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1. EXPONENTIATION BY SQUARING REVISITED

Now we state the propositions:

(I) (i) 1 mod 2=1, and

(ii) 2 mod 2 =0.

(2) Let us consider a non empty non void many sorted signature 3, an
algebra 2 over X, a subalgebra B of 2, a sort symbol s of 3, and a set a.
Suppose a € (the sorts of B)(s). Then a € (the sorts of 2A)(s).

(3) Let us consider a non empty set I, sets a, b, ¢, and an element ¢ of I.
Then ¢ € (i-singleton a)(b) if and only if b =7 and ¢ = a.

(4) Let us consider a non empty set I, sets a, b, ¢, d, and elements 4, j of I.
Then ¢ € (i-singletona U j-singleton d)(b) if and only if b =i and ¢ = a
or b=j and ¢ = d. The theorem is a consequence of (3).
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2 GRZEGORZ BANCEREK

Let X be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and 2 be a non-empty algebra
over Y. We say that 2 is integer if and only if

(Def. 1) There exists an image € of 2 such that € is a boolean correct algebra
over Y with integers with connectives from 4 and the sort at 1.

Now we state the propositions:

(5) Let us consider a non empty non void many sorted signature ¥ and a
non-empty algebra 2 over .. Then Imid, = the algebra of 2, where « is
the sorts of .

(6) Let us consider a non empty non void many sorted signature X. Then
every non-empty algebra over X is an image of 2. The theorem is a con-
sequence of (5). PROOF: 2 is 2A-image. [

Let ¥ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1. One can verify that there
exists a non-empty algebra over Y which is integer.

Let 2 be an integer non-empty algebra over Y. Note that there exists an
image of 2 which is boolean correct.

Let us note that there exists a boolean correct image of 2l which has integers
with connectives from 4 and the sort at 1.

Now we state the proposition:

(7) Let us consider a non empty non void many sorted signature ¥, a non-
empty algebra 2l over Y, an operation symbol o of X, a set a, and a sort
symbol 7 of . Suppose o is of type a — r. Then

(i) Den(o,2A) is a function from (the sorts of 2)#(a) into (the sorts of
20)(r), and

(ii) Args(o,2) = (the sorts of A)*(a), and
(iii) Result(o,2A) = (the sorts of 2A)(r).

Let 3 be a boolean correct non empty non void boolean signature and 2
be a boolean correct non-empty algebra over 3. Observe that every non-empty
subalgebra of 2 is boolean correct.

Let ¥ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and 2 be a boolean correct
non-empty algebra over Y with integers with connectives from 4 and the sort
at 1. Note that every non-empty subalgebra of 2 has integers with connectives
from 4 and the sort at 1.

Let X be a non-empty many sorted set indexed by the carrier of .. Let us
observe that §x(X) is integer as a non-empty algebra over X.

Now we state the proposition:

(8) Let us consider a non empty non void many sorted signature ¥, algebras
2Ap, Ao, By over X, and a non-empty algebra By over . Suppose
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(i) the algebra of 2; = the algebra of 2z, and
(ii) the algebra of B, = the algebra of Bs.

Let us consider a many sorted function h; from 2{; into %; and a many
sorted function hg from 2s into Bo. Suppose

(iii) hy = hg, and

(iv) hq is an epimorphism of 2(; onto B.

Then hs is an epimorphism of 2y onto Bs.

Let ¥ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and X be a non-empty many
sorted set indexed by the carrier of ¥. Let us note that there exists an including
Y-terms over X non-empty free variable algebra over ¥ which is vi-free and
integer.

Let 3 be a non empty non void many sorted signature. Let ¥ be an inclu-
ding Y-terms over X non-empty algebra over ¥. The functor FreeGenerator(¥)
yielding a non-empty generator set of ¥ is defined by the term

(Def. 2) FreeGenerator(X).

Let Xy be a countable non-empty many sorted set indexed by the carrier
of ¥ and ¥ be an including Y-terms over Xy non-empty algebra over . Let us
observe that FreeGenerator(%) is Equations(X, ¥)-free and non-empty.

Let X be a non-empty many sorted set indexed by the carrier of 3, ¥ be an
including 3-terms over X algebra over 3, and G be a generator set of T. We
say that G is basic if and only if

(Def. 3) FreeGenerator(%) C G.
Let s be a sort symbol of ¥ and = be an element of G(s). We say that x is pure
if and only if

(Def. 4) x € (FreeGenerator(%))(s).

Observe that FreeGenerator(¥) is basic.

Note that there exists a non-empty generator set of ¥ which is basic.

Let G be a basic generator set of ¥ and s be a sort symbol of >. One can
check that there exists an element of G(s) which is pure.

Now we state the proposition:

(9) Let us consider a non empty non void many sorted signature ¥, a non-
empty many sorted set X indexed by the carrier of ¥, an including -
terms over X algebra ¥ over Y, a basic generator set G of ¥, a sort
symbol s of ¥, and a set a. Then a is a pure element of G(s) if and only
if a € (FreeGenerator(%))(s).

Let ¥ be a non empty non void many sorted signature, X be a non-empty
many sorted set indexed by the carrier of 3, ¥ be an including ¥-terms over X
algebra over ¥, and GG be a generator system over %, X, and ¥. We say that G
is basic if and only if
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(Def. 5) The generators of G are basic.

Observe that there exists a generator system over ¥, X, and ¥ which is
basic.

Let GG be a basic generator system over 3, X, and ¥. Note that the generators
of G are basic.

In this paper > denotes a boolean correct non empty non void boolean
signature with integers with connectives from 4 and the sort at 1, X denotes
a non-empty many sorted set indexed by the carrier of 3, ¥ denotes a vi-free
including Y-terms over X integer non-empty free variable algebra over X, €
denotes a boolean correct non-empty image of ¥ with integers with connectives
from 4 and the sort at 1, G denotes a basic generator system over Y, X, and
T, A denotes a if-while algebra over the generators of GG, I denotes an integer
sort symbol of ¥, z, y, z, m denote pure elements of (the generators of G)(I),
b denotes a pure element of (the generators of G)((the boolean sort of X)), 7,
71, T9 denote elements of ¥ from I, P denotes an algorithm of 2, and s, s1, s
denote elements of €-States(the generators of G).

Let ¥ be a boolean correct non empty non void boolean signature and 2 be
a non-empty algebra over . The functor falsey yielding an element of 2 from
the boolean sort of ¥ is defined by the term

(Def. 6) —trueg.

In this paper f denotes an execution function of 2 over
¢ -States(the generators of G) and Statesy sfalse, (the generators of G).
Now we state the proposition:

(10) falsee = false.

Let ¥ be a boolean correct non empty non void boolean signature, X be
a non-empty many sorted set indexed by the carrier of 3, ¥ be an including
Y-terms over X algebra over X, GG be a generator system over >, X, and ¥,
b be an element of (the generators of G)((the boolean sort of X)), € be an
image of T, A be a pre-if-while algebra, f be an execution function of 2 over
¢-States(the generators of G) and Statesy sfalse, (the generators of G), s be an
element of €-States(the generators of G), and P be an algorithm of 2(. Note
that the functor f(s, P) yields an element of €-States(the generators of G). Let
Y be a non empty non void many sorted signature, T be a non-empty algebra
over X, G be a non-empty generator set of ¥, s be a sort symbol of 3, and x be
an element of G(s). The functor ® yielding an element of ¥ from s is defined
by the term

(Def. 7) .
Let us consider ¥, X, T, G, A, b, I, 71, and 9. The functors bleq(7, 72, 2)
and bgt(71, 72, 2A) yielding algorithms of 2 are defined by the terms, respectively.

(Def. 8) b::m(leq(Tl,TQ».
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(Def. 9)  b:=g(—1leq(m1,72)).
The functor 2% yielding an element of ¥ from [ is defined by the term
(Def. 10) 1L +1L
Let us consider G, 2, and b. Let us consider 7. The functors 7is odd (b, ) and
7is even(b, ) yielding algorithms of 2 are defined by the terms, respectively.
(Def. 11)  bgt(r mod 2L, 0L, 2A).
(Def. 12)  bleq(t mod 2L, 0L, ).
Let us consider €. Let us consider s. Let x be an element of (the generators
of G)(I). Let us note that s()(z) is integer.
Let us consider 7. Let us note that 7 value at(€, s) is integer.
In the sequel u denotes a many sorted function from FreeGenerator(¥) into
the sorts of €.
Let us consider ¥, X, ¥, €, I, u, and 7. One can verify that 7 value at(¢, u)
is integer.
Let us consider G. Let us consider s. Let 7 be an element of ¥ from the
boolean sort of 3. One can verify that 7value at(€, s) is boolean.
Let us consider u. One can check that 7 value at(€, u) is boolean.
Let us consider an operation symbol o of 3. Now we state the propositions:

(11) Suppose o = (the connectives of ¥)(1)(€ (the carrier’ of X)). Then
(i) o = (the connectives of ¥)(1), and
(ii) Arity(o) =0, and
(iii) the result sort of o = the boolean sort of 3.
(12) Suppose o = (the connectives of ¥)(2)(& (the carrier’ of ¥)). Then
(i) o = (the connectives of ¥)(2), and
(ii) Arity(o) = (the boolean sort of ), and
(iii) the result sort of o = the boolean sort of 3.
(13) Suppose o = (the connectives of ¥)(3)(€ (the carrier’ of X)). Then
(i) o = (the connectives of ¥)(3), and
(ii) Arity(o) = (the boolean sort of ¥, the boolean sort of ), and
(iii) the result sort of o = the boolean sort of 3.
(14) Suppose o = (the connectives of ¥)(4)(€ (the carrier’ of X)). Then
(i) Arity(o) =0, and
(ii) the result sort of o = I.
(15) Suppose o = (the connectives of ¥)(5)(€ (the carrier’ of ¥)). Then
(i) Arity(o) =0, and
(ii) the result sort of o = I.
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(16) Suppose o = (the connectives of X)(6)(€ (the carrier’ of X)). Then
(i) Arity(o) = (I), and
(ii) the result sort of o = I.

(17) Suppose o = (the connectives of ¥)(7)(& (the carrier’ of X)). Then
(i) Arity(o) = (I,I), and
(ii) the result sort of o = I.

(18) Suppose o = (the connectives of X)(8)(€ (the carrier’ of X)). Then
(i) Arity(o) = (I,I), and
(ii) the result sort of o = I.

(19) Suppose o = (the connectives of ¥)(9)(& (the carrier’ of X)). Then
(i) Arity(o) = (I,I), and
(ii) the result sort of o = I.

(20) Suppose o = (the connectives of X)(10)(€ (the carrier’ of X)). Then
(i) Arity(o) = (I,I), and
(ii) the result sort of o = the boolean sort of 3.

(21) Let us consider a non empty non void many sorted signature > and an
operation symbol o of 3. Suppose Arity(o) = ). Let us consider an algebra
2A over . Then Args(o,2A) = {0}.

(22) Let us consider a non empty non void many sorted signature 3, a sort
symbol a of ¥, and an operation symbol o of ¥. Suppose Arity(o) = (a).
Let us consider an algebra 2 over ¥. Then Args(o,2) = []((the sorts of
A)(a)).

(23) Let us consider a non empty non void many sorted signature X, sort
symbols a, b of 3, and an operation symbol o of ¥. Suppose Arity(o) = (a,
b). Let us consider an algebra 2 over X. Then Args(o, ) = [[((the sorts
of A)(a), (the sorts of A)(b)).

(24) Let us consider a non empty non void many sorted signature X, sort sym-
bols a, b, ¢ of 3, and an operation symbol o of 3. Suppose Arity(o) = (a, b,
c). Let us consider an algebra 2 over X. Then Args(o, ) = [[((the sorts
of A)(a), (the sorts of A)(b), (the sorts of A)(c)).

(25) Let us consider a non empty non void many sorted signature ¥, non-
empty algebras 2, B over X, a sort symbol s of 3, an element a of 2 from
s, a many sorted function h from 2l into 2B, and an operation symbol o of
Y. Suppose Arity(o) = (s). Let us consider an element p of Args(o,2). If

p = (a), then h#p = (h(s)(a)).
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(26) Let us consider a non empty non void many sorted signature Y, non-
empty algebras 2, B over X, sort symbols si, so of 3, an element a of
2 from s1, an element b of A from so, a many sorted function A from
2 into B, and an operation symbol o of . Suppose Arity(o) = (s1, s2).
Let us consider an element p of Args(o,?). Suppose p = (a,b). Then
hitp = (h(s1)(a), h(s2) ().

(27) Let us consider a non empty non void many sorted signature X, non-
empty algebras 2, 2B over X, sort symbols s1, s3, s3 of X, an element a of
A from s, an element b of 2 from so, an element ¢ of A from s3, a many
sorted function A from 2{ into 28, and an operation symbol o of 3. Suppose
Arity (o) = (s1, s2, s3). Let us consider an element p of Args(o,2). Suppose
p = (a,b,c). Then h#p = (h(s1)(a), h(s2)(b), h(s3)(c)).

Let us consider a many sorted function h from ¥ into €, a sort symbol a of
Y, and an element 7 of ¥ from a. Now we state the propositions:

(28) If h is a homomorphism of ¥ into €,
then 7 value at(€, h | FreeGenerator(¥)) = h(a)(7).

(29) Suppose h is a homomorphism of ¥ into € and s = h | the generators
of G. Then 7 value at(€, s) = h(a)(7).

(30) truegvalue at(€,s) = true. The theorem is a consequence of (11) and
(21).

(31) Let us consider an element 7 of T from the boolean sort of . Then
—7value at(€, s) = —(7 value at(€, s)). The theorem is a consequence of
(29), (12), (22), and (25).

(32) Let us consider a boolean set a and an element 7 of T from the boolean
sort of 3. Then —7 value at(€, s) = —a if and only if 7 value at(€, s) = a.
The theorem is a consequence of (31).

(33) Let us consider an element a of € from the boolean sort of ¥ and a
boolean set x. Then —a = —z if and only if a = x.

(34) falsegvalue at(€,s) = false. The theorem is a consequence of (31) and
(30).

(35) Let us consider elements 71, 75 of T from the boolean sort of ¥.. Then (71 A
T2) value at(€, s) = (71 value at(€, s)) A (72 value at(€, s)). The theorem is
a consequence of (29), (13), (23), and (26).

(36) 0Lvalue at(€,s) = 0. The theorem is a consequence of (14) and (21).

(37) 1Lvalue at(€, s) = 1. The theorem is a consequence of (15) and (21).

(38) (—7)value at(€, s) = —7 value at(€, s). The theorem is a consequence of
(16), (22), and (25).

(39) (11+m72) value at(€, s) = 7 value at(€, s)+7 value at(&, s). The theorem
is a consequence of (17), (23), and (26).

(40) 2L value at(€, s) = 2. The theorem is a consequence of (37) and (39).
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(41) (71 —m72) value at(€, s) = 71 value at(€, s) — 7o value at(€, s). The theorem
is a consequence of (39) and (38).

(42) (71 - o) value at(€, s) = (71 value at(€, s)) - (72 value at(€, s)). The the-
orem is a consequence of (29), (18), (23), and (26).

(43) (71 div o) value at(€, s) = 71 value at(€, s) div 7 value at(€, s). The the-
orem is a consequence of (19), (23), and (26).

(44) (71 mod 79)value at(€, s) = 7 value at(€, s) mod 7 value at(€, s). The
theorem is a consequence of (41), (42), and (43).

(45) leq(r1,m2) value at(€, s) = leq( value at(€, s), 72 value at(€, s)). The the-
orem is a consequence of (20), (23), and (26).

(46) trueg value at(€,u) = true. The theorem is a consequence of (11) and
(21).

(47) Let us consider an element 7 of T from the boolean sort of . Then

—7 value at(€,u) = —(7 value at(€, u)). The theorem is a consequence of
(28), (12), (22), and (25).

(48) Let us consider a boolean set a and an element 7 of T from the boolean
sort of ¥. Then —7 value at(€, u) = —a if and only if 7 value at(¢,u) = a.
The theorem is a consequence of (47).

(49) falseg value at(€,u) = false. The theorem is a consequence of (47) and
(46).
(50) Let us consider elements 71, 75 of T from the boolean sort of ¥. Then (71 A

T9) value at(€, u) = (71 value at(€, u)) A (12 value at(€, u)). The theorem is
a consequence of (28), (13), (23), and (26).

51) 0L value at(€,u) = 0. The theorem is a consequence of (14) and (21).
i
(52) 1Lvalue at(€,u) = 1. The theorem is a consequence of (15) and (21).

(563) (—7)value at(€,u) = —7 value at(€,u). The theorem is a consequence
of (16), (22), and (25).

(54) (711 + 72) value at(€,u) = 71 value at(€, u) + 72 value at(€, u). The the-
orem is a consequence of (17), (23), and (26).

(55) 2L value at(€,u) = 2. The theorem is a consequence of (52) and (54).

(56) (11 — m2) value at(€,u) = 7 value at(€, u) — m value at(€, u). The the-
orem is a consequence of (54) and (53).

(57) (11 - 72) value at(€,u) = (7 value at(€,u)) - (m2 value at(€, u)). The the-
orem is a consequence of (28), (18), (23), and (26).

(58) (11 div ) value at(€, u) = 7 value at(€, u) div 72 value at(€, u). The the-
orem is a consequence of (19), (23), and (26).

(59) (71 mod 72) value at(€,u) = 7 value at(€, u) mod 7 value at(€, u). The
theorem is a consequence of (56), (57), and (58).
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(60) leq(r1,72) value at(€, u) = leq(my value at(€, u), 72 value at(€, u)).
The theorem is a consequence of (20), (23), and (26).

(61) Let us consider a sort symbol a of ¥ and an element x of (the generators
of G)(a). Then % value at(¢, s) = s(a)(x). The theorem is a consequence
of (29).

(62) Let us consider a sort symbol a of 3, a pure element x of (the generators
of G)(a), and a many sorted function u from FreeGenerator(¥) into the
sorts of €. Then %z value at(¢, u) = u(a)(z).

Let us consider integers ¢, j and elements a, b of € from /. Now we state the
propositions:

(63) Ifa=iand b=j,thena—b=1i—j.

(64) Ifa=iand b=jand j# 0, then a mod b =14 mod j.

(65) Suppose G is €-supported and f € €-Executiony sfaise, (). Then let us
consider a sort symbol a of ¥, a pure element = of (the generators of
G)(a), and an element 7 of ¥ from a. Then

(i) f(s,z:=97)(a)(z) = 7 value at(<, s), and
(ii) for every pure element z of (the generators of G)(a) such that z # x
holds f(s,z:=97)(a)(z) = s(a)(z), and
(iii) for every sort symbol b of 3 such that a # b for every pure element
z of (the generators of G)(b), f(s,x:=97)(b)(z) = s(b)(2).
(66) Suppose G is C-supported and f € €-Executiony staise, (2A). Then
(i) 71 value at(€,s) < T value at(€, s) iff
f(s,bgt(ma, 71,2)) € Statesy sfalse, (the generators of G), and
(ii) 7 value at(€, s) < p value at(€, s) iff
f(s,bleq(m1,72,2)) € Statesy staisee (the generators of G), and
(iii) for every x, f(s,bgt(r1,72,24))(I)(x) = s(I)(z) and
f(S, bIGQ(TL T2, Ql))(l)(x) = S(I)(x)a and
(iv) for every pure element c of (the generators of G)((the boolean sort
of X)) such that ¢ # b holds f(s,bgt(r1, 72, ))((the boolean sort of
¥))(c) = s((the boolean sort of ¥))(c) and f(s,bleq(r1,72,2))
((the boolean sort of X))(c) = s((the boolean sort of X))(c).
The theorem is a consequence of (31), (45), and (33).

Let ¢, j be real numbers and a, b be boolean sets. One can verify that
(1 > j — a,b) is boolean.
Now we state the proposition:
(67) Suppose G is C-supported and f € €-Executiony staise, (A). Then

(i) f(s,7is odd(b,2A))((the boolean sort of 3))(b) = 7 value at(€, s) mod
2, and
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(ii) f(s,7is even(b,2))((the boolean sort of X))(b) = (7 value at(€, s) +
1) mod 2, and

(iii) for every z, f(s,7is odd(b,2))(I)(z) = s(I)(z) and
f(s,7is even(b,A))(I)(z) = s(I)(z).

The theorem is a consequence of (36), (40), (64), (31), (45), (44), and (1).

Let us consider ¥, X, €, GG, and 2. We say that 2 is elementary if and only
if

(Def. 13) rngthe assignments of 2 C ElementaryInstructionsg.

Now we state the proposition:

(68) Suppose 2 is elementary. Then let us consider a sort symbol a of ¥, an
element x of (the generators of G)(a), and an element 7 of T from a. Then
x:=97 € Elementarylnstructionsg.

Let us consider ¥, X, ¥, and GG. One can verify that there exists a strict
if-while algebra over the generators of G which is elementary.

Let 2 be an elementary if-while algebra over the generators of G, a be a sort
symbol of ¥, z be an element of (the generators of G)(a), and 7 be an element
of T from a. Let us observe that x:=¢7 is absolutely-terminating.

Now let I' denotes the program

yr=glk;
while bgt(“m, 0L, 2) do
if %mis odd(b,A) then
yr=oy -
fi;
m:=9%m div 2%;

=% %

done

Then we state the propositions:

(69) Let us consider an elementary if-while algebra 2l over the generators
of G and an execution function f of 2 over €-States(the generators of G)
and States) s false, (the generators of ). Suppose

(i) G is €-supported, and

(ii) f € €-Executions sfalse, (A), and

(iii) there exists a function d such that d(z) = 1 and d(y) = 2 and

d(m) = 3.

Then T is terminating w.r.t. f and {s : s(I)(m) > 0}. The theorem is a
consequence of (66), (36), (61), (65), (40), and (43). PROOF: Set ST =
¢ -States(the generators of G). Set TV = Statesy sfalse, (the generators
of G). Set P = {s : s(I)(m) > 0}. Set W = bgt(%m,0%,2). Define
F(element of ST') = $;(I)(m)(& N). Define R [element of ST| =$;(I)(m) >
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0. Set K = if “mis odd(b, ) then(y:=o(% - %)).
Set J = (K;m:=g(“mdiv2L)); x:=9(%x - “z). P is invariant w.r.t. W and
f. For every element s of ST such that s € P and f(f(s,J),W) € TV
holds f(s,J) € P. P is invariant w.r.t. y:=¢(1%) and f. For every s such
that f(s,W) € P holds iteration of f started in J;W terminates w.r.t.
f(s,W). O

(70) Suppose G is €-supported and there exists a function d such that
d(b) = 0 and d(x) = 1 and d(y) = 2 and d(m) = 3. Then let us consider
an element s of €-States(the generators of G) and a natural number n.
Suppose n = s(I)(m). If f € C-Executiony sfaise, (A), then f(s,T)(I)(y) =
s(I)(z)". The theorem is a consequence of (65), (66), (36), (61), (37),
(40), (43), (67), (10), and (42). PROOF: Set ¥ = €-States(the generators
of G). Set W = T. Set g = f. Set T = Statesy sfalse, (the generators of
G). Set s0 = f(s,y:=u(1},)). Define Rlelement of X] = $;(I)(m) > 0.
Set € = bgt(“m, 0%, 2A). Define Plelement of %] = s(I)(z)" = $1(I)(y) -
$1(1)(z)* (D) and $1(I)(m) > 0. Define F(element of ¥) = $;(I)(m)(e
N). Set I = if ®mis odd(b,2) then(y:=g(% - %)).
Set J = (I;m:=g(“mdiv2},)); z:=o(% - ®). For every element s of ¥
such that P[s] holds P[(g(s,€) qua element of )] and ¢(s,€) € T iff
Rl(g(s,€) qua element of X)]. Set s1 = g(s0, €). For every element s of ¥
such that R[s] holds R[(g(s, J; €) qua element of X)] iff g(s, J; €) € T and
F((g(s,J;C) qua element of X)) < F(s). Set ¢ = s. For every element s
of ¥ such that P[s] and s € T and R[s] holds P[(¢(s, /) qua element of
). 0O

2. CALCULATION OF MAXIMUM

Let X be a non empty set, f be a finite sequence of elements of X%, and x
be a natural number. Let us observe that f(z) is transfinite sequence-like finite
function-like and relation-like.

Let us note that every finite sequence of elements of X“ is function yielding.

Let ¢ be a natural number, f be an i-based finite array, and a, = be sets.
Note that f +- (a,x) is i-based finite and segmental.

Let X be a non empty set, f be an X-valued function, a be a set, and x be
an element of X. Let us observe that f +- (a,x) is X-valued.

The scheme Schi deals with a non empty set X and a natural number j and
a set B and a ternary functor F yielding a set and a unary functor U yielding
a set and states that

(Sch. 1) There exists a finite sequence f of elements of X* such that len f = j

and f(1) =B or j = 0 and for every natural number ¢ such that 1 <7 < j
holds f(i+ 1) = F(f(4),4,2(2))
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provided

e for every 0-based finite array a of X and for every natural number 4 such
that 1 <1 < j for every element x of X', F(a,i,x) is a 0-based finite array
of X and

e ‘5 is a 0-based finite array of X and
e for every natural number i such that ¢ < j holds (i) € X.

Now we state the propositions:

(71) Let us consider a non empty non void boolean signature ¥ with arrays
of type 1 with connectives from 11 and integers at 1, sets J, L, and a sort
symbol K of ¥. Suppose (the connectives of X)(11) is of type (J, L) — K.
Then

(i) J = the array sort of X, and
(ii) for every integer sort symbol I of ¥, the array sort of ¥ # I.

(72) Let us consider a 1-1-connectives 11-array correct boolean correct non
empty non void boolean signature Y with integers with connectives from
4 and the sort at 1 and arrays of type 1 with connectives from 11 and
integers at 1, an integer sort symbol I of ¥, a boolean correct non-empty
algebra A over X with integers with connectives from 4 and the sort at
1 and arrays of type 1 with connectives from 11 and integers at 1, and
elements a, b of A from I. If a = 0, then init.array(a,b) = 0.

(73) Let us consider an 11-array correct boolean correct non empty non void
boolean signature ¥ with arrays of type 1 with connectives from 11 and
integers at 1 and an integer sort symbol I of ¥. Then

(i) the array sort of ¥ # I, and
(ii) (the connectives of ¥)(11) is of type (the array sort of ¥, I) — I, and

(iii) (the connectives of ¥)(114 1) is of type (the array sort of ¥, I, 1) —
the array sort of X, and

(iv) (the connectives of X)(11 + 2) is of type (the array sort of ¥) — I,
and

(v) (the connectives of 3)(11+ 3) is of type (I, I) — the array sort of X.

(74) Let us consider a 1-1-connectives 11-array correct boolean correct non
empty non void boolean signature ¥ with arrays of type 1 with connectives
from 11 and integers at 1 and integers with connectives from 4 and the
sort at 1, an integer sort symbol I of 3, and a boolean correct non-empty
algebra 2 over X with arrays of type 1 with connectives from 11 and
integers at 1 and integers with connectives from 4 and the sort at 1. Then

(i) (the sorts of 2()(the array sort of ¥) = Z*, and
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(ii) for every elements ¢, j of 2 from I such that ¢ is a non negative
integer holds init.array(i,j) = ¢ — j, and

(iii) for every element a of (the sorts of A)(the array sort of ¥), length; a =
@ and for every element i of 2 from I and for every function f such
that f = a and ¢ € dom f holds a(i) = f(i) and for every element x
of A from I, ajp = f +- (4, 2).

The theorem is a consequence of (71).

Let a be a 0-based finite array. Observe that length a is finite.

Let ¥ be a 1-1-connectives 11-array correct boolean correct non empty non
void boolean signature with integers with connectives from 4 and the sort at
1 and arrays of type 1 with connectives from 11 and integers at 1 and 2 be a
boolean correct non-empty algebra over 3 with arrays of type 1 with connectives
from 11 and integers at 1 and integers with connectives from 4 and the sort at
1. Observe that every non-empty subalgebra of 2l has arrays of type 1 with
connectives from 11 and integers at 1.

Let 2 be a non-empty algebra over ¥. We say that 2 is integer array if and
only if

(Def. 14) There exists an image € of 2 such that € is a boolean correct algebra
over Y with integers with connectives from 4 and the sort at 1 and arrays
of type 1 with connectives from 11 and integers at 1.

Let X be a non-empty many sorted set indexed by the carrier of 3. One can
verify that §x(X) is integer array as a non-empty algebra over X.

Note that every non-empty algebra over 3 which is integer array is also
integer.

One can check that there exists an including »-terms over X non-empty
strict free variable algebra over ¥ which is vf-free and integer array.

One can check that there exists a non-empty algebra over 3 which is integer
array.

Let 24 be an integer array non-empty algebra over . Observe that there
exists a boolean correct image of 2 which has integers with connectives from 4
and the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1.

In this paper ¥ denotes a 1-1-connectives 11-array correct boolean correct
non empty non void boolean signature with integers with connectives from 4 and
the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1, X
denotes a non-empty many sorted set indexed by the carrier of ¥, ¥ denotes a
vi-free including Y-terms over X integer array non-empty free variable algebra
over Y, € denotes a boolean correct non-empty image of ¥ with arrays of type
1 with connectives from 11 and integers at 1 and integers with connectives from
4 and the sort at 1, G denotes a basic generator system over X, X, and ¥, 2
denotes a if-while algebra over the generators of G, I denotes an integer sort
symbol of ¥, x, y, m, i denote pure elements of (the generators of G)(I), M, N
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denote pure elements of (the generators of GG)(the array sort of X), b denotes a
pure element of (the generators of G)((the boolean sort of X)), and s, s denote
elements of ¢ -States(the generators of G).

Let us consider Y. Let 2 be a boolean correct non-empty algebra over > with
arrays of type 1 with connectives from 11 and integers at 1. Observe that every
element of (the sorts of A)(the array sort of ) is relation-like and function-like.

Note that every element of (the sorts of 2)(the array sort of X) is finite and
transfinite sequence-like.

Let us consider an operation symbol o of . Now we state the propositions:

(75) Suppose o = (the connectives of ¥)(11)(€ (the carrier’ of X)). Then
(i) Arity(o) = (the array sort of X, I), and
(ii) the result sort of o = I.

(76) Suppose o = (the connectives of ¥)(12)(€ (the carrier’ of X)). Then
(i) Arity(o) = (the array sort of 3,1, 1), and
(ii) the result sort of o = the array sort of X.

(77) Suppose o = (the connectives of ¥)(13)(€ (the carrier’ of ¥)). Then
(i) Arity(o) = (the array sort of ), and
(ii) the result sort of o = I.

(78) Suppose o = (the connectives of ¥)(14)(€ (the carrier’ of ¥)). Then
(i) Arity(o) = (I,I), and
(ii) the result sort of o = the array sort of X.

(79) Let us consider an element 7 of ¥ from the array sort of ¥ and an ele-
ment 71 of ¥ from 1.

Then 7(7) value at(€,s) = (7 value at(€, s))(m value at(€, s)). The the-
orem is a consequence of (29), (75), (23), and (26).

(80) Let us consider an element 7 of ¥ from the array sort of ¥ and elements
71, T2 of T from I. Then 7, ., value at(<,s) =
(7 value at(€, 5)) 7, value at(e,s)—r: value at(¢,s)- L he theorem is a consequence
of (29), (76), (24), and (27).

(81) Let us consider an element 7 of ¥ from the array sort of ¥. Then
length; 7 value at(€, s) = length;(7 value at(€, s)). The theorem is a con-
sequence of (29), (77), (22), and (25).

(82) Let us consider elements 7j, 72 of T from I. Then init.array (71, m2)
value at(€, s) = init.array (7 value at(<, s), 2 value at(€, s)). The theorem
is a consequence of (29), (78), (23), and (26).

In the sequel u denotes a many sorted function from FreeGenerator(¥) into
the sorts of €.
Now we state the propositions:
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(83) Let us consider an element 7 of ¥ from the array sort of ¥ and an ele-
ment 71 of ¥ from I.

Then 7(71) value at(€,u) = (7 value at(€, u))(m; value at(€, u)). The the-
orem is a consequence of (28), (75), (23), and (26).

(84) Let us consider an element 7 of ¥ from the array sort of ¥ and elements
71, T2 of ¥ from I.

Then TrieT72 value at(Q:? u) = (T value at(€7 u))T1 value at(€,u)«2 value at(€u)"
The theorem is a consequence of (28), (76), (24), and (27).

(85) Let us consider an element 7 of ¥ from the array sort of ¥. Then
length; 7 value at(€, u) = length;(7 value at(€, u)). The theorem is a con-
sequence of (28), (77), (22), and (25).

(86) Let us consider elements 71, 73 of ¥ from I. Then init.array (71, 72)
value at(€, u) = init.array (7 value at(€, u), 72 value at(€, u)). The theorem
is a consequence of (28), (78), (23), and (26).

Let us consider 3, X, T, and I. Let ¢ be an integer. The functor zI3 yielding
an element of ¥ from I is defined by

(Def. 15) There exists a function f from Z into (the sorts of ¥)(I) such that
(i) it = f(i), and
(ii) f(0) = 0%, and
(iii) for every natural number j and for every element 7 of ¥ from I such
that f(j) =7 holds f(j + 1) =7+ 1L and f(—(j + 1)) = —(7 + 1&).
Now we state the propositions:
(87) 0L =o0L.
(88) Let us consider a natural number n. Then
(i) (n+ 1)k =nk+1L, and
(i) —(n+ 1k =—-m+1)L
(89) 1L =0L + 1L. The theorem is a consequence of (88) and (87).
(90) Let us consider an integer i. Then ik value at(¢,s) = i. The theorem is
a consequence of (87), (36), (37), (88), (39), and (38).
Let us consider ¥, X, ¥, G, I, and M. Let ¢ be an integer. The functor
M(i, I) yielding an element of ¥ from [ is defined by the term
(Def. 16) (°M)(iL).
Let us consider € and s. Note that s(the array sort of ¥)(M) is function-like
and relation-like.
Note that s(the array sort of X)(M) is finite transfinite sequence-like and
Z-valued.
Observe that rng(s(the array sort of ¥)(M)) is finite and integer-membered.
Let us consider an integer j. Now we state the propositions:
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Suppose j € dom(s(the array sort of ¥)(M)) and
M(j,I) € (the generators of G)(I). Then s(the array sort of X)(M)(j) =
s(1)(M (3, 1)).
Suppose j € dom(s(the array sort of ¥)(M)) and
(®M)(%) € (the generators of G)(I) and j = % value at(¢, s).
Then (s(the array sort of X)(M))(% value at(€, s)) = s(I)(((°M)(%))).

Let X be a non empty set. One can verify that X is infinite.

Now we state the propositions:

(93)

Now let I denotes the program

m:=g0L:
for i:=g1L until bgt(length; OM, %, A) step i:=9% + 1L
do
if bgt((“M)(%), (°M)(°m),2) then
m:=m@i
fi
done

Let us consider an execution function f of 2 over € -States(the generators
of G) and Statesy s taise, (the generators of G). Suppose

(i) f € ¢-Executiony sfalse, (), and
(ii) G is €-supported, and
(iii) i # m, and
(iv) s(the array sort of ¥)(M) # 0.

Let us consider a natural number n. Suppose f(s,I')(I)(m) = n. Let
us consider a non empty finite integer-membered set X. Suppose X =
rng(s(the array sort of ¥)(M)). Then M (n,I)value at(€,s) = max X.
The theorem is a consequence of (65), (36), (37), (74), (71), (66), (81),
(61), (39), (79), and (90). PROOF: Set ST = €-States(the generators of
G). Define R[element of ST] = s(the array sort of ¥)(M) = $1(the array
sort of ¥)(M). Reconsider sm = s as a many sorted function from the
generators of G into the sorts of €. Reconsider z = sm/(the array sort of
Y)(M) as a 0-based finite array of Z. Define Plelement of ST| = R[$]
and $1(1)(2), $1(L)(m) € N and $;(I)(¢) < lenz and $1(I)(m) < $1(1)(4)
and $;(7)(m) < lenz and for every integer ma such that ma = $1(I)(m)
for every natural number j such that j < $1(I)(7) holds z(j) < z(max). De-
fine Qlelement of ST] = R[$1] and $;(I)(i) < length; ®M value at(€, s).
Set s0 = s. Set s1 = f(s,m:=g(0L)). Set so = f(s1,i:=9(1L)). Con-
sider J1, K1, L1 being elements of ¥ such that L1 = 1 and K1 = 1
and J1 # L1 and J1 # K1 and (the connectives of ¥)(11) is of type
(J1,K1) — L1 and (the connectives of ¥)(11 + 1) is of type (J1, K1,
L1) — J1 and (the connectives of ¥)(11 4 2) is of type (J1) — K1 and
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(the connectives of ¥)(11 + 3) is of type (K1,L1) — J1. P[sa]. Define
F(element of ST) = (len(sO(the array sort of ¥)(M)) — $1(1)(2))(€ N).
f(s2, W) € TV iff Q[f(s2,W)]. Now let I denotes the program

J;
K;
w
For every element s of ST such that Q[s] holds Q[f(s,I")] iff f(s,T') € TV
and F(f(s,T)) < F(s). For every element s of ST such that P[s] and s €
TV and QJs] holds P[f (s, J; K)]. For every element s of ST such that P]s]
holds P[f(s,W)] and f(s,W) € TV iff Q[f(s, W)]. M(n, I)value at(C, s)
is a upper bound of X. For every upper bound z of X, M(n,I)
value at(€,s) < z. O
Now let I' denotes the program
J;
i=9% + 1L

Now let A denotes the program

for i:=g7o until bgt(ry, %, A) step i:=9% + 1L do
J

done

Let us consider an elementary if-while algebra 2l over the generators
of G and an execution function f of 2 over €-States(the generators of G)
and States) s false, (the generators of G). Suppose

(i) f € €-Executiony sfaise, (), and
(ii) G is €-supported.

Let us consider elements 7y, 71 of ¥ from I, an algorithm J of 2, and a
set P. Suppose

(iii) P is invariant w.r.t. i:=g7y and f, invariant w.r.t. bgt(r, %,2) and
f, invariant w.r.t. i:=g(% + 1£) and f, and invariant w.r.t. J and f,
and

(iv) J is terminating w.r.t. f and P, and

(v) for every s, f(s,J)(I)(i) = s(I)(i) and f(s,bgt(ry,%,0))(I)(i) =
s(I)(i) and 71 value at(€, f(s,bgt(r1, %,2A))) = 71 value at(¢, s) and
71 value at(€, f(s,I")) = 71 value at(€, s).

Then A is terminating w.r.t. f and P. The theorem is a consequence
of (61), (66), (65), (39), and (37). PROOF: Set W = bgt(r, %, A). Set
L =ii=o(% +1%). Set K = iz=gp. Set ST = €-States(the generators of
G). Set TV = Statesy sfalse, (the generators of G). Now let I' denotes the
program
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J;

L;

W

For every s such that f(s,W) € P holds iteration of f started in T’
terminates w.r.t. f(s,W). O

(95) Now let I' denotes the program

m:=g0L;
for 7;:=911[T until bgt(length; ®M, %, A) step i:=9% + lé
do
if bgt((“M)(%), (°M)(“m), ) then
m:=gl@i
fi
done

Let us consider an elementary if-while algebra 2l over the generators

of G and an execution function f of 2 over €-States(the generators of G)
and Statesp s talse, (the generators of G). Suppose

(i) fe (’:—Executionb%}false@ (Q(), and

(ii) G is €-supported, and
(iif) @ # m.
Then I is terminating w.r.t. f and {s : s(the array sort of X)(M) # (}. The
theorem is a consequence of (74), (73), (65), (61), (81), and (94). PROOF:
Set J = m:=g(0%). Set K = i:=¢(1%). Set W = bgt(length; *M, %, 2).
Set L = i:=g(% + 1L). Set N = bgt((“M)(%), (*M)(“m),2). Set O =
m:=g(%). Set a = the array sort of ¥. Set P = {s : s(a)(M) # 0}. P is
invariant w.r.t. J and f. P is invariant w.r.t. K and f. P is invariant w.r.t.
W and f. P is invariant w.r.t. L and f. P is invariant w.r.t. NV and f. P
is invariant w.r.t. O and f. Set ST = €-States(the generators of G). Set
TV = Statesy stalse (the generators of G). P is invariant w.r.t. if N then O
and f. Now let I' denotes the program

if N then

@)

fi;

L

For every s, f(s,if NthenO)(I)(i) = s(I)(z) and f(s, W)(I)(z) = s(I)(4)
and length; ®M value at(€, f(s, W)) = length; ®M value at(€, s) and
length; ®M value at(€, f(s,T)) = length; ®M value at(€, s). O
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3. SORTING BY EXCHANGING

In this paper i1, ia denote pure elements of (the generators of G)(I).
Let us consider 3, X, T, and G. We say that G is integer array if and only
if
(Def. 17) (i) {(®M)(7) where 7 is an element of ¥ from I : not contradiction} C
(the generators of G)(I), and

(ii) for every M and for every element 7 of ¥ from I and for every element
g of G from I such that g = (®M)(7) there exists  such that = ¢
(vfT)(I) and supp-varg = x and (supp-term g)(the array sort of
Y)(M) = (®M), _a, and for every sort symbol s of ¥ and for every
y such that y € (vf g)(s) and if s = the array sort of 3, then y # M
holds (supp-term g)(s)(y) = y.
Now we state the proposition:

(96) If G is integer array, then for every element 7 of T from I, (°M)(7) €
(the generators of G)(I).

The functor (Z, < ) yielding a strict real non empty poset is defined by the
term

(Def. 18) RealPoset Z.

Let us consider %, X, €, and G. Let 2 be an elementary if-while algebra
over the generators of G, a be a sort symbol of 3, and 71, 7o be elements of ¥
from a. Assume 7 € (the generators of G)(a). The functor 7j:=¢m yielding an
absolutely-terminating algorithm of 2 is defined by the term

(Def. 19) (The assignments of ) ({71, T2)).
Now we state the proposition:

(97) Let us consider a countable non-empty many sorted set X indexed by the
carrier of ¥, a vf-free including Y-terms over X integer array non-empty
free variable algebra ¥ over Y, a basic generator system G over 3, X, and
%, a pure element M of (the generators of GG)(the array sort of X), and
pure elements 4, x of (the generators of G)(I). Then (°M)(%) # x. The
theorem is a consequence of (73), (79), (61), and (74).

Let ¥ be a non empty non void many sorted signature and 2 be a disjoint
valued algebra over .. Note that the sorts of 2 is disjoint valued.

Let us consider ¥ and X. Let ¥ be an including Y-terms over X algebra
over Y. We say that ¥ is array degenerated if and only if

(Def. 20) There exists I and there exists an element M of
(FreeGenerator(%))(the array sort of 3) and there exists an element 7 of T
from I such that (*M)(7) # Sym((the connectives of X2)(11)(€ (the carrier’
of X)), X)-tree((M, 7)).
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Observe that Fx(X) is non array degenerated.

Observe that there exists an including >-terms over X algebra over ¥ which
is non array degenerated.

Now we state the propositions:

(98)

(99)

Suppose ¥ is non array degenerated. Then vf((®M)(%)) = I -singleton iU
(the array sort of )-singleton M. The theorem is a consequence of (73).
PROOF: Set 7 = (®M)(%). Reconsider N = M as an element of
(FreeGenerator(¥))(the array sort of ¥). Consider m being a set such that
m € X (the array sort of 3) and M = the root tree of (m, the array sort
of ¥). Consider j being a set such that 7 € X (I) and i = the root tree
of (4, I). {M} = (vfr)(the array sort of ). {i} = (vf7)(I). For every
sort symbol s of ¥ such that s # the array sort of ¥ and s # I holds
0= (vEr)(s). O

Let us consider an elementary if-while algebra 21 over the generators of
G and an execution function f of 2 over €-States(the generators of G)
and Statesy /talse, (the generators of G). Suppose

(i) G is integer array and €-supported, and
(i) f € €-Executionysfalse, (), and

(iii) X is countable, and
(iv) ¥ is non array degenerated.

Let us consider an element 7 of T from I. Then f(s, (®M)(%):=g7) =
f(s, M:=g((®M)a;._,)). The theorem is a consequence of (96), (98), (97),
(4), (3), (62), (73), (61), (84), (65), and (80). PROOF: Reconsider H =
FreeGenerator(¥) as a many sorted subset of the generators of G. Set
v = 7 value at(€, s). Reconsider p = (®M)(%) as an element of G from I.
Reconsider g = s as a many sorted function from the generators of G into
the sorts of €. Reconsider g1 = f(s, (®M)(%):=q7),

g2 = f(s, M:=o((®M)e;._,)) as a many sorted function from the genera-
tors of G into the sorts of €. Reconsider Mi = (®M)(®%) as an element of
(the generators of G)(I). Reconsider m = M as an element of G from the
array sort of ¥. Consider x such that = ¢ (vf%)(I) and supp-varp = z
and (supp-term p)(the array sort of )(M) = (®M)q;._a, and for every sort
symbol s of ¥ and for every y such that y € (vfp)(s) and if s = the array
sort of ¥, then y # M holds (supp-termp)(s)(y) = y. gl = g2. O

Let us consider ¥, X, ¥, G, €, s, and b. Let us observe that s((the boolean
sort of X))(b) is boolean.

Now we state the proposition:

(100)

Now let I" denotes the program
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while J do
Yy =Ql(@M)(@Zl)v
(°M)(“i1) :=a(*M)(%2);
(“M)(%i2) :=9(y

done

Let us consider an elementary if-while algebra 2l over the generators
of G and an execution function f of 2 over €-States(the generators of G)
and States) s false, (the generators of ). Suppose

(i) G is integer array and €-supported, and
(i) f € €-Executionysfalse, (), and
(iii) ¥ is non array degenerated, and
(iv) X is countable.
Let us consider an algorithm J of 2. Suppose
(v) f(s,J)(the array sort of ¥)(M) = s(the array sort of ¥)(M), and
(vi) for every array D of (Z,< ) such that D = s(the array sort of ¥)(M)
holds if D # 0, then f(s,J)(I)(i1), f(s,J)(I)(i2) € dom D and if
inversions D # 0, then (f (s, J)(I)(i1), f(s,J)(I)(i2)) € inversions D
and f(s,J)((the boolean sort of X))(b) = true iff inversions D # ().
Let us consider a 0-based finite array D of (Z, < ). Suppose
(vii) D = s(the array sort of X)(M), and
(viii) y # i1, and
(iX) Yy 7& ig.
Then
(x) f(s,T')(the array sort of ¥)(M) is an ascending permutation of D,
and
(xi) if J is absolutely-terminating, then I" is terminating w.r.t. f and {s;
: s1(the array sort of X)(M) # 0}.

The theorem is a consequence of (73), (10), (61), (65), (99), (80), (74), and
(79). PROOF: Define F(natural number, element of € -States(the generators
of G)) = F(S2, (s yr=a(("M)(%1))); (*M)(% ):=a((*M)(%)));

(®M)(%g):=o(%)). Set ST = €-States(the generators of G). Consider g
being a function from N into ST such that g(0) = s and for every natural
number i, g(i +1) = F(i, (g(i) qua element of ST)). Define G(element) =
g($1(€ N))(the array sort of X)(M). Consider h being a function from N
into Z“ such that for every element ¢ such that i € N holds h(i) = G(7).
For every ordinal number a such that ¢ € domg holds h(a) is an ar-
ray of (Z,< ). Set TV = Statesy sfalse, (the generators of ). Consider
s1 such that s = s; and s;i(the array sort of X)(M) # (. Reconsider
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= s(the array sort of X)(M) as a 0-based finite non empty array of
(Z,< ). Consider g being a function from N into ST such that g(0) = s
and for every natural number i, g(i + 1) = F(7,(g(i) qua element of
ST)). Define G(element) = ¢($1(€ N))(the array sort of ¥)(M). Consider
h being a function from N into Z“ such that for every element 7 such that
i € N holds h(i) = G(i). For every ordinal number a such that a € domg
holds h(a) is an array of (Z,< ). Define T[natural number] = h($;) # 0.
For every natural number ¢ such that ¥[:] holds ¥[i + 1]. For every natural
number a and for every array R of (Z,< ) such that R = h(a) for every s
such that g(a) = s there exist sets z, y such that = = f(s,J)(I)(i1) and
y = f(s,JJ)(I)(i2) and z, y € dom R and h(a + 1) = Swap(R, z,y). Defi-
ne Q[natural number] = h($;) is a permutation of D. Define P[natural
number] = ¢($;)(the array sort of X)(M) is an ascending permutation
of D. There exists a natural number i such that P[i]. Consider B being
a natural number such that P[®B] and for every natural number ¢ such
that Pi] holds B < i. Reconsider ¢ = h[succ®®B as an array of Z“. Set
TV = Statespstalse, (the generators of G). Define H(natural number) =
f(g($1 —1),J). Consider r being a finite sequence such that lenr = B + 1
and for every natural number ¢ such that ¢ € domr holds r(i) = H(i).
rngr C ST. Reconsider R = ¢(B)(the array sort of ¥)(M) as an ascen-
ding permutation of D. Now let I denotes the program

y:=a("M) (%)

(M) (i) s=a(01) ()

(“M)(%52) =2

J

For every natural number i such that 1 <14 <lenr holds r(i) € TV and
r(i+1)= f(r@@),I). O
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