
FORMALIZED MATHEMATICS

Vol. 21, No. 1, Pages 1–23, 2013
DOI: 10.2478/forma-2013-0001 degruyter.com/view/j/forma

Analysis of Algorithms: An Example of a
Sort Algorithm

Grzegorz Bancerek
Association of Mizar Users
Białystok, Poland

Summary.We analyse three algorithms: exponentiation by squaring, cal-
culation of maximum, and sorting by exchanging in terms of program algebra
over an algebra.

MML identifier: AOFA A01, version: 8.0.01 5.5.1167

The notation and terminology used in this paper have been introduced in the
following articles: [37], [1], [2], [17], [3], [4], [13], [18], [34], [23], [29], [19], [20],
[15], [5], [33], [6], [27], [38], [28], [30], [14], [7], [8], [31], [16], [24], [26], [35], [9],
[21], [32], [39], [36], [10], [11], [25], [12], and [22].

1. Exponentiation by Squaring Revisited

Now we state the propositions:

(1) (i) 1 mod 2 = 1, and

(ii) 2 mod 2 = 0.

(2) Let us consider a non empty non void many sorted signature Σ, an
algebra A over Σ, a subalgebra B of A, a sort symbol s of Σ, and a set a.
Suppose a ∈ (the sorts of B)(s). Then a ∈ (the sorts of A)(s).

(3) Let us consider a non empty set I, sets a, b, c, and an element i of I.
Then c ∈ (i -singleton a)(b) if and only if b = i and c = a.

(4) Let us consider a non empty set I, sets a, b, c, d, and elements i, j of I.
Then c ∈ (i -singleton a ∪ j -singleton d)(b) if and only if b = i and c = a

or b = j and c = d. The theorem is a consequence of (3).

1
c© 2013 University of Białystok

CC-BY-SA License ver. 3.0 or later

ISSN 1426–2630(Print), 1898-9934(Online)

http://www.degruyter.com/view/j/forma
http://fm.mizar.org/miz/aofa_a01.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

2 grzegorz bancerek

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and A be a non-empty algebra
over Σ. We say that A is integer if and only if

(Def. 1) There exists an image C of A such that C is a boolean correct algebra
over Σ with integers with connectives from 4 and the sort at 1.

Now we state the propositions:

(5) Let us consider a non empty non void many sorted signature Σ and a
non-empty algebra A over Σ. Then Im idα = the algebra of A, where α is
the sorts of A.

(6) Let us consider a non empty non void many sorted signature Σ. Then
every non-empty algebra over Σ is an image of A. The theorem is a con-
sequence of (5). Proof: A is A-image. �

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1. One can verify that there
exists a non-empty algebra over Σ which is integer.

Let A be an integer non-empty algebra over Σ. Note that there exists an
image of A which is boolean correct.

Let us note that there exists a boolean correct image of A which has integers
with connectives from 4 and the sort at 1.

Now we state the proposition:

(7) Let us consider a non empty non void many sorted signature Σ, a non-
empty algebra A over Σ, an operation symbol o of Σ, a set a, and a sort
symbol r of Σ. Suppose o is of type a → r. Then

(i) Den(o,A) is a function from (the sorts of A)#(a) into (the sorts of
A)(r), and

(ii) Args(o,A) = (the sorts of A)#(a), and

(iii) Result(o,A) = (the sorts of A)(r).

Let Σ be a boolean correct non empty non void boolean signature and A

be a boolean correct non-empty algebra over Σ. Observe that every non-empty
subalgebra of A is boolean correct.

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and A be a boolean correct
non-empty algebra over Σ with integers with connectives from 4 and the sort
at 1. Note that every non-empty subalgebra of A has integers with connectives
from 4 and the sort at 1.

Let X be a non-empty many sorted set indexed by the carrier of Σ. Let us
observe that FΣ(X) is integer as a non-empty algebra over Σ.

Now we state the proposition:

(8) Let us consider a non empty non void many sorted signature Σ, algebras
A1, A2, B1 over Σ, and a non-empty algebra B2 over Σ. Suppose

Analysis of algorithms: an example of a sort algorithm 3

(i) the algebra of A1 = the algebra of A2, and

(ii) the algebra of B1 = the algebra of B2.

Let us consider a many sorted function h1 from A1 into B1 and a many
sorted function h2 from A2 into B2. Suppose

(iii) h1 = h2, and

(iv) h1 is an epimorphism of A1 onto B1.

Then h2 is an epimorphism of A2 onto B2.

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and X be a non-empty many
sorted set indexed by the carrier of Σ. Let us note that there exists an including
Σ-terms over X non-empty free variable algebra over Σ which is vf-free and
integer.

Let Σ be a non empty non void many sorted signature. Let T be an inclu-
ding Σ-terms over X non-empty algebra over Σ. The functor FreeGenerator(T)
yielding a non-empty generator set of T is defined by the term

(Def. 2) FreeGenerator(X).

Let X0 be a countable non-empty many sorted set indexed by the carrier
of Σ and T be an including Σ-terms over X0 non-empty algebra over Σ. Let us
observe that FreeGenerator(T) is Equations(Σ,T)-free and non-empty.

Let X be a non-empty many sorted set indexed by the carrier of Σ, T be an
including Σ-terms over X algebra over Σ, and G be a generator set of T. We
say that G is basic if and only if

(Def. 3) FreeGenerator(T) ⊆ G.

Let s be a sort symbol of Σ and x be an element of G(s). We say that x is pure
if and only if

(Def. 4) x ∈ (FreeGenerator(T))(s).

Observe that FreeGenerator(T) is basic.
Note that there exists a non-empty generator set of T which is basic.
Let G be a basic generator set of T and s be a sort symbol of Σ. One can

check that there exists an element of G(s) which is pure.
Now we state the proposition:

(9) Let us consider a non empty non void many sorted signature Σ, a non-
empty many sorted set X indexed by the carrier of Σ, an including Σ-
terms over X algebra T over Σ, a basic generator set G of T, a sort
symbol s of Σ, and a set a. Then a is a pure element of G(s) if and only
if a ∈ (FreeGenerator(T))(s).

Let Σ be a non empty non void many sorted signature, X be a non-empty
many sorted set indexed by the carrier of Σ, T be an including Σ-terms over X
algebra over Σ, and G be a generator system over Σ, X, and T. We say that G
is basic if and only if

4 grzegorz bancerek

(Def. 5) The generators of G are basic.

Observe that there exists a generator system over Σ, X, and T which is
basic.

Let G be a basic generator system over Σ, X, and T. Note that the generators
of G are basic.

In this paper Σ denotes a boolean correct non empty non void boolean
signature with integers with connectives from 4 and the sort at 1, X denotes
a non-empty many sorted set indexed by the carrier of Σ, T denotes a vf-free
including Σ-terms over X integer non-empty free variable algebra over Σ, C

denotes a boolean correct non-empty image of T with integers with connectives
from 4 and the sort at 1, G denotes a basic generator system over Σ, X, and
T, A denotes a if-while algebra over the generators of G, I denotes an integer
sort symbol of Σ, x, y, z, m denote pure elements of (the generators of G)(I),
b denotes a pure element of (the generators of G)((the boolean sort of Σ)), τ ,
τ1, τ2 denote elements of T from I, P denotes an algorithm of A, and s, s1, s2

denote elements of C -States(the generators of G).
Let Σ be a boolean correct non empty non void boolean signature and A be

a non-empty algebra over Σ. The functor falseA yielding an element of A from
the boolean sort of Σ is defined by the term

(Def. 6) ¬ trueA.

In this paper f denotes an execution function of A over
C -States(the generators of G) and Statesb 6→falseC

(the generators of G).
Now we state the proposition:

(10) falseC = false.

Let Σ be a boolean correct non empty non void boolean signature, X be
a non-empty many sorted set indexed by the carrier of Σ, T be an including
Σ-terms over X algebra over Σ, G be a generator system over Σ, X, and T,
b be an element of (the generators of G)((the boolean sort of Σ)), C be an
image of T, A be a pre-if-while algebra, f be an execution function of A over
C -States(the generators of G) and Statesb6→falseC

(the generators of G), s be an
element of C -States(the generators of G), and P be an algorithm of A. Note
that the functor f(s, P) yields an element of C -States(the generators of G). Let
Σ be a non empty non void many sorted signature, T be a non-empty algebra
over Σ, G be a non-empty generator set of T, s be a sort symbol of Σ, and x be
an element of G(s). The functor @x yielding an element of T from s is defined
by the term

(Def. 7) x.

Let us consider Σ, X, T, G, A, b, I, τ1, and τ2. The functors b leq(τ1, τ2,A)
and b gt(τ1, τ2,A) yielding algorithms of A are defined by the terms, respectively.

(Def. 8) b:=A(leq(τ1, τ2)).

Analysis of algorithms: an example of a sort algorithm 5

(Def. 9) b:=A(¬ leq(τ1, τ2)).

The functor 2IT yielding an element of T from I is defined by the term

(Def. 10) 1IT + 1IT.

Let us considerG, A, and b. Let us consider τ . The functors τ is odd(b,A) and
τ is even(b,A) yielding algorithms of A are defined by the terms, respectively.

(Def. 11) b gt(τ mod 2IT, 0
I
T,A).

(Def. 12) b leq(τ mod 2IT, 0
I
T,A).

Let us consider C. Let us consider s. Let x be an element of (the generators
of G)(I). Let us note that s(I)(x) is integer.

Let us consider τ . Let us note that τ value at(C, s) is integer.
In the sequel u denotes a many sorted function from FreeGenerator(T) into

the sorts of C.
Let us consider Σ, X, T, C, I, u, and τ . One can verify that τ value at(C, u)

is integer.
Let us consider G. Let us consider s. Let τ be an element of T from the

boolean sort of Σ. One can verify that τ value at(C, s) is boolean.
Let us consider u. One can check that τ value at(C, u) is boolean.
Let us consider an operation symbol o of Σ. Now we state the propositions:

(11) Suppose o = (the connectives of Σ)(1)(∈ (the carrier’ of Σ)). Then

(i) o = (the connectives of Σ)(1), and

(ii) Arity(o) = ∅, and

(iii) the result sort of o = the boolean sort of Σ.

(12) Suppose o = (the connectives of Σ)(2)(∈ (the carrier’ of Σ)). Then

(i) o = (the connectives of Σ)(2), and

(ii) Arity(o) = 〈the boolean sort of Σ〉, and

(iii) the result sort of o = the boolean sort of Σ.

(13) Suppose o = (the connectives of Σ)(3)(∈ (the carrier’ of Σ)). Then

(i) o = (the connectives of Σ)(3), and

(ii) Arity(o) = 〈the boolean sort of Σ, the boolean sort of Σ〉, and

(iii) the result sort of o = the boolean sort of Σ.

(14) Suppose o = (the connectives of Σ)(4)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = ∅, and

(ii) the result sort of o = I.

(15) Suppose o = (the connectives of Σ)(5)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = ∅, and

(ii) the result sort of o = I.

6 grzegorz bancerek

(16) Suppose o = (the connectives of Σ)(6)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I〉, and

(ii) the result sort of o = I.

(17) Suppose o = (the connectives of Σ)(7)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = I.

(18) Suppose o = (the connectives of Σ)(8)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = I.

(19) Suppose o = (the connectives of Σ)(9)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = I.

(20) Suppose o = (the connectives of Σ)(10)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = the boolean sort of Σ.

(21) Let us consider a non empty non void many sorted signature Σ and an
operation symbol o of Σ. Suppose Arity(o) = ∅. Let us consider an algebra
A over Σ. Then Args(o,A) = {∅}.

(22) Let us consider a non empty non void many sorted signature Σ, a sort
symbol a of Σ, and an operation symbol o of Σ. Suppose Arity(o) = 〈a〉.
Let us consider an algebra A over Σ. Then Args(o,A) =

∏
〈(the sorts of

A)(a)〉.
(23) Let us consider a non empty non void many sorted signature Σ, sort

symbols a, b of Σ, and an operation symbol o of Σ. Suppose Arity(o) = 〈a,
b〉. Let us consider an algebra A over Σ. Then Args(o,A) =

∏
〈(the sorts

of A)(a), (the sorts of A)(b)〉.
(24) Let us consider a non empty non void many sorted signature Σ, sort sym-

bols a, b, c of Σ, and an operation symbol o of Σ. Suppose Arity(o) = 〈a, b,
c〉. Let us consider an algebra A over Σ. Then Args(o,A) =

∏
〈(the sorts

of A)(a), (the sorts of A)(b), (the sorts of A)(c)〉.
(25) Let us consider a non empty non void many sorted signature Σ, non-

empty algebras A, B over Σ, a sort symbol s of Σ, an element a of A from
s, a many sorted function h from A into B, and an operation symbol o of
Σ. Suppose Arity(o) = 〈s〉. Let us consider an element p of Args(o,A). If
p = 〈a〉, then h#p = 〈h(s)(a)〉.

Analysis of algorithms: an example of a sort algorithm 7

(26) Let us consider a non empty non void many sorted signature Σ, non-
empty algebras A, B over Σ, sort symbols s1, s2 of Σ, an element a of
A from s1, an element b of A from s2, a many sorted function h from
A into B, and an operation symbol o of Σ. Suppose Arity(o) = 〈s1, s2〉.
Let us consider an element p of Args(o,A). Suppose p = 〈a, b〉. Then
h#p = 〈h(s1)(a), h(s2)(b)〉.

(27) Let us consider a non empty non void many sorted signature Σ, non-
empty algebras A, B over Σ, sort symbols s1, s2, s3 of Σ, an element a of
A from s1, an element b of A from s2, an element c of A from s3, a many
sorted function h from A into B, and an operation symbol o of Σ. Suppose
Arity(o) = 〈s1, s2, s3〉. Let us consider an element p of Args(o,A). Suppose
p = 〈a, b, c〉. Then h#p = 〈h(s1)(a), h(s2)(b), h(s3)(c)〉.

Let us consider a many sorted function h from T into C, a sort symbol a of
Σ, and an element τ of T from a. Now we state the propositions:

(28) If h is a homomorphism of T into C,
then τ value at(C, h � FreeGenerator(T)) = h(a)(τ).

(29) Suppose h is a homomorphism of T into C and s = h � the generators
of G. Then τ value at(C, s) = h(a)(τ).

(30) trueT value at(C, s) = true. The theorem is a consequence of (11) and
(21).

(31) Let us consider an element τ of T from the boolean sort of Σ. Then
¬τ value at(C, s) = ¬(τ value at(C, s)). The theorem is a consequence of
(29), (12), (22), and (25).

(32) Let us consider a boolean set a and an element τ of T from the boolean
sort of Σ. Then ¬τ value at(C, s) = ¬a if and only if τ value at(C, s) = a.
The theorem is a consequence of (31).

(33) Let us consider an element a of C from the boolean sort of Σ and a
boolean set x. Then ¬a = ¬x if and only if a = x.

(34) falseT value at(C, s) = false. The theorem is a consequence of (31) and
(30).

(35) Let us consider elements τ1, τ2 of T from the boolean sort of Σ. Then (τ1∧
τ2) value at(C, s) = (τ1 value at(C, s)) ∧ (τ2 value at(C, s)). The theorem is
a consequence of (29), (13), (23), and (26).

(36) 0IT value at(C, s) = 0. The theorem is a consequence of (14) and (21).

(37) 1IT value at(C, s) = 1. The theorem is a consequence of (15) and (21).

(38) (−τ) value at(C, s) = −τ value at(C, s). The theorem is a consequence of
(16), (22), and (25).

(39) (τ1+τ2) value at(C, s) = τ1 value at(C, s)+τ2 value at(C, s). The theorem
is a consequence of (17), (23), and (26).

(40) 2IT value at(C, s) = 2. The theorem is a consequence of (37) and (39).

8 grzegorz bancerek

(41) (τ1−τ2) value at(C, s) = τ1 value at(C, s)−τ2 value at(C, s). The theorem
is a consequence of (39) and (38).

(42) (τ1 · τ2) value at(C, s) = (τ1 value at(C, s)) · (τ2 value at(C, s)). The the-
orem is a consequence of (29), (18), (23), and (26).

(43) (τ1 div τ2) value at(C, s) = τ1 value at(C, s) div τ2 value at(C, s). The the-
orem is a consequence of (19), (23), and (26).

(44) (τ1 mod τ2) value at(C, s) = τ1 value at(C, s) mod τ2 value at(C, s). The
theorem is a consequence of (41), (42), and (43).

(45) leq(τ1, τ2) value at(C, s) = leq(τ1 value at(C, s), τ2 value at(C, s)). The the-
orem is a consequence of (20), (23), and (26).

(46) trueT value at(C, u) = true. The theorem is a consequence of (11) and
(21).

(47) Let us consider an element τ of T from the boolean sort of Σ. Then
¬τ value at(C, u) = ¬(τ value at(C, u)). The theorem is a consequence of
(28), (12), (22), and (25).

(48) Let us consider a boolean set a and an element τ of T from the boolean
sort of Σ. Then ¬τ value at(C, u) = ¬a if and only if τ value at(C, u) = a.
The theorem is a consequence of (47).

(49) falseT value at(C, u) = false. The theorem is a consequence of (47) and
(46).

(50) Let us consider elements τ1, τ2 of T from the boolean sort of Σ. Then (τ1∧
τ2) value at(C, u) = (τ1 value at(C, u))∧ (τ2 value at(C, u)). The theorem is
a consequence of (28), (13), (23), and (26).

(51) 0IT value at(C, u) = 0. The theorem is a consequence of (14) and (21).

(52) 1IT value at(C, u) = 1. The theorem is a consequence of (15) and (21).

(53) (−τ) value at(C, u) = −τ value at(C, u). The theorem is a consequence
of (16), (22), and (25).

(54) (τ1 + τ2) value at(C, u) = τ1 value at(C, u) + τ2 value at(C, u). The the-
orem is a consequence of (17), (23), and (26).

(55) 2IT value at(C, u) = 2. The theorem is a consequence of (52) and (54).

(56) (τ1 − τ2) value at(C, u) = τ1 value at(C, u) − τ2 value at(C, u). The the-
orem is a consequence of (54) and (53).

(57) (τ1 · τ2) value at(C, u) = (τ1 value at(C, u)) · (τ2 value at(C, u)). The the-
orem is a consequence of (28), (18), (23), and (26).

(58) (τ1 div τ2) value at(C, u) = τ1 value at(C, u) div τ2 value at(C, u). The the-
orem is a consequence of (19), (23), and (26).

(59) (τ1 mod τ2) value at(C, u) = τ1 value at(C, u) mod τ2 value at(C, u). The
theorem is a consequence of (56), (57), and (58).

Analysis of algorithms: an example of a sort algorithm 9

(60) leq(τ1, τ2) value at(C, u) = leq(τ1 value at(C, u), τ2 value at(C, u)).
The theorem is a consequence of (20), (23), and (26).

(61) Let us consider a sort symbol a of Σ and an element x of (the generators
of G)(a). Then @x value at(C, s) = s(a)(x). The theorem is a consequence
of (29).

(62) Let us consider a sort symbol a of Σ, a pure element x of (the generators
of G)(a), and a many sorted function u from FreeGenerator(T) into the
sorts of C. Then @x value at(C, u) = u(a)(x).

Let us consider integers i, j and elements a, b of C from I. Now we state the
propositions:

(63) If a = i and b = j, then a− b = i− j.
(64) If a = i and b = j and j 6= 0, then a mod b = i mod j.

(65) Suppose G is C-supported and f ∈ C -Executionb 6→falseC
(A). Then let us

consider a sort symbol a of Σ, a pure element x of (the generators of
G)(a), and an element τ of T from a. Then

(i) f(s, x:=Aτ)(a)(x) = τ value at(C, s), and

(ii) for every pure element z of (the generators of G)(a) such that z 6= x

holds f(s, x:=Aτ)(a)(z) = s(a)(z), and

(iii) for every sort symbol b of Σ such that a 6= b for every pure element
z of (the generators of G)(b), f(s, x:=Aτ)(b)(z) = s(b)(z).

(66) Suppose G is C-supported and f ∈ C -Executionb 6→falseC
(A). Then

(i) τ1 value at(C, s) < τ2 value at(C, s) iff
f(s, b gt(τ2, τ1,A)) ∈ Statesb 6→falseC

(the generators of G), and

(ii) τ1 value at(C, s) ¬ τ2 value at(C, s) iff
f(s, b leq(τ1, τ2,A)) ∈ Statesb6→falseC

(the generators of G), and

(iii) for every x, f(s, b gt(τ1, τ2,A))(I)(x) = s(I)(x) and
f(s, b leq(τ1, τ2,A))(I)(x) = s(I)(x), and

(iv) for every pure element c of (the generators of G)((the boolean sort
of Σ)) such that c 6= b holds f(s, b gt(τ1, τ2,A))((the boolean sort of
Σ))(c) = s((the boolean sort of Σ))(c) and f(s, b leq(τ1, τ2,A))
((the boolean sort of Σ))(c) = s((the boolean sort of Σ))(c).

The theorem is a consequence of (31), (45), and (33).

Let i, j be real numbers and a, b be boolean sets. One can verify that
(i > j → a, b) is boolean.

Now we state the proposition:

(67) Suppose G is C-supported and f ∈ C -Executionb 6→falseC
(A). Then

(i) f(s, τ is odd(b,A))((the boolean sort of Σ))(b) = τ value at(C, s) mod
2, and

10 grzegorz bancerek

(ii) f(s, τ is even(b,A))((the boolean sort of Σ))(b) = (τ value at(C, s) +
1) mod 2, and

(iii) for every z, f(s, τ is odd(b,A))(I)(z) = s(I)(z) and
f(s, τ is even(b,A))(I)(z) = s(I)(z).

The theorem is a consequence of (36), (40), (64), (31), (45), (44), and (1).

Let us consider Σ, X, T, G, and A. We say that A is elementary if and only
if

(Def. 13) rng the assignments of A ⊆ ElementaryInstructionsA.

Now we state the proposition:

(68) Suppose A is elementary. Then let us consider a sort symbol a of Σ, an
element x of (the generators of G)(a), and an element τ of T from a. Then
x:=Aτ ∈ ElementaryInstructionsA.

Let us consider Σ, X, T, and G. One can verify that there exists a strict
if-while algebra over the generators of G which is elementary.

Let A be an elementary if-while algebra over the generators of G, a be a sort
symbol of Σ, x be an element of (the generators of G)(a), and τ be an element
of T from a. Let us observe that x:=Aτ is absolutely-terminating.

Now let Γ denotes the program

y:=A1IT;
while b gt(@m, 0IT,A) do
if @m is odd(b,A) then
y:=A@y · @x
fi;
m:=A@mdiv 2IT;
x:=A@x · @x
done

Then we state the propositions:

(69) Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb6→falseC

(the generators of G). Suppose

(i) G is C-supported, and

(ii) f ∈ C -Executionb6→falseC
(A), and

(iii) there exists a function d such that d(x) = 1 and d(y) = 2 and
d(m) = 3.

Then Γ is terminating w.r.t. f and {s : s(I)(m) ­ 0}. The theorem is a
consequence of (66), (36), (61), (65), (40), and (43). Proof: Set ST =
C -States(the generators of G). Set TV = Statesb 6→falseC

(the generators
of G). Set P = {s : s(I)(m) ­ 0}. Set W = b gt(@m, 0IT,A). Define
F(element of ST) = $1(I)(m)(∈ N). DefineR[element of ST] ≡ $1(I)(m) >

Analysis of algorithms: an example of a sort algorithm 11

0. Set K = if @m is odd(b,A) then(y:=A(@y · @x)).
Set J = (K;m:=A(@m div 2IT));x:=A(@x · @x). P is invariant w.r.t. W and
f . For every element s of ST such that s ∈ P and f(f(s, J),W) ∈ TV
holds f(s, J) ∈ P . P is invariant w.r.t. y:=A(1IT) and f . For every s such
that f(s,W) ∈ P holds iteration of f started in J ;W terminates w.r.t.
f(s,W). �

(70) Suppose G is C-supported and there exists a function d such that
d(b) = 0 and d(x) = 1 and d(y) = 2 and d(m) = 3. Then let us consider
an element s of C -States(the generators of G) and a natural number n.
Suppose n = s(I)(m). If f ∈ C -Executionb 6→falseC

(A), then f(s,Γ)(I)(y) =
s(I)(x)n. The theorem is a consequence of (65), (66), (36), (61), (37),
(40), (43), (67), (10), and (42). Proof: Set Σ = C -States(the generators
of G). Set W = T. Set g = f . Set T = Statesb 6→falseC

(the generators of
G). Set s0 = f(s, y:=A(1IW)). Define R[element of Σ] ≡ $1(I)(m) > 0.
Set C = b gt(@m, 0IW ,A). Define P[element of Σ] ≡ s(I)(x)n = $1(I)(y) ·
$1(I)(x)$1(I)(m) and $1(I)(m) ­ 0. Define F(element of Σ) = $1(I)(m)(∈
N). Set I = if @m is odd(b,A) then(y:=A(@y · @x)).
Set J = (I;m:=A(@mdiv 2YW));x:=A(@x · @x). For every element s of Σ
such that P[s] holds P[(g(s,C) qua element of Σ)] and g(s,C) ∈ T iff
R[(g(s,C) qua element of Σ)]. Set s1 = g(s0,C). For every element s of Σ
such that R[s] holds R[(g(s, J ; C) qua element of Σ)] iff g(s, J ; C) ∈ T and
F((g(s, J ; C) qua element of Σ)) < F(s). Set q = s. For every element s
of Σ such that P[s] and s ∈ T and R[s] holds P[(g(s, J) qua element of
Σ)]. �

2. Calculation of Maximum

Let X be a non empty set, f be a finite sequence of elements of Xω, and x

be a natural number. Let us observe that f(x) is transfinite sequence-like finite
function-like and relation-like.

Let us note that every finite sequence of elements of Xω is function yielding.
Let i be a natural number, f be an i-based finite array, and a, x be sets.

Note that f +· (a, x) is i-based finite and segmental.
Let X be a non empty set, f be an X-valued function, a be a set, and x be

an element of X. Let us observe that f +· (a, x) is X-valued.
The scheme Sch1 deals with a non empty set X and a natural number j and

a set B and a ternary functor F yielding a set and a unary functor A yielding
a set and states that

(Sch. 1) There exists a finite sequence f of elements of X ω such that len f = j

and f(1) = B or j = 0 and for every natural number i such that 1 ¬ i < j

holds f(i+ 1) = F(f(i), i,A(i))

12 grzegorz bancerek

provided

• for every 0-based finite array a of X and for every natural number i such
that 1 ¬ i < j for every element x of X , F(a, i, x) is a 0-based finite array
of X and

• B is a 0-based finite array of X and

• for every natural number i such that i < j holds A(i) ∈ X .

Now we state the propositions:

(71) Let us consider a non empty non void boolean signature Σ with arrays
of type 1 with connectives from 11 and integers at 1, sets J , L, and a sort
symbol K of Σ. Suppose (the connectives of Σ)(11) is of type 〈J, L〉 → K.
Then

(i) J = the array sort of Σ, and

(ii) for every integer sort symbol I of Σ, the array sort of Σ 6= I.

(72) Let us consider a 1-1-connectives 11-array correct boolean correct non
empty non void boolean signature Σ with integers with connectives from
4 and the sort at 1 and arrays of type 1 with connectives from 11 and
integers at 1, an integer sort symbol I of Σ, a boolean correct non-empty
algebra A over Σ with integers with connectives from 4 and the sort at
1 and arrays of type 1 with connectives from 11 and integers at 1, and
elements a, b of A from I. If a = 0, then init.array(a, b) = ∅.

(73) Let us consider an 11-array correct boolean correct non empty non void
boolean signature Σ with arrays of type 1 with connectives from 11 and
integers at 1 and an integer sort symbol I of Σ. Then

(i) the array sort of Σ 6= I, and

(ii) (the connectives of Σ)(11) is of type 〈the array sort of Σ, I〉 → I, and

(iii) (the connectives of Σ)(11 + 1) is of type 〈the array sort of Σ, I, I〉 →
the array sort of Σ, and

(iv) (the connectives of Σ)(11 + 2) is of type 〈the array sort of Σ〉 → I,
and

(v) (the connectives of Σ)(11 + 3) is of type 〈I, I〉 → the array sort of Σ.

(74) Let us consider a 1-1-connectives 11-array correct boolean correct non
empty non void boolean signature Σ with arrays of type 1 with connectives
from 11 and integers at 1 and integers with connectives from 4 and the
sort at 1, an integer sort symbol I of Σ, and a boolean correct non-empty
algebra A over Σ with arrays of type 1 with connectives from 11 and
integers at 1 and integers with connectives from 4 and the sort at 1. Then

(i) (the sorts of A)(the array sort of Σ) = Zω, and

Analysis of algorithms: an example of a sort algorithm 13

(ii) for every elements i, j of A from I such that i is a non negative
integer holds init.array(i, j) = i 7−→ j, and

(iii) for every element a of (the sorts of A)(the array sort of Σ), lengthI a =
a and for every element i of A from I and for every function f such
that f = a and i ∈ dom f holds a(i) = f(i) and for every element x
of A from I, ai←x = f +· (i, x).

The theorem is a consequence of (71).

Let a be a 0-based finite array. Observe that length a is finite.
Let Σ be a 1-1-connectives 11-array correct boolean correct non empty non

void boolean signature with integers with connectives from 4 and the sort at
1 and arrays of type 1 with connectives from 11 and integers at 1 and A be a
boolean correct non-empty algebra over Σ with arrays of type 1 with connectives
from 11 and integers at 1 and integers with connectives from 4 and the sort at
1. Observe that every non-empty subalgebra of A has arrays of type 1 with
connectives from 11 and integers at 1.

Let A be a non-empty algebra over Σ. We say that A is integer array if and
only if

(Def. 14) There exists an image C of A such that C is a boolean correct algebra
over Σ with integers with connectives from 4 and the sort at 1 and arrays
of type 1 with connectives from 11 and integers at 1.

Let X be a non-empty many sorted set indexed by the carrier of Σ. One can
verify that FΣ(X) is integer array as a non-empty algebra over Σ.

Note that every non-empty algebra over Σ which is integer array is also
integer.

One can check that there exists an including Σ-terms over X non-empty
strict free variable algebra over Σ which is vf-free and integer array.

One can check that there exists a non-empty algebra over Σ which is integer
array.

Let A be an integer array non-empty algebra over Σ. Observe that there
exists a boolean correct image of A which has integers with connectives from 4
and the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1.

In this paper Σ denotes a 1-1-connectives 11-array correct boolean correct
non empty non void boolean signature with integers with connectives from 4 and
the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1, X
denotes a non-empty many sorted set indexed by the carrier of Σ, T denotes a
vf-free including Σ-terms over X integer array non-empty free variable algebra
over Σ, C denotes a boolean correct non-empty image of T with arrays of type
1 with connectives from 11 and integers at 1 and integers with connectives from
4 and the sort at 1, G denotes a basic generator system over Σ, X, and T, A

denotes a if-while algebra over the generators of G, I denotes an integer sort
symbol of Σ, x, y, m, i denote pure elements of (the generators of G)(I), M , N

14 grzegorz bancerek

denote pure elements of (the generators of G)(the array sort of Σ), b denotes a
pure element of (the generators of G)((the boolean sort of Σ)), and s, s1 denote
elements of C -States(the generators of G).

Let us consider Σ. Let A be a boolean correct non-empty algebra over Σ with
arrays of type 1 with connectives from 11 and integers at 1. Observe that every
element of (the sorts of A)(the array sort of Σ) is relation-like and function-like.

Note that every element of (the sorts of A)(the array sort of Σ) is finite and
transfinite sequence-like.

Let us consider an operation symbol o of Σ. Now we state the propositions:

(75) Suppose o = (the connectives of Σ)(11)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈the array sort of Σ, I〉, and

(ii) the result sort of o = I.

(76) Suppose o = (the connectives of Σ)(12)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈the array sort of Σ, I, I〉, and

(ii) the result sort of o = the array sort of Σ.

(77) Suppose o = (the connectives of Σ)(13)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈the array sort of Σ〉, and

(ii) the result sort of o = I.

(78) Suppose o = (the connectives of Σ)(14)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = the array sort of Σ.

(79) Let us consider an element τ of T from the array sort of Σ and an ele-
ment τ1 of T from I.
Then τ(τ1) value at(C, s) = (τ value at(C, s))(τ1 value at(C, s)). The the-
orem is a consequence of (29), (75), (23), and (26).

(80) Let us consider an element τ of T from the array sort of Σ and elements
τ1, τ2 of T from I. Then ττ1←τ2 value at(C, s) =
(τ value at(C, s))τ1 value at(C,s)←τ2 value at(C,s). The theorem is a consequence
of (29), (76), (24), and (27).

(81) Let us consider an element τ of T from the array sort of Σ. Then
lengthI τ value at(C, s) = lengthI(τ value at(C, s)). The theorem is a con-
sequence of (29), (77), (22), and (25).

(82) Let us consider elements τ1, τ2 of T from I. Then init.array(τ1, τ2)
value at(C, s) = init.array(τ1 value at(C, s), τ2 value at(C, s)). The theorem
is a consequence of (29), (78), (23), and (26).

In the sequel u denotes a many sorted function from FreeGenerator(T) into
the sorts of C.

Now we state the propositions:

Analysis of algorithms: an example of a sort algorithm 15

(83) Let us consider an element τ of T from the array sort of Σ and an ele-
ment τ1 of T from I.
Then τ(τ1) value at(C, u) = (τ value at(C, u))(τ1 value at(C, u)). The the-
orem is a consequence of (28), (75), (23), and (26).

(84) Let us consider an element τ of T from the array sort of Σ and elements
τ1, τ2 of T from I.
Then ττ1←τ2 value at(C, u) = (τ value at(C, u))τ1 value at(C,u)←τ2 value at(C,u).
The theorem is a consequence of (28), (76), (24), and (27).

(85) Let us consider an element τ of T from the array sort of Σ. Then
lengthI τ value at(C, u) = lengthI(τ value at(C, u)). The theorem is a con-
sequence of (28), (77), (22), and (25).

(86) Let us consider elements τ1, τ2 of T from I. Then init.array(τ1, τ2)
value at(C, u) = init.array(τ1 value at(C, u), τ2 value at(C, u)). The theorem
is a consequence of (28), (78), (23), and (26).

Let us consider Σ, X, T, and I. Let i be an integer. The functor iIT yielding
an element of T from I is defined by

(Def. 15) There exists a function f from Z into (the sorts of T)(I) such that

(i) it = f(i), and

(ii) f(0) = 0IT, and

(iii) for every natural number j and for every element τ of T from I such
that f(j) = τ holds f(j + 1) = τ + 1IT and f(−(j + 1)) = −(τ + 1IT).

Now we state the propositions:

(87) 0IT = 0IT.

(88) Let us consider a natural number n. Then

(i) (n+ 1)IT = nIT + 1IT, and

(ii) −(n+ 1)IT = −(n+ 1)IT.

(89) 1IT = 0IT + 1IT. The theorem is a consequence of (88) and (87).

(90) Let us consider an integer i. Then iIT value at(C, s) = i. The theorem is
a consequence of (87), (36), (37), (88), (39), and (38).

Let us consider Σ, X, T, G, I, and M . Let i be an integer. The functor
M(i, I) yielding an element of T from I is defined by the term

(Def. 16) (@M)(iIT).

Let us consider C and s. Note that s(the array sort of Σ)(M) is function-like
and relation-like.

Note that s(the array sort of Σ)(M) is finite transfinite sequence-like and
Z-valued.

Observe that rng(s(the array sort of Σ)(M)) is finite and integer-membered.
Let us consider an integer j. Now we state the propositions:

16 grzegorz bancerek

(91) Suppose j ∈ dom(s(the array sort of Σ)(M)) and
M(j, I) ∈ (the generators of G)(I). Then s(the array sort of Σ)(M)(j) =
s(I)(M(j, I)).

(92) Suppose j ∈ dom(s(the array sort of Σ)(M)) and
(@M)(@i) ∈ (the generators of G)(I) and j = @i value at(C, s).
Then (s(the array sort of Σ)(M))(@i value at(C, s)) = s(I)(((@M)(@i))).

Let X be a non empty set. One can verify that Xω is infinite.
Now we state the propositions:

(93) Now let Γ denotes the program

m:=A0IT;
for i:=A1IT until b gt(lengthI

@M,@i,A) step i:=A@i+ 1IT
do
if b gt((@M)(@i), (@M)(@m),A) then
m:=A@i

fi
done

Let us consider an execution function f of A over C -States(the generators
of G) and Statesb 6→falseC

(the generators of G). Suppose

(i) f ∈ C -Executionb6→falseC
(A), and

(ii) G is C-supported, and

(iii) i 6= m, and

(iv) s(the array sort of Σ)(M) 6= ∅.
Let us consider a natural number n. Suppose f(s,Γ)(I)(m) = n. Let
us consider a non empty finite integer-membered set X. Suppose X =
rng(s(the array sort of Σ)(M)). Then M(n, I) value at(C, s) = maxX.
The theorem is a consequence of (65), (36), (37), (74), (71), (66), (81),
(61), (39), (79), and (90). Proof: Set ST = C -States(the generators of
G). Define R[element of ST] ≡ s(the array sort of Σ)(M) = $1(the array
sort of Σ)(M). Reconsider sm = s as a many sorted function from the
generators of G into the sorts of C. Reconsider z = sm(the array sort of
Σ)(M) as a 0-based finite array of Z. Define P[element of ST] ≡ R[$1]
and $1(I)(i), $1(I)(m) ∈ N and $1(I)(i) ¬ len z and $1(I)(m) < $1(I)(i)
and $1(I)(m) < len z and for every integer mx such that mx = $1(I)(m)
for every natural number j such that j < $1(I)(i) holds z(j) ¬ z(mx). De-
fine Q[element of ST] ≡ R[$1] and $1(I)(i) < lengthI

@M value at(C, s).
Set s0 = s. Set s1 = f(s,m:=A(0IT)). Set s2 = f(s1, i:=A(1IT)). Con-
sider J1, K1, L1 being elements of Σ such that L1 = 1 and K1 = 1
and J1 6= L1 and J1 6= K1 and (the connectives of Σ)(11) is of type
〈J1,K1〉 → L1 and (the connectives of Σ)(11 + 1) is of type 〈J1,K1,
L1〉 → J1 and (the connectives of Σ)(11 + 2) is of type 〈J1〉 → K1 and

Analysis of algorithms: an example of a sort algorithm 17

(the connectives of Σ)(11 + 3) is of type 〈K1, L1〉 → J1. P[s2]. Define
F(element of ST) = (len(s0(the array sort of Σ)(M)) − $1(I)(i))(∈ N).
f(s2,W) ∈ TV iff Q[f(s2,W)]. Now let Γ denotes the program
J ;
K;
W

For every element s of ST such that Q[s] holds Q[f(s,Γ)] iff f(s,Γ) ∈ TV
and F(f(s,Γ)) < F(s). For every element s of ST such that P[s] and s ∈
TV and Q[s] holds P[f(s, J ;K)]. For every element s of ST such that P[s]
holds P[f(s,W)] and f(s,W) ∈ TV iff Q[f(s,W)]. M(n, I) value at(C, s)
is a upper bound of X. For every upper bound x of X, M(n, I)
value at(C, s) ¬ x. �

(94) Now let Γ denotes the program
J ;
i:=A@i+ 1IT

Now let ∆ denotes the program

for i:=Aτ0 until b gt(τ1,
@i,A) step i:=A@i+ 1IT do

J

done

Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb 6→falseC

(the generators of G). Suppose

(i) f ∈ C -Executionb 6→falseC
(A), and

(ii) G is C-supported.

Let us consider elements τ0, τ1 of T from I, an algorithm J of A, and a
set P . Suppose

(iii) P is invariant w.r.t. i:=Aτ0 and f , invariant w.r.t. b gt(τ1,
@i,A) and

f , invariant w.r.t. i:=A(@i+ 1IT) and f , and invariant w.r.t. J and f ,
and

(iv) J is terminating w.r.t. f and P , and

(v) for every s, f(s, J)(I)(i) = s(I)(i) and f(s, b gt(τ1,
@i,A))(I)(i) =

s(I)(i) and τ1 value at(C, f(s, b gt(τ1,
@i,A))) = τ1 value at(C, s) and

τ1 value at(C, f(s,Γ)) = τ1 value at(C, s).

Then ∆ is terminating w.r.t. f and P . The theorem is a consequence
of (61), (66), (65), (39), and (37). Proof: Set W = b gt(τ1,

@i,A). Set
L = i:=A(@i+ 1IT). Set K = i:=Aτ0. Set ST = C -States(the generators of
G). Set TV = Statesb 6→falseC

(the generators of G). Now let Γ denotes the
program

18 grzegorz bancerek

J ;
L;
W

For every s such that f(s,W) ∈ P holds iteration of f started in Γ
terminates w.r.t. f(s,W). �

(95) Now let Γ denotes the program

m:=A0IT;
for i:=A1IT until b gt(lengthI

@M,@i,A) step i:=A@i+ 1IT
do
if b gt((@M)(@i), (@M)(@m),A) then
m:=A@i

fi
done

Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb6→falseC

(the generators of G). Suppose

(i) f ∈ C -Executionb6→falseC
(A), and

(ii) G is C-supported, and

(iii) i 6= m.

Then Γ is terminating w.r.t. f and {s : s(the array sort of Σ)(M) 6= ∅}. The
theorem is a consequence of (74), (73), (65), (61), (81), and (94). Proof:
Set J = m:=A(0IT). Set K = i:=A(1IT). Set W = b gt(lengthI

@M,@i,A).
Set L = i:=A(@i + 1IT). Set N = b gt((@M)(@i), (@M)(@m),A). Set O =
m:=A(@i). Set a = the array sort of Σ. Set P = {s : s(a)(M) 6= ∅}. P is
invariant w.r.t. J and f . P is invariant w.r.t. K and f . P is invariant w.r.t.
W and f . P is invariant w.r.t. L and f . P is invariant w.r.t. N and f . P
is invariant w.r.t. O and f . Set ST = C -States(the generators of G). Set
TV = Statesb 6→falseC

(the generators of G). P is invariant w.r.t. if N thenO
and f . Now let Γ denotes the program
if N then
O

fi;
L

For every s, f(s, if N thenO)(I)(i) = s(I)(i) and f(s,W)(I)(i) = s(I)(i)
and lengthI

@M value at(C, f(s,W)) = lengthI
@M value at(C, s) and

lengthI
@M value at(C, f(s,Γ)) = lengthI

@M value at(C, s). �

Analysis of algorithms: an example of a sort algorithm 19

3. Sorting by Exchanging

In this paper i1, i2 denote pure elements of (the generators of G)(I).
Let us consider Σ, X, T, and G. We say that G is integer array if and only

if

(Def. 17) (i) {(@M)(τ) where τ is an element of T from I : not contradiction} ⊆
(the generators of G)(I), and

(ii) for every M and for every element τ of T from I and for every element
g of G from I such that g = (@M)(τ) there exists x such that x 6∈
(vf τ)(I) and supp-var g = x and (supp-term g)(the array sort of
Σ)(M) = (@M)τ←@x and for every sort symbol s of Σ and for every
y such that y ∈ (vf g)(s) and if s = the array sort of Σ, then y 6= M

holds (supp-term g)(s)(y) = y.

Now we state the proposition:

(96) If G is integer array, then for every element τ of T from I, (@M)(τ) ∈
(the generators of G)(I).

The functor 〈〈Z,¬ 〉〉 yielding a strict real non empty poset is defined by the
term

(Def. 18) RealPoset Z.

Let us consider Σ, X, T, and G. Let A be an elementary if-while algebra
over the generators of G, a be a sort symbol of Σ, and τ1, τ2 be elements of T

from a. Assume τ1 ∈ (the generators of G)(a). The functor τ1:=Aτ2 yielding an
absolutely-terminating algorithm of A is defined by the term

(Def. 19) (The assignments of A)(〈〈τ1, τ2〉〉).
Now we state the proposition:

(97) Let us consider a countable non-empty many sorted set X indexed by the
carrier of Σ, a vf-free including Σ-terms over X integer array non-empty
free variable algebra T over Σ, a basic generator system G over Σ, X, and
T, a pure element M of (the generators of G)(the array sort of Σ), and
pure elements i, x of (the generators of G)(I). Then (@M)(@i) 6= x. The
theorem is a consequence of (73), (79), (61), and (74).

Let Σ be a non empty non void many sorted signature and A be a disjoint
valued algebra over Σ. Note that the sorts of A is disjoint valued.

Let us consider Σ and X. Let T be an including Σ-terms over X algebra
over Σ. We say that T is array degenerated if and only if

(Def. 20) There exists I and there exists an element M of
(FreeGenerator(T))(the array sort of Σ) and there exists an element τ of T

from I such that (@M)(τ) 6= Sym((the connectives of Σ)(11)(∈ (the carrier’
of Σ)), X)-tree(〈M, τ〉).

20 grzegorz bancerek

Observe that FΣ(X) is non array degenerated.
Observe that there exists an including Σ-terms over X algebra over Σ which

is non array degenerated.
Now we state the propositions:

(98) Suppose T is non array degenerated. Then vf((@M)(@i)) = I -singleton i∪
(the array sort of Σ) -singletonM . The theorem is a consequence of (73).
Proof: Set τ = (@M)(@i). Reconsider N = M as an element of
(FreeGenerator(T))(the array sort of Σ). Consider m being a set such that
m ∈ X(the array sort of Σ) and M = the root tree of 〈〈m, the array sort
of Σ〉〉. Consider j being a set such that j ∈ X(I) and i = the root tree
of 〈〈j, I〉〉. {M} = (vf τ)(the array sort of Σ). {i} = (vf τ)(I). For every
sort symbol s of Σ such that s 6= the array sort of Σ and s 6= I holds
∅ = (vf τ)(s). �

(99) Let us consider an elementary if-while algebra A over the generators of
G and an execution function f of A over C -States(the generators of G)
and Statesb6→falseC

(the generators of G). Suppose

(i) G is integer array and C-supported, and

(ii) f ∈ C -Executionb6→falseC
(A), and

(iii) X is countable, and

(iv) T is non array degenerated.

Let us consider an element τ of T from I. Then f(s, (@M)(@i):=Aτ) =
f(s,M :=A((@M)@i←τ)). The theorem is a consequence of (96), (98), (97),
(4), (3), (62), (73), (61), (84), (65), and (80). Proof: Reconsider H =
FreeGenerator(T) as a many sorted subset of the generators of G. Set
v = τ value at(C, s). Reconsider p = (@M)(@i) as an element of G from I.
Reconsider g = s as a many sorted function from the generators of G into
the sorts of C. Reconsider g1 = f(s, (@M)(@i):=Aτ),
g2 = f(s,M :=A((@M)@i←τ)) as a many sorted function from the genera-
tors of G into the sorts of C. Reconsider Mi = (@M)(@i) as an element of
(the generators of G)(I). Reconsider m = M as an element of G from the
array sort of Σ. Consider x such that x 6∈ (vf @i)(I) and supp-var p = x

and (supp-term p)(the array sort of Σ)(M) = (@M)@i←@x and for every sort
symbol s of Σ and for every y such that y ∈ (vf p)(s) and if s = the array
sort of Σ, then y 6= M holds (supp-term p)(s)(y) = y. g1 = g2. �

Let us consider Σ, X, T, G, C, s, and b. Let us observe that s((the boolean
sort of Σ))(b) is boolean.

Now we state the proposition:

(100) Now let Γ denotes the program

Analysis of algorithms: an example of a sort algorithm 21

while J do
y:=A(@M)(@i1);
(@M)(@i1):=A(@M)(@i2);
(@M)(@i2):=A@y

done

Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb 6→falseC

(the generators of G). Suppose

(i) G is integer array and C-supported, and

(ii) f ∈ C -Executionb 6→falseC
(A), and

(iii) T is non array degenerated, and

(iv) X is countable.

Let us consider an algorithm J of A. Suppose

(v) f(s, J)(the array sort of Σ)(M) = s(the array sort of Σ)(M), and

(vi) for every array D of 〈〈Z,¬ 〉〉 such that D = s(the array sort of Σ)(M)
holds if D 6= ∅, then f(s, J)(I)(i1), f(s, J)(I)(i2) ∈ domD and if
inversionsD 6= ∅, then 〈〈f(s, J)(I)(i1), f(s, J)(I)(i2)〉〉 ∈ inversionsD
and f(s, J)((the boolean sort of Σ))(b) = true iff inversionsD 6= ∅.

Let us consider a 0-based finite array D of 〈〈Z,¬ 〉〉. Suppose

(vii) D = s(the array sort of Σ)(M), and

(viii) y 6= i1, and

(ix) y 6= i2.

Then

(x) f(s,Γ)(the array sort of Σ)(M) is an ascending permutation of D,
and

(xi) if J is absolutely-terminating, then Γ is terminating w.r.t. f and {s1

: s1(the array sort of Σ)(M) 6= ∅}.

The theorem is a consequence of (73), (10), (61), (65), (99), (80), (74), and
(79).Proof: Define F(natural number, element of C -States(the generators
of G)) = f($2, ((J ; y:=A((@M)(@i1))); (@M)(@i1):=A((@M)(@i2)));
(@M)(@i2):=A(@y)). Set ST = C -States(the generators of G). Consider g
being a function from N into ST such that g(0) = s and for every natural
number i, g(i+ 1) = F(i, (g(i) qua element of ST)). Define G(element) =
g($1(∈ N))(the array sort of Σ)(M). Consider h being a function from N
into Zω such that for every element i such that i ∈ N holds h(i) = G(i).
For every ordinal number a such that a ∈ dom g holds h(a) is an ar-
ray of 〈〈Z,¬ 〉〉. Set TV = Statesb6→falseC

(the generators of G). Consider
s1 such that s = s1 and s1(the array sort of Σ)(M) 6= ∅. Reconsider

22 grzegorz bancerek

D = s(the array sort of Σ)(M) as a 0-based finite non empty array of
〈〈Z,¬ 〉〉. Consider g being a function from N into ST such that g(0) = s

and for every natural number i, g(i + 1) = F(i, (g(i) qua element of
ST)). Define G(element) = g($1(∈ N))(the array sort of Σ)(M). Consider
h being a function from N into Zω such that for every element i such that
i ∈ N holds h(i) = G(i). For every ordinal number a such that a ∈ dom g

holds h(a) is an array of 〈〈Z,¬ 〉〉. Define T[natural number] ≡ h($1) 6= ∅.
For every natural number i such that T[i] holds T[i+1]. For every natural
number a and for every array R of 〈〈Z,¬ 〉〉 such that R = h(a) for every s
such that g(a) = s there exist sets x, y such that x = f(s, J)(I)(i1) and
y = f(s, J)(I)(i2) and x, y ∈ domR and h(a + 1) = Swap(R, x, y). Defi-
ne Q[natural number] ≡ h($1) is a permutation of D. Define P[natural
number] ≡ g($1)(the array sort of Σ)(M) is an ascending permutation
of D. There exists a natural number i such that P[i]. Consider B being
a natural number such that P[B] and for every natural number i such
that P[i] holds B ¬ i. Reconsider c = h� succ B as an array of Zω. Set
TV = Statesb 6→falseC

(the generators of G). Define H(natural number) =
f(g($1− 1), J). Consider r being a finite sequence such that len r = B + 1
and for every natural number i such that i ∈ dom r holds r(i) = H(i).
rng r ⊆ ST . Reconsider R = g(B)(the array sort of Σ)(M) as an ascen-
ding permutation of D. Now let Γ denotes the program

y:=A(@M)(@i1);
(@M)(@i1):=A(@M)(@i2);
(@M)(@i2):=A@y;
J

For every natural number i such that 1 ¬ i < len r holds r(i) ∈ TV and
r(i+ 1) = f(r(i),Γ). �

References

[1] Grzegorz Bancerek. Mizar analysis of algorithms: Preliminaries. Formalized Mathematics,
15(3):87–110, 2007. doi:10.2478/v10037-007-0011-x.

[2] Grzegorz Bancerek. Program algebra over an algebra. Formalized Mathematics, 20(4):
309–341, 2012. doi:10.2478/v10037-012-0037-6.

[3] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[4] Grzegorz Bancerek. Sorting by exchanging. Formalized Mathematics, 19(2):93–102, 2011.

doi:10.2478/v10037-011-0015-4.
[5] Grzegorz Bancerek. Institution of many sorted algebras. Part I: Signature reduct of an

algebra. Formalized Mathematics, 6(2):279–287, 1997.
[6] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719–725, 1991.
[7] Grzegorz Bancerek. Free term algebras. Formalized Mathematics, 20(3):239–256, 2012.

doi:10.2478/v10037-012-0029-6.
[8] Grzegorz Bancerek. Terms over many sorted universal algebra. Formalized Mathematics,

5(2):191–198, 1996.
[9] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.

[10] Grzegorz Bancerek. König’s lemma. Formalized Mathematics, 2(3):397–402, 1991.

http://dx.doi.org/10.2478/v10037-007-0011-x
http://dx.doi.org/10.2478/v10037-012-0037-6
http://dx.doi.org/10.2478/v10037-011-0015-4
http://dx.doi.org/10.2478/v10037-012-0029-6

Analysis of algorithms: an example of a sort algorithm 23

[11] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82,
1993.

[12] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Formalized Mathematics,
6(1):93–107, 1997.

[13] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[14] Grzegorz Bancerek and Artur Korniłowicz. Yet another construction of free algebra.
Formalized Mathematics, 9(4):779–785, 2001.

[15] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[16] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized
Mathematics, 5(1):47–54, 1996.

[17] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[18] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[19] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):
55–65, 1990.

[20] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[21] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[22] Czesław Byliński. Galois connections. Formalized Mathematics, 6(1):131–143, 1997.
[23] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[24] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathe-
matics, 5(1):61–65, 1996.

[25] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of uni-
versal algebra. Formalized Mathematics, 3(2):251–253, 1992.

[26] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890,
1990.

[27] Takashi Mitsuishi and Grzegorz Bancerek. Lattice of fuzzy sets. Formalized Mathematics,
11(4):393–398, 2003.

[28] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):
67–74, 1996.

[29] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1
(2):329–334, 1990.

[30] Andrzej Trybulec. A scheme for extensions of homomorphisms of many sorted algebras.
Formalized Mathematics, 5(2):205–209, 1996.

[31] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[32] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[33] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[34] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[35] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski – Zorn lemma. Formalized
Mathematics, 1(2):387–393, 1990.

[36] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[37] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequ-

ences. Formalized Mathematics, 9(4):825–829, 2001.
[38] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[39] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1

(1):73–83, 1990.

Received November 9, 2012

	=0pt Analysis of Algorithms: An Example of a Sort Algorithm By Grzegorz Bancerek

