
(r-(t—a))-|lu—wv|. PROOF: Set F = Fredholm(G,a,b,yo). Consider
f1, g1, G3 being continuous partial functions from R to the carrier of
X such that v = f; and F(u) = ¢1 and dom f; = [a,b] and domg; =
[a,b] and G3 = G - f1 and for every real number ¢ such that ¢ € [a,b]

t
holds g1; = yo + /Gg(m)daz. Consider fs, g2, G5 being continuous partial
a

functions from R to the carrier of X such that v = fy and F(v) = ¢
and dom f = [a,b] and dom g2 = [a,b] and G5 = G - fo and for every real
t

number ¢ such that ¢ € [a, b] holds go, = yo+/ Gs(x)dx. Set G4 = G3—G5.

For every real number z such that z € [a, t]aholds |Gazll <7+ |lu—v| by
[20, (26)], [6, (12)]. O

(23) Suppose a < b and 0 < r and for every vectors y;, y2 of X, ||Gy, —
Gy, || <7 -]ly1 — y2l|- Let us consider vectors u, v of the R-norm space of
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continuous functions of [a,b] and X, an element m of N, and continuous
partial functions g, h from R to the carrier of X. Suppose

(i) g = (Fredholm(G,a,b,yo))™ " (u), and

(ii) h = (Fredholm(G,a,b,y0))™ ! (v).
Let us consider a real number ¢. Suppose ¢t € [a,b]. Then |g: — he| <
MHU—UH The theorem is a consequence of (22). PROOF: Set F' =

(m+1)!
Fredholm(G, a, b, yp). Define Plnatural number| = for every continuous

partial functions g, h from R to the carrier of X such that g = F%1+1(u,)
and h = F$+1(y)) for every real number ¢ such that t € [a,b] holds

o — kel < LTy — vyl P[0] by [ (70)], [8 (5), (13)]. For
every natural number & such that P[k] holds P[k+1] by [4, (71)], [6, (13)],
[37, (27)]. For every natural number &, P[k] from [I, Sch. 2]. O

(24) Let us consider a natural number m. Suppose

(i) a < b, and
(ii) 0 <r, and
(iii) for every vectors y1, y2 of X, |Gy, — Gyoll < 7 - |ly1 — 2l

Let us consider vectors u, v of the R-norm space of continuous functions
of [a,b] and X.
Then ||(Fredholm (G, a,b,y0))™ ! (u) — (Fredholm(G, a, b, yo))™ " (v)| <

(r-(b—a)™*!

s |lu — v||. The theorem is a consequence of (23).

(25) If @ < b and G is Lipschitzian on the carrier of X, then there exists

a natural number m such that (Fredholm(G, a,b,y0))™"! is contraction.
The theorem is a consequence of (24).

has unique fixpoint. The theorem is a consequence of (25).

(27) Let us consider continuous partial functions f, g from R to the carrier

of X. Suppose
(i) dom f = [a, b], and
(ii) domg = [a, b], and
= la, b], and
a < b, and

)
(iii) Z
(iv)
(v) G is Lipschitzian on the carrier of X, and
(vi) g = (Fredholm(G, a, b, y0))(f)-

Then

(vii) ga = yo, and

(viii) g is differentiable on Z, and

269

If a < band G is Lipschitzian on the carrier of X, then Fredholm (G, a, b, yo)
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(ix) for every real number ¢ such that ¢t € Z holds ¢'(t) = (G - f):.
The theorem is a consequence of (17) and (16).

(28) Let us consider a continuous partial function y from R to the carrier of
X. Suppose

(i) a < b, and

(ii) Z =]a,b[, and
(iii) G is Lipschitzian on the carrier of X, and
(iv) domy = [a,b], and
(v) y is differentiable on Z, and
(Vi) Ya = yo, and
(vii) for every real number ¢ such that ¢t € Z holds y/(t) = G(y).

Then y is a fixpoint of Fredholm(G, a, b, yp). The theorem is a consequence

of (21). PrROOF: Consider f, g, G1 being continuous partial functions from

R to the carrier of X such that y = f and (Fredholm(G, a,b,40))(y) = ¢

and dom f = [a,b] and dom g = [a,b] and G; = G - f and for every real
t

number t such that ¢ € [a,b] holds ¢: = yo + / G1(x)dx. For every real

a
number ¢ such that ¢ € Z holds y/(t) = Gy; by [6, (13)]. O

(29) Let us consider continuous partial functions yi, y2 from R to the carrier
of X. Suppose

(i) a < b, and
(ii = la, b[, and
(iii) G is Lipschitzian on the carrier of X, and
(iv) domy; = [a,b], and
(v) w1 is differentiable on Z, and

(vii) for every real number ¢ such that t € Z holds y1'(t) = G(y1,), and
(viii) domys = [a,b], and
(ix) yo is differentiable on Z, and

(x

(xi) for every real number ¢ such that ¢t € Z holds yo'(t) = G(y2)-

) Z
)
)
)
(Vi) y1, = yo, and
i)
)
)
)

Y24 = Yo, and

Then y; = y2. The theorem is a consequence of (26) and (28).

(30) Suppose a < b and Z = ]a,b[ and G is Lipschitzian on the carrier of X.

Then there exists a continuous partial function y from R to the carrier of
X such that
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(i) domy = [a,b], and
(ii) y is differentiable on Z, and
(iii) yq = Yo, and
(iv) for every real number ¢ such that ¢t € Z holds y/(t) = G(y).

The theorem is a consequence of (26) and (27).
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