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Summary.We analyse three algorithms: exponentiation by squaring, cal-
culation of maximum, and sorting by exchanging in terms of program algebra
over an algebra.
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1. Exponentiation by Squaring Revisited

Now we state the propositions:

(1) (i) 1 mod 2 = 1, and

(ii) 2 mod 2 = 0.

(2) Let us consider a non empty non void many sorted signature Σ, an
algebra A over Σ, a subalgebra B of A, a sort symbol s of Σ, and a set a.
Suppose a ∈ (the sorts of B)(s). Then a ∈ (the sorts of A)(s).

(3) Let us consider a non empty set I, sets a, b, c, and an element i of I.
Then c ∈ (i -singleton a)(b) if and only if b = i and c = a.

(4) Let us consider a non empty set I, sets a, b, c, d, and elements i, j of I.
Then c ∈ (i -singleton a ∪ j -singleton d)(b) if and only if b = i and c = a

or b = j and c = d. The theorem is a consequence of (3).
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Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and A be a non-empty algebra
over Σ. We say that A is integer if and only if

(Def. 1) There exists an image C of A such that C is a boolean correct algebra
over Σ with integers with connectives from 4 and the sort at 1.

Now we state the propositions:

(5) Let us consider a non empty non void many sorted signature Σ and a
non-empty algebra A over Σ. Then Im idα = the algebra of A, where α is
the sorts of A.

(6) Let us consider a non empty non void many sorted signature Σ. Then
every non-empty algebra over Σ is an image of A. The theorem is a con-
sequence of (5). Proof: A is A-image. �

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1. One can verify that there
exists a non-empty algebra over Σ which is integer.

Let A be an integer non-empty algebra over Σ. Note that there exists an
image of A which is boolean correct.

Let us note that there exists a boolean correct image of A which has integers
with connectives from 4 and the sort at 1.

Now we state the proposition:

(7) Let us consider a non empty non void many sorted signature Σ, a non-
empty algebra A over Σ, an operation symbol o of Σ, a set a, and a sort
symbol r of Σ. Suppose o is of type a → r. Then

(i) Den(o,A) is a function from (the sorts of A)#(a) into (the sorts of
A)(r), and

(ii) Args(o,A) = (the sorts of A)#(a), and

(iii) Result(o,A) = (the sorts of A)(r).

Let Σ be a boolean correct non empty non void boolean signature and A

be a boolean correct non-empty algebra over Σ. Observe that every non-empty
subalgebra of A is boolean correct.

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and A be a boolean correct
non-empty algebra over Σ with integers with connectives from 4 and the sort
at 1. Note that every non-empty subalgebra of A has integers with connectives
from 4 and the sort at 1.

Let X be a non-empty many sorted set indexed by the carrier of Σ. Let us
observe that FΣ(X) is integer as a non-empty algebra over Σ.

Now we state the proposition:

(8) Let us consider a non empty non void many sorted signature Σ, algebras
A1, A2, B1 over Σ, and a non-empty algebra B2 over Σ. Suppose
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(i) the algebra of A1 = the algebra of A2, and

(ii) the algebra of B1 = the algebra of B2.

Let us consider a many sorted function h1 from A1 into B1 and a many
sorted function h2 from A2 into B2. Suppose

(iii) h1 = h2, and

(iv) h1 is an epimorphism of A1 onto B1.

Then h2 is an epimorphism of A2 onto B2.

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and X be a non-empty many
sorted set indexed by the carrier of Σ. Let us note that there exists an including
Σ-terms over X non-empty free variable algebra over Σ which is vf-free and
integer.

Let Σ be a non empty non void many sorted signature. Let T be an inclu-
ding Σ-terms over X non-empty algebra over Σ. The functor FreeGenerator(T)
yielding a non-empty generator set of T is defined by the term

(Def. 2) FreeGenerator(X).

Let X0 be a countable non-empty many sorted set indexed by the carrier
of Σ and T be an including Σ-terms over X0 non-empty algebra over Σ. Let us
observe that FreeGenerator(T) is Equations(Σ,T)-free and non-empty.

Let X be a non-empty many sorted set indexed by the carrier of Σ, T be an
including Σ-terms over X algebra over Σ, and G be a generator set of T. We
say that G is basic if and only if

(Def. 3) FreeGenerator(T) ⊆ G.

Let s be a sort symbol of Σ and x be an element of G(s). We say that x is pure
if and only if

(Def. 4) x ∈ (FreeGenerator(T))(s).

Observe that FreeGenerator(T) is basic.
Note that there exists a non-empty generator set of T which is basic.
Let G be a basic generator set of T and s be a sort symbol of Σ. One can

check that there exists an element of G(s) which is pure.
Now we state the proposition:

(9) Let us consider a non empty non void many sorted signature Σ, a non-
empty many sorted set X indexed by the carrier of Σ, an including Σ-
terms over X algebra T over Σ, a basic generator set G of T, a sort
symbol s of Σ, and a set a. Then a is a pure element of G(s) if and only
if a ∈ (FreeGenerator(T))(s).

Let Σ be a non empty non void many sorted signature, X be a non-empty
many sorted set indexed by the carrier of Σ, T be an including Σ-terms over X
algebra over Σ, and G be a generator system over Σ, X, and T. We say that G
is basic if and only if
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(Def. 5) The generators of G are basic.

Observe that there exists a generator system over Σ, X, and T which is
basic.

Let G be a basic generator system over Σ, X, and T. Note that the generators
of G are basic.

In this paper Σ denotes a boolean correct non empty non void boolean
signature with integers with connectives from 4 and the sort at 1, X denotes
a non-empty many sorted set indexed by the carrier of Σ, T denotes a vf-free
including Σ-terms over X integer non-empty free variable algebra over Σ, C

denotes a boolean correct non-empty image of T with integers with connectives
from 4 and the sort at 1, G denotes a basic generator system over Σ, X, and
T, A denotes a if-while algebra over the generators of G, I denotes an integer
sort symbol of Σ, x, y, z, m denote pure elements of (the generators of G)(I),
b denotes a pure element of (the generators of G)((the boolean sort of Σ)), τ ,
τ1, τ2 denote elements of T from I, P denotes an algorithm of A, and s, s1, s2

denote elements of C -States(the generators of G).
Let Σ be a boolean correct non empty non void boolean signature and A be

a non-empty algebra over Σ. The functor falseA yielding an element of A from
the boolean sort of Σ is defined by the term

(Def. 6) ¬ trueA.

In this paper f denotes an execution function of A over
C -States(the generators of G) and Statesb 6→falseC

(the generators of G).
Now we state the proposition:

(10) falseC = false.

Let Σ be a boolean correct non empty non void boolean signature, X be
a non-empty many sorted set indexed by the carrier of Σ, T be an including
Σ-terms over X algebra over Σ, G be a generator system over Σ, X, and T,
b be an element of (the generators of G)((the boolean sort of Σ)), C be an
image of T, A be a pre-if-while algebra, f be an execution function of A over
C -States(the generators of G) and Statesb6→falseC

(the generators of G), s be an
element of C -States(the generators of G), and P be an algorithm of A. Note
that the functor f(s, P ) yields an element of C -States(the generators of G). Let
Σ be a non empty non void many sorted signature, T be a non-empty algebra
over Σ, G be a non-empty generator set of T, s be a sort symbol of Σ, and x be
an element of G(s). The functor @x yielding an element of T from s is defined
by the term

(Def. 7) x.

Let us consider Σ, X, T, G, A, b, I, τ1, and τ2. The functors b leq(τ1, τ2,A)
and b gt(τ1, τ2,A) yielding algorithms of A are defined by the terms, respectively.

(Def. 8) b:=A(leq(τ1, τ2)).
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(Def. 9) b:=A(¬ leq(τ1, τ2)).

The functor 2IT yielding an element of T from I is defined by the term

(Def. 10) 1IT + 1IT.

Let us considerG, A, and b. Let us consider τ . The functors τ is odd(b,A) and
τ is even(b,A) yielding algorithms of A are defined by the terms, respectively.

(Def. 11) b gt(τ mod 2IT, 0
I
T,A).

(Def. 12) b leq(τ mod 2IT, 0
I
T,A).

Let us consider C. Let us consider s. Let x be an element of (the generators
of G)(I). Let us note that s(I)(x) is integer.

Let us consider τ . Let us note that τ value at(C, s) is integer.
In the sequel u denotes a many sorted function from FreeGenerator(T) into

the sorts of C.
Let us consider Σ, X, T, C, I, u, and τ . One can verify that τ value at(C, u)

is integer.
Let us consider G. Let us consider s. Let τ be an element of T from the

boolean sort of Σ. One can verify that τ value at(C, s) is boolean.
Let us consider u. One can check that τ value at(C, u) is boolean.
Let us consider an operation symbol o of Σ. Now we state the propositions:

(11) Suppose o = (the connectives of Σ)(1)(∈ (the carrier’ of Σ)). Then

(i) o = (the connectives of Σ)(1), and

(ii) Arity(o) = ∅, and

(iii) the result sort of o = the boolean sort of Σ.

(12) Suppose o = (the connectives of Σ)(2)(∈ (the carrier’ of Σ)). Then

(i) o = (the connectives of Σ)(2), and

(ii) Arity(o) = 〈the boolean sort of Σ〉, and

(iii) the result sort of o = the boolean sort of Σ.

(13) Suppose o = (the connectives of Σ)(3)(∈ (the carrier’ of Σ)). Then

(i) o = (the connectives of Σ)(3), and

(ii) Arity(o) = 〈the boolean sort of Σ, the boolean sort of Σ〉, and

(iii) the result sort of o = the boolean sort of Σ.

(14) Suppose o = (the connectives of Σ)(4)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = ∅, and

(ii) the result sort of o = I.

(15) Suppose o = (the connectives of Σ)(5)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = ∅, and

(ii) the result sort of o = I.
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(16) Suppose o = (the connectives of Σ)(6)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I〉, and

(ii) the result sort of o = I.

(17) Suppose o = (the connectives of Σ)(7)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = I.

(18) Suppose o = (the connectives of Σ)(8)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = I.

(19) Suppose o = (the connectives of Σ)(9)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = I.

(20) Suppose o = (the connectives of Σ)(10)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = the boolean sort of Σ.

(21) Let us consider a non empty non void many sorted signature Σ and an
operation symbol o of Σ. Suppose Arity(o) = ∅. Let us consider an algebra
A over Σ. Then Args(o,A) = {∅}.

(22) Let us consider a non empty non void many sorted signature Σ, a sort
symbol a of Σ, and an operation symbol o of Σ. Suppose Arity(o) = 〈a〉.
Let us consider an algebra A over Σ. Then Args(o,A) =

∏
〈(the sorts of

A)(a)〉.
(23) Let us consider a non empty non void many sorted signature Σ, sort

symbols a, b of Σ, and an operation symbol o of Σ. Suppose Arity(o) = 〈a,
b〉. Let us consider an algebra A over Σ. Then Args(o,A) =

∏
〈(the sorts

of A)(a), (the sorts of A)(b)〉.
(24) Let us consider a non empty non void many sorted signature Σ, sort sym-

bols a, b, c of Σ, and an operation symbol o of Σ. Suppose Arity(o) = 〈a, b,
c〉. Let us consider an algebra A over Σ. Then Args(o,A) =

∏
〈(the sorts

of A)(a), (the sorts of A)(b), (the sorts of A)(c)〉.
(25) Let us consider a non empty non void many sorted signature Σ, non-

empty algebras A, B over Σ, a sort symbol s of Σ, an element a of A from
s, a many sorted function h from A into B, and an operation symbol o of
Σ. Suppose Arity(o) = 〈s〉. Let us consider an element p of Args(o,A). If
p = 〈a〉, then h#p = 〈h(s)(a)〉.
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(26) Let us consider a non empty non void many sorted signature Σ, non-
empty algebras A, B over Σ, sort symbols s1, s2 of Σ, an element a of
A from s1, an element b of A from s2, a many sorted function h from
A into B, and an operation symbol o of Σ. Suppose Arity(o) = 〈s1, s2〉.
Let us consider an element p of Args(o,A). Suppose p = 〈a, b〉. Then
h#p = 〈h(s1)(a), h(s2)(b)〉.

(27) Let us consider a non empty non void many sorted signature Σ, non-
empty algebras A, B over Σ, sort symbols s1, s2, s3 of Σ, an element a of
A from s1, an element b of A from s2, an element c of A from s3, a many
sorted function h from A into B, and an operation symbol o of Σ. Suppose
Arity(o) = 〈s1, s2, s3〉. Let us consider an element p of Args(o,A). Suppose
p = 〈a, b, c〉. Then h#p = 〈h(s1)(a), h(s2)(b), h(s3)(c)〉.

Let us consider a many sorted function h from T into C, a sort symbol a of
Σ, and an element τ of T from a. Now we state the propositions:

(28) If h is a homomorphism of T into C,
then τ value at(C, h � FreeGenerator(T)) = h(a)(τ).

(29) Suppose h is a homomorphism of T into C and s = h � the generators
of G. Then τ value at(C, s) = h(a)(τ).

(30) trueT value at(C, s) = true. The theorem is a consequence of (11) and
(21).

(31) Let us consider an element τ of T from the boolean sort of Σ. Then
¬τ value at(C, s) = ¬(τ value at(C, s)). The theorem is a consequence of
(29), (12), (22), and (25).

(32) Let us consider a boolean set a and an element τ of T from the boolean
sort of Σ. Then ¬τ value at(C, s) = ¬a if and only if τ value at(C, s) = a.
The theorem is a consequence of (31).

(33) Let us consider an element a of C from the boolean sort of Σ and a
boolean set x. Then ¬a = ¬x if and only if a = x.

(34) falseT value at(C, s) = false. The theorem is a consequence of (31) and
(30).

(35) Let us consider elements τ1, τ2 of T from the boolean sort of Σ. Then (τ1∧
τ2) value at(C, s) = (τ1 value at(C, s)) ∧ (τ2 value at(C, s)). The theorem is
a consequence of (29), (13), (23), and (26).

(36) 0IT value at(C, s) = 0. The theorem is a consequence of (14) and (21).

(37) 1IT value at(C, s) = 1. The theorem is a consequence of (15) and (21).

(38) (−τ) value at(C, s) = −τ value at(C, s). The theorem is a consequence of
(16), (22), and (25).

(39) (τ1+τ2) value at(C, s) = τ1 value at(C, s)+τ2 value at(C, s). The theorem
is a consequence of (17), (23), and (26).

(40) 2IT value at(C, s) = 2. The theorem is a consequence of (37) and (39).
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(41) (τ1−τ2) value at(C, s) = τ1 value at(C, s)−τ2 value at(C, s). The theorem
is a consequence of (39) and (38).

(42) (τ1 · τ2) value at(C, s) = (τ1 value at(C, s)) · (τ2 value at(C, s)). The the-
orem is a consequence of (29), (18), (23), and (26).

(43) (τ1 div τ2) value at(C, s) = τ1 value at(C, s) div τ2 value at(C, s). The the-
orem is a consequence of (19), (23), and (26).

(44) (τ1 mod τ2) value at(C, s) = τ1 value at(C, s) mod τ2 value at(C, s). The
theorem is a consequence of (41), (42), and (43).

(45) leq(τ1, τ2) value at(C, s) = leq(τ1 value at(C, s), τ2 value at(C, s)). The the-
orem is a consequence of (20), (23), and (26).

(46) trueT value at(C, u) = true. The theorem is a consequence of (11) and
(21).

(47) Let us consider an element τ of T from the boolean sort of Σ. Then
¬τ value at(C, u) = ¬(τ value at(C, u)). The theorem is a consequence of
(28), (12), (22), and (25).

(48) Let us consider a boolean set a and an element τ of T from the boolean
sort of Σ. Then ¬τ value at(C, u) = ¬a if and only if τ value at(C, u) = a.
The theorem is a consequence of (47).

(49) falseT value at(C, u) = false. The theorem is a consequence of (47) and
(46).

(50) Let us consider elements τ1, τ2 of T from the boolean sort of Σ. Then (τ1∧
τ2) value at(C, u) = (τ1 value at(C, u))∧ (τ2 value at(C, u)). The theorem is
a consequence of (28), (13), (23), and (26).

(51) 0IT value at(C, u) = 0. The theorem is a consequence of (14) and (21).

(52) 1IT value at(C, u) = 1. The theorem is a consequence of (15) and (21).

(53) (−τ) value at(C, u) = −τ value at(C, u). The theorem is a consequence
of (16), (22), and (25).

(54) (τ1 + τ2) value at(C, u) = τ1 value at(C, u) + τ2 value at(C, u). The the-
orem is a consequence of (17), (23), and (26).

(55) 2IT value at(C, u) = 2. The theorem is a consequence of (52) and (54).

(56) (τ1 − τ2) value at(C, u) = τ1 value at(C, u) − τ2 value at(C, u). The the-
orem is a consequence of (54) and (53).

(57) (τ1 · τ2) value at(C, u) = (τ1 value at(C, u)) · (τ2 value at(C, u)). The the-
orem is a consequence of (28), (18), (23), and (26).

(58) (τ1 div τ2) value at(C, u) = τ1 value at(C, u) div τ2 value at(C, u). The the-
orem is a consequence of (19), (23), and (26).

(59) (τ1 mod τ2) value at(C, u) = τ1 value at(C, u) mod τ2 value at(C, u). The
theorem is a consequence of (56), (57), and (58).
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(60) leq(τ1, τ2) value at(C, u) = leq(τ1 value at(C, u), τ2 value at(C, u)).
The theorem is a consequence of (20), (23), and (26).

(61) Let us consider a sort symbol a of Σ and an element x of (the generators
of G)(a). Then @x value at(C, s) = s(a)(x). The theorem is a consequence
of (29).

(62) Let us consider a sort symbol a of Σ, a pure element x of (the generators
of G)(a), and a many sorted function u from FreeGenerator(T) into the
sorts of C. Then @x value at(C, u) = u(a)(x).

Let us consider integers i, j and elements a, b of C from I. Now we state the
propositions:

(63) If a = i and b = j, then a− b = i− j.
(64) If a = i and b = j and j 6= 0, then a mod b = i mod j.

(65) Suppose G is C-supported and f ∈ C -Executionb 6→falseC
(A). Then let us

consider a sort symbol a of Σ, a pure element x of (the generators of
G)(a), and an element τ of T from a. Then

(i) f(s, x:=Aτ)(a)(x) = τ value at(C, s), and

(ii) for every pure element z of (the generators of G)(a) such that z 6= x

holds f(s, x:=Aτ)(a)(z) = s(a)(z), and

(iii) for every sort symbol b of Σ such that a 6= b for every pure element
z of (the generators of G)(b), f(s, x:=Aτ)(b)(z) = s(b)(z).

(66) Suppose G is C-supported and f ∈ C -Executionb 6→falseC
(A). Then

(i) τ1 value at(C, s) < τ2 value at(C, s) iff
f(s, b gt(τ2, τ1,A)) ∈ Statesb 6→falseC

(the generators of G), and

(ii) τ1 value at(C, s) ¬ τ2 value at(C, s) iff
f(s, b leq(τ1, τ2,A)) ∈ Statesb6→falseC

(the generators of G), and

(iii) for every x, f(s, b gt(τ1, τ2,A))(I)(x) = s(I)(x) and
f(s, b leq(τ1, τ2,A))(I)(x) = s(I)(x), and

(iv) for every pure element c of (the generators of G)((the boolean sort
of Σ)) such that c 6= b holds f(s, b gt(τ1, τ2,A))((the boolean sort of
Σ))(c) = s((the boolean sort of Σ))(c) and f(s, b leq(τ1, τ2,A))
((the boolean sort of Σ))(c) = s((the boolean sort of Σ))(c).

The theorem is a consequence of (31), (45), and (33).

Let i, j be real numbers and a, b be boolean sets. One can verify that
(i > j → a, b) is boolean.

Now we state the proposition:

(67) Suppose G is C-supported and f ∈ C -Executionb 6→falseC
(A). Then

(i) f(s, τ is odd(b,A))((the boolean sort of Σ))(b) = τ value at(C, s) mod
2, and
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(ii) f(s, τ is even(b,A))((the boolean sort of Σ))(b) = (τ value at(C, s) +
1) mod 2, and

(iii) for every z, f(s, τ is odd(b,A))(I)(z) = s(I)(z) and
f(s, τ is even(b,A))(I)(z) = s(I)(z).

The theorem is a consequence of (36), (40), (64), (31), (45), (44), and (1).

Let us consider Σ, X, T, G, and A. We say that A is elementary if and only
if

(Def. 13) rng the assignments of A ⊆ ElementaryInstructionsA.

Now we state the proposition:

(68) Suppose A is elementary. Then let us consider a sort symbol a of Σ, an
element x of (the generators of G)(a), and an element τ of T from a. Then
x:=Aτ ∈ ElementaryInstructionsA.

Let us consider Σ, X, T, and G. One can verify that there exists a strict
if-while algebra over the generators of G which is elementary.

Let A be an elementary if-while algebra over the generators of G, a be a sort
symbol of Σ, x be an element of (the generators of G)(a), and τ be an element
of T from a. Let us observe that x:=Aτ is absolutely-terminating.

Now let Γ denotes the program

y:=A1IT;
while b gt(@m, 0IT,A) do
if @m is odd(b,A) then
y:=A@y · @x
fi;
m:=A@mdiv 2IT;
x:=A@x · @x
done

Then we state the propositions:

(69) Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb6→falseC

(the generators of G). Suppose

(i) G is C-supported, and

(ii) f ∈ C -Executionb6→falseC
(A), and

(iii) there exists a function d such that d(x) = 1 and d(y) = 2 and
d(m) = 3.

Then Γ is terminating w.r.t. f and {s : s(I)(m) ­ 0}. The theorem is a
consequence of (66), (36), (61), (65), (40), and (43). Proof: Set ST =
C -States(the generators of G). Set TV = Statesb 6→falseC

(the generators
of G). Set P = {s : s(I)(m) ­ 0}. Set W = b gt(@m, 0IT,A). Define
F(element of ST ) = $1(I)(m)(∈ N). DefineR[element of ST ] ≡ $1(I)(m) >
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0. Set K = if @m is odd(b,A) then(y:=A(@y · @x)).
Set J = (K;m:=A(@m div 2IT));x:=A(@x · @x). P is invariant w.r.t. W and
f . For every element s of ST such that s ∈ P and f(f(s, J),W ) ∈ TV
holds f(s, J) ∈ P . P is invariant w.r.t. y:=A(1IT) and f . For every s such
that f(s,W ) ∈ P holds iteration of f started in J ;W terminates w.r.t.
f(s,W ). �

(70) Suppose G is C-supported and there exists a function d such that
d(b) = 0 and d(x) = 1 and d(y) = 2 and d(m) = 3. Then let us consider
an element s of C -States(the generators of G) and a natural number n.
Suppose n = s(I)(m). If f ∈ C -Executionb 6→falseC

(A), then f(s,Γ)(I)(y) =
s(I)(x)n. The theorem is a consequence of (65), (66), (36), (61), (37),
(40), (43), (67), (10), and (42). Proof: Set Σ = C -States(the generators
of G). Set W = T. Set g = f . Set T = Statesb 6→falseC

(the generators of
G). Set s0 = f(s, y:=A(1IW )). Define R[element of Σ] ≡ $1(I)(m) > 0.
Set C = b gt(@m, 0IW ,A). Define P[element of Σ] ≡ s(I)(x)n = $1(I)(y) ·
$1(I)(x)$1(I)(m) and $1(I)(m) ­ 0. Define F(element of Σ) = $1(I)(m)(∈
N). Set I = if @m is odd(b,A) then(y:=A(@y · @x)).
Set J = (I;m:=A(@mdiv 2YW ));x:=A(@x · @x). For every element s of Σ
such that P[s] holds P[(g(s,C) qua element of Σ)] and g(s,C) ∈ T iff
R[(g(s,C) qua element of Σ)]. Set s1 = g(s0,C). For every element s of Σ
such that R[s] holds R[(g(s, J ; C) qua element of Σ)] iff g(s, J ; C) ∈ T and
F((g(s, J ; C) qua element of Σ)) < F(s). Set q = s. For every element s
of Σ such that P[s] and s ∈ T and R[s] holds P[(g(s, J) qua element of
Σ)]. �

2. Calculation of Maximum

Let X be a non empty set, f be a finite sequence of elements of Xω, and x

be a natural number. Let us observe that f(x) is transfinite sequence-like finite
function-like and relation-like.

Let us note that every finite sequence of elements of Xω is function yielding.
Let i be a natural number, f be an i-based finite array, and a, x be sets.

Note that f +· (a, x) is i-based finite and segmental.
Let X be a non empty set, f be an X-valued function, a be a set, and x be

an element of X. Let us observe that f +· (a, x) is X-valued.
The scheme Sch1 deals with a non empty set X and a natural number j and

a set B and a ternary functor F yielding a set and a unary functor A yielding
a set and states that

(Sch. 1) There exists a finite sequence f of elements of X ω such that len f = j

and f(1) = B or j = 0 and for every natural number i such that 1 ¬ i < j

holds f(i+ 1) = F(f(i), i,A(i))
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provided

• for every 0-based finite array a of X and for every natural number i such
that 1 ¬ i < j for every element x of X , F(a, i, x) is a 0-based finite array
of X and

• B is a 0-based finite array of X and

• for every natural number i such that i < j holds A(i) ∈ X .

Now we state the propositions:

(71) Let us consider a non empty non void boolean signature Σ with arrays
of type 1 with connectives from 11 and integers at 1, sets J , L, and a sort
symbol K of Σ. Suppose (the connectives of Σ)(11) is of type 〈J, L〉 → K.
Then

(i) J = the array sort of Σ, and

(ii) for every integer sort symbol I of Σ, the array sort of Σ 6= I.

(72) Let us consider a 1-1-connectives 11-array correct boolean correct non
empty non void boolean signature Σ with integers with connectives from
4 and the sort at 1 and arrays of type 1 with connectives from 11 and
integers at 1, an integer sort symbol I of Σ, a boolean correct non-empty
algebra A over Σ with integers with connectives from 4 and the sort at
1 and arrays of type 1 with connectives from 11 and integers at 1, and
elements a, b of A from I. If a = 0, then init.array(a, b) = ∅.

(73) Let us consider an 11-array correct boolean correct non empty non void
boolean signature Σ with arrays of type 1 with connectives from 11 and
integers at 1 and an integer sort symbol I of Σ. Then

(i) the array sort of Σ 6= I, and

(ii) (the connectives of Σ)(11) is of type 〈the array sort of Σ, I〉 → I, and

(iii) (the connectives of Σ)(11 + 1) is of type 〈the array sort of Σ, I, I〉 →
the array sort of Σ, and

(iv) (the connectives of Σ)(11 + 2) is of type 〈the array sort of Σ〉 → I,
and

(v) (the connectives of Σ)(11 + 3) is of type 〈I, I〉 → the array sort of Σ.

(74) Let us consider a 1-1-connectives 11-array correct boolean correct non
empty non void boolean signature Σ with arrays of type 1 with connectives
from 11 and integers at 1 and integers with connectives from 4 and the
sort at 1, an integer sort symbol I of Σ, and a boolean correct non-empty
algebra A over Σ with arrays of type 1 with connectives from 11 and
integers at 1 and integers with connectives from 4 and the sort at 1. Then

(i) (the sorts of A)(the array sort of Σ) = Zω, and
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(ii) for every elements i, j of A from I such that i is a non negative
integer holds init.array(i, j) = i 7−→ j, and

(iii) for every element a of (the sorts of A)(the array sort of Σ), lengthI a =
a and for every element i of A from I and for every function f such
that f = a and i ∈ dom f holds a(i) = f(i) and for every element x
of A from I, ai←x = f +· (i, x).

The theorem is a consequence of (71).

Let a be a 0-based finite array. Observe that length a is finite.
Let Σ be a 1-1-connectives 11-array correct boolean correct non empty non

void boolean signature with integers with connectives from 4 and the sort at
1 and arrays of type 1 with connectives from 11 and integers at 1 and A be a
boolean correct non-empty algebra over Σ with arrays of type 1 with connectives
from 11 and integers at 1 and integers with connectives from 4 and the sort at
1. Observe that every non-empty subalgebra of A has arrays of type 1 with
connectives from 11 and integers at 1.

Let A be a non-empty algebra over Σ. We say that A is integer array if and
only if

(Def. 14) There exists an image C of A such that C is a boolean correct algebra
over Σ with integers with connectives from 4 and the sort at 1 and arrays
of type 1 with connectives from 11 and integers at 1.

Let X be a non-empty many sorted set indexed by the carrier of Σ. One can
verify that FΣ(X) is integer array as a non-empty algebra over Σ.

Note that every non-empty algebra over Σ which is integer array is also
integer.

One can check that there exists an including Σ-terms over X non-empty
strict free variable algebra over Σ which is vf-free and integer array.

One can check that there exists a non-empty algebra over Σ which is integer
array.

Let A be an integer array non-empty algebra over Σ. Observe that there
exists a boolean correct image of A which has integers with connectives from 4
and the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1.

In this paper Σ denotes a 1-1-connectives 11-array correct boolean correct
non empty non void boolean signature with integers with connectives from 4 and
the sort at 1 and arrays of type 1 with connectives from 11 and integers at 1, X
denotes a non-empty many sorted set indexed by the carrier of Σ, T denotes a
vf-free including Σ-terms over X integer array non-empty free variable algebra
over Σ, C denotes a boolean correct non-empty image of T with arrays of type
1 with connectives from 11 and integers at 1 and integers with connectives from
4 and the sort at 1, G denotes a basic generator system over Σ, X, and T, A

denotes a if-while algebra over the generators of G, I denotes an integer sort
symbol of Σ, x, y, m, i denote pure elements of (the generators of G)(I), M , N
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denote pure elements of (the generators of G)(the array sort of Σ), b denotes a
pure element of (the generators of G)((the boolean sort of Σ)), and s, s1 denote
elements of C -States(the generators of G).

Let us consider Σ. Let A be a boolean correct non-empty algebra over Σ with
arrays of type 1 with connectives from 11 and integers at 1. Observe that every
element of (the sorts of A)(the array sort of Σ) is relation-like and function-like.

Note that every element of (the sorts of A)(the array sort of Σ) is finite and
transfinite sequence-like.

Let us consider an operation symbol o of Σ. Now we state the propositions:

(75) Suppose o = (the connectives of Σ)(11)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈the array sort of Σ, I〉, and

(ii) the result sort of o = I.

(76) Suppose o = (the connectives of Σ)(12)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈the array sort of Σ, I, I〉, and

(ii) the result sort of o = the array sort of Σ.

(77) Suppose o = (the connectives of Σ)(13)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈the array sort of Σ〉, and

(ii) the result sort of o = I.

(78) Suppose o = (the connectives of Σ)(14)(∈ (the carrier’ of Σ)). Then

(i) Arity(o) = 〈I, I〉, and

(ii) the result sort of o = the array sort of Σ.

(79) Let us consider an element τ of T from the array sort of Σ and an ele-
ment τ1 of T from I.
Then τ(τ1) value at(C, s) = (τ value at(C, s))(τ1 value at(C, s)). The the-
orem is a consequence of (29), (75), (23), and (26).

(80) Let us consider an element τ of T from the array sort of Σ and elements
τ1, τ2 of T from I. Then ττ1←τ2 value at(C, s) =
(τ value at(C, s))τ1 value at(C,s)←τ2 value at(C,s). The theorem is a consequence
of (29), (76), (24), and (27).

(81) Let us consider an element τ of T from the array sort of Σ. Then
lengthI τ value at(C, s) = lengthI(τ value at(C, s)). The theorem is a con-
sequence of (29), (77), (22), and (25).

(82) Let us consider elements τ1, τ2 of T from I. Then init.array(τ1, τ2)
value at(C, s) = init.array(τ1 value at(C, s), τ2 value at(C, s)). The theorem
is a consequence of (29), (78), (23), and (26).

In the sequel u denotes a many sorted function from FreeGenerator(T) into
the sorts of C.

Now we state the propositions:
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(83) Let us consider an element τ of T from the array sort of Σ and an ele-
ment τ1 of T from I.
Then τ(τ1) value at(C, u) = (τ value at(C, u))(τ1 value at(C, u)). The the-
orem is a consequence of (28), (75), (23), and (26).

(84) Let us consider an element τ of T from the array sort of Σ and elements
τ1, τ2 of T from I.
Then ττ1←τ2 value at(C, u) = (τ value at(C, u))τ1 value at(C,u)←τ2 value at(C,u).
The theorem is a consequence of (28), (76), (24), and (27).

(85) Let us consider an element τ of T from the array sort of Σ. Then
lengthI τ value at(C, u) = lengthI(τ value at(C, u)). The theorem is a con-
sequence of (28), (77), (22), and (25).

(86) Let us consider elements τ1, τ2 of T from I. Then init.array(τ1, τ2)
value at(C, u) = init.array(τ1 value at(C, u), τ2 value at(C, u)). The theorem
is a consequence of (28), (78), (23), and (26).

Let us consider Σ, X, T, and I. Let i be an integer. The functor iIT yielding
an element of T from I is defined by

(Def. 15) There exists a function f from Z into (the sorts of T)(I) such that

(i) it = f(i), and

(ii) f(0) = 0IT, and

(iii) for every natural number j and for every element τ of T from I such
that f(j) = τ holds f(j + 1) = τ + 1IT and f(−(j + 1)) = −(τ + 1IT).

Now we state the propositions:

(87) 0IT = 0IT.

(88) Let us consider a natural number n. Then

(i) (n+ 1)IT = nIT + 1IT, and

(ii) −(n+ 1)IT = −(n+ 1)IT.

(89) 1IT = 0IT + 1IT. The theorem is a consequence of (88) and (87).

(90) Let us consider an integer i. Then iIT value at(C, s) = i. The theorem is
a consequence of (87), (36), (37), (88), (39), and (38).

Let us consider Σ, X, T, G, I, and M . Let i be an integer. The functor
M(i, I) yielding an element of T from I is defined by the term

(Def. 16) (@M)(iIT).

Let us consider C and s. Note that s(the array sort of Σ)(M) is function-like
and relation-like.

Note that s(the array sort of Σ)(M) is finite transfinite sequence-like and
Z-valued.

Observe that rng(s(the array sort of Σ)(M)) is finite and integer-membered.
Let us consider an integer j. Now we state the propositions:
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(91) Suppose j ∈ dom(s(the array sort of Σ)(M)) and
M(j, I) ∈ (the generators of G)(I). Then s(the array sort of Σ)(M)(j) =
s(I)(M(j, I)).

(92) Suppose j ∈ dom(s(the array sort of Σ)(M)) and
(@M)(@i) ∈ (the generators of G)(I) and j = @i value at(C, s).
Then (s(the array sort of Σ)(M))(@i value at(C, s)) = s(I)(((@M)(@i))).

Let X be a non empty set. One can verify that Xω is infinite.
Now we state the propositions:

(93) Now let Γ denotes the program

m:=A0IT;
for i:=A1IT until b gt(lengthI

@M,@i,A) step i:=A@i+ 1IT
do
if b gt((@M)(@i), (@M)(@m),A) then
m:=A@i

fi
done

Let us consider an execution function f of A over C -States(the generators
of G) and Statesb 6→falseC

(the generators of G). Suppose

(i) f ∈ C -Executionb6→falseC
(A), and

(ii) G is C-supported, and

(iii) i 6= m, and

(iv) s(the array sort of Σ)(M) 6= ∅.
Let us consider a natural number n. Suppose f(s,Γ)(I)(m) = n. Let
us consider a non empty finite integer-membered set X. Suppose X =
rng(s(the array sort of Σ)(M)). Then M(n, I) value at(C, s) = maxX.
The theorem is a consequence of (65), (36), (37), (74), (71), (66), (81),
(61), (39), (79), and (90). Proof: Set ST = C -States(the generators of
G). Define R[element of ST ] ≡ s(the array sort of Σ)(M) = $1(the array
sort of Σ)(M). Reconsider sm = s as a many sorted function from the
generators of G into the sorts of C. Reconsider z = sm(the array sort of
Σ)(M) as a 0-based finite array of Z. Define P[element of ST ] ≡ R[$1]
and $1(I)(i), $1(I)(m) ∈ N and $1(I)(i) ¬ len z and $1(I)(m) < $1(I)(i)
and $1(I)(m) < len z and for every integer mx such that mx = $1(I)(m)
for every natural number j such that j < $1(I)(i) holds z(j) ¬ z(mx). De-
fine Q[element of ST ] ≡ R[$1] and $1(I)(i) < lengthI

@M value at(C, s).
Set s0 = s. Set s1 = f(s,m:=A(0IT)). Set s2 = f(s1, i:=A(1IT)). Con-
sider J1, K1, L1 being elements of Σ such that L1 = 1 and K1 = 1
and J1 6= L1 and J1 6= K1 and (the connectives of Σ)(11) is of type
〈J1,K1〉 → L1 and (the connectives of Σ)(11 + 1) is of type 〈J1,K1,
L1〉 → J1 and (the connectives of Σ)(11 + 2) is of type 〈J1〉 → K1 and
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(the connectives of Σ)(11 + 3) is of type 〈K1, L1〉 → J1. P[s2]. Define
F(element of ST ) = (len(s0(the array sort of Σ)(M)) − $1(I)(i))(∈ N).
f(s2,W ) ∈ TV iff Q[f(s2,W )]. Now let Γ denotes the program
J ;
K;
W

For every element s of ST such that Q[s] holds Q[f(s,Γ)] iff f(s,Γ) ∈ TV
and F(f(s,Γ)) < F(s). For every element s of ST such that P[s] and s ∈
TV and Q[s] holds P[f(s, J ;K)]. For every element s of ST such that P[s]
holds P[f(s,W )] and f(s,W ) ∈ TV iff Q[f(s,W )]. M(n, I) value at(C, s)
is a upper bound of X. For every upper bound x of X, M(n, I)
value at(C, s) ¬ x. �

(94) Now let Γ denotes the program
J ;
i:=A@i+ 1IT

Now let ∆ denotes the program

for i:=Aτ0 until b gt(τ1,
@i,A) step i:=A@i+ 1IT do

J

done

Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb 6→falseC

(the generators of G). Suppose

(i) f ∈ C -Executionb 6→falseC
(A), and

(ii) G is C-supported.

Let us consider elements τ0, τ1 of T from I, an algorithm J of A, and a
set P . Suppose

(iii) P is invariant w.r.t. i:=Aτ0 and f , invariant w.r.t. b gt(τ1,
@i,A) and

f , invariant w.r.t. i:=A(@i+ 1IT) and f , and invariant w.r.t. J and f ,
and

(iv) J is terminating w.r.t. f and P , and

(v) for every s, f(s, J)(I)(i) = s(I)(i) and f(s, b gt(τ1,
@i,A))(I)(i) =

s(I)(i) and τ1 value at(C, f(s, b gt(τ1,
@i,A))) = τ1 value at(C, s) and

τ1 value at(C, f(s,Γ)) = τ1 value at(C, s).

Then ∆ is terminating w.r.t. f and P . The theorem is a consequence
of (61), (66), (65), (39), and (37). Proof: Set W = b gt(τ1,

@i,A). Set
L = i:=A(@i+ 1IT). Set K = i:=Aτ0. Set ST = C -States(the generators of
G). Set TV = Statesb 6→falseC

(the generators of G). Now let Γ denotes the
program
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J ;
L;
W

For every s such that f(s,W ) ∈ P holds iteration of f started in Γ
terminates w.r.t. f(s,W ). �

(95) Now let Γ denotes the program

m:=A0IT;
for i:=A1IT until b gt(lengthI

@M,@i,A) step i:=A@i+ 1IT
do
if b gt((@M)(@i), (@M)(@m),A) then
m:=A@i

fi
done

Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb6→falseC

(the generators of G). Suppose

(i) f ∈ C -Executionb6→falseC
(A), and

(ii) G is C-supported, and

(iii) i 6= m.

Then Γ is terminating w.r.t. f and {s : s(the array sort of Σ)(M) 6= ∅}. The
theorem is a consequence of (74), (73), (65), (61), (81), and (94). Proof:
Set J = m:=A(0IT). Set K = i:=A(1IT). Set W = b gt(lengthI

@M,@i,A).
Set L = i:=A(@i + 1IT). Set N = b gt((@M)(@i), (@M)(@m),A). Set O =
m:=A(@i). Set a = the array sort of Σ. Set P = {s : s(a)(M) 6= ∅}. P is
invariant w.r.t. J and f . P is invariant w.r.t. K and f . P is invariant w.r.t.
W and f . P is invariant w.r.t. L and f . P is invariant w.r.t. N and f . P
is invariant w.r.t. O and f . Set ST = C -States(the generators of G). Set
TV = Statesb 6→falseC

(the generators of G). P is invariant w.r.t. if N thenO
and f . Now let Γ denotes the program
if N then
O

fi;
L

For every s, f(s, if N thenO)(I)(i) = s(I)(i) and f(s,W )(I)(i) = s(I)(i)
and lengthI

@M value at(C, f(s,W )) = lengthI
@M value at(C, s) and

lengthI
@M value at(C, f(s,Γ)) = lengthI

@M value at(C, s). �
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3. Sorting by Exchanging

In this paper i1, i2 denote pure elements of (the generators of G)(I).
Let us consider Σ, X, T, and G. We say that G is integer array if and only

if

(Def. 17) (i) {(@M)(τ) where τ is an element of T from I : not contradiction} ⊆
(the generators of G)(I), and

(ii) for every M and for every element τ of T from I and for every element
g of G from I such that g = (@M)(τ) there exists x such that x 6∈
(vf τ)(I) and supp-var g = x and (supp-term g)(the array sort of
Σ)(M) = (@M)τ←@x and for every sort symbol s of Σ and for every
y such that y ∈ (vf g)(s) and if s = the array sort of Σ, then y 6= M

holds (supp-term g)(s)(y) = y.

Now we state the proposition:

(96) If G is integer array, then for every element τ of T from I, (@M)(τ) ∈
(the generators of G)(I).

The functor 〈〈Z,¬ 〉〉 yielding a strict real non empty poset is defined by the
term

(Def. 18) RealPoset Z.

Let us consider Σ, X, T, and G. Let A be an elementary if-while algebra
over the generators of G, a be a sort symbol of Σ, and τ1, τ2 be elements of T

from a. Assume τ1 ∈ (the generators of G)(a). The functor τ1:=Aτ2 yielding an
absolutely-terminating algorithm of A is defined by the term

(Def. 19) (The assignments of A)(〈〈τ1, τ2〉〉).
Now we state the proposition:

(97) Let us consider a countable non-empty many sorted set X indexed by the
carrier of Σ, a vf-free including Σ-terms over X integer array non-empty
free variable algebra T over Σ, a basic generator system G over Σ, X, and
T, a pure element M of (the generators of G)(the array sort of Σ), and
pure elements i, x of (the generators of G)(I). Then (@M)(@i) 6= x. The
theorem is a consequence of (73), (79), (61), and (74).

Let Σ be a non empty non void many sorted signature and A be a disjoint
valued algebra over Σ. Note that the sorts of A is disjoint valued.

Let us consider Σ and X. Let T be an including Σ-terms over X algebra
over Σ. We say that T is array degenerated if and only if

(Def. 20) There exists I and there exists an element M of
(FreeGenerator(T))(the array sort of Σ) and there exists an element τ of T

from I such that (@M)(τ) 6= Sym((the connectives of Σ)(11)(∈ (the carrier’
of Σ)), X)-tree(〈M, τ〉).
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Observe that FΣ(X) is non array degenerated.
Observe that there exists an including Σ-terms over X algebra over Σ which

is non array degenerated.
Now we state the propositions:

(98) Suppose T is non array degenerated. Then vf((@M)(@i)) = I -singleton i∪
(the array sort of Σ) -singletonM . The theorem is a consequence of (73).
Proof: Set τ = (@M)(@i). Reconsider N = M as an element of
(FreeGenerator(T))(the array sort of Σ). Consider m being a set such that
m ∈ X(the array sort of Σ) and M = the root tree of 〈〈m, the array sort
of Σ〉〉. Consider j being a set such that j ∈ X(I) and i = the root tree
of 〈〈j, I〉〉. {M} = (vf τ)(the array sort of Σ). {i} = (vf τ)(I). For every
sort symbol s of Σ such that s 6= the array sort of Σ and s 6= I holds
∅ = (vf τ)(s). �

(99) Let us consider an elementary if-while algebra A over the generators of
G and an execution function f of A over C -States(the generators of G)
and Statesb6→falseC

(the generators of G). Suppose

(i) G is integer array and C-supported, and

(ii) f ∈ C -Executionb6→falseC
(A), and

(iii) X is countable, and

(iv) T is non array degenerated.

Let us consider an element τ of T from I. Then f(s, (@M)(@i):=Aτ) =
f(s,M :=A((@M)@i←τ )). The theorem is a consequence of (96), (98), (97),
(4), (3), (62), (73), (61), (84), (65), and (80). Proof: Reconsider H =
FreeGenerator(T) as a many sorted subset of the generators of G. Set
v = τ value at(C, s). Reconsider p = (@M)(@i) as an element of G from I.
Reconsider g = s as a many sorted function from the generators of G into
the sorts of C. Reconsider g1 = f(s, (@M)(@i):=Aτ),
g2 = f(s,M :=A((@M)@i←τ )) as a many sorted function from the genera-
tors of G into the sorts of C. Reconsider Mi = (@M)(@i) as an element of
(the generators of G)(I). Reconsider m = M as an element of G from the
array sort of Σ. Consider x such that x 6∈ (vf @i)(I) and supp-var p = x

and (supp-term p)(the array sort of Σ)(M) = (@M)@i←@x and for every sort
symbol s of Σ and for every y such that y ∈ (vf p)(s) and if s = the array
sort of Σ, then y 6= M holds (supp-term p)(s)(y) = y. g1 = g2. �

Let us consider Σ, X, T, G, C, s, and b. Let us observe that s((the boolean
sort of Σ))(b) is boolean.

Now we state the proposition:

(100) Now let Γ denotes the program
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while J do
y:=A(@M)(@i1);
(@M)(@i1):=A(@M)(@i2);
(@M)(@i2):=A@y

done

Let us consider an elementary if-while algebra A over the generators
of G and an execution function f of A over C -States(the generators of G)
and Statesb 6→falseC

(the generators of G). Suppose

(i) G is integer array and C-supported, and

(ii) f ∈ C -Executionb 6→falseC
(A), and

(iii) T is non array degenerated, and

(iv) X is countable.

Let us consider an algorithm J of A. Suppose

(v) f(s, J)(the array sort of Σ)(M) = s(the array sort of Σ)(M), and

(vi) for every array D of 〈〈Z,¬ 〉〉 such that D = s(the array sort of Σ)(M)
holds if D 6= ∅, then f(s, J)(I)(i1), f(s, J)(I)(i2) ∈ domD and if
inversionsD 6= ∅, then 〈〈f(s, J)(I)(i1), f(s, J)(I)(i2)〉〉 ∈ inversionsD
and f(s, J)((the boolean sort of Σ))(b) = true iff inversionsD 6= ∅.

Let us consider a 0-based finite array D of 〈〈Z,¬ 〉〉. Suppose

(vii) D = s(the array sort of Σ)(M), and

(viii) y 6= i1, and

(ix) y 6= i2.

Then

(x) f(s,Γ)(the array sort of Σ)(M) is an ascending permutation of D,
and

(xi) if J is absolutely-terminating, then Γ is terminating w.r.t. f and {s1

: s1(the array sort of Σ)(M) 6= ∅}.

The theorem is a consequence of (73), (10), (61), (65), (99), (80), (74), and
(79).Proof: Define F(natural number, element of C -States(the generators
of G)) = f($2, ((J ; y:=A((@M)(@i1))); (@M)(@i1):=A((@M)(@i2)));
(@M)(@i2):=A(@y)). Set ST = C -States(the generators of G). Consider g
being a function from N into ST such that g(0) = s and for every natural
number i, g(i+ 1) = F(i, (g(i) qua element of ST )). Define G(element) =
g($1(∈ N))(the array sort of Σ)(M). Consider h being a function from N
into Zω such that for every element i such that i ∈ N holds h(i) = G(i).
For every ordinal number a such that a ∈ dom g holds h(a) is an ar-
ray of 〈〈Z,¬ 〉〉. Set TV = Statesb6→falseC

(the generators of G). Consider
s1 such that s = s1 and s1(the array sort of Σ)(M) 6= ∅. Reconsider
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D = s(the array sort of Σ)(M) as a 0-based finite non empty array of
〈〈Z,¬ 〉〉. Consider g being a function from N into ST such that g(0) = s

and for every natural number i, g(i + 1) = F(i, (g(i) qua element of
ST )). Define G(element) = g($1(∈ N))(the array sort of Σ)(M). Consider
h being a function from N into Zω such that for every element i such that
i ∈ N holds h(i) = G(i). For every ordinal number a such that a ∈ dom g

holds h(a) is an array of 〈〈Z,¬ 〉〉. Define T[natural number] ≡ h($1) 6= ∅.
For every natural number i such that T[i] holds T[i+1]. For every natural
number a and for every array R of 〈〈Z,¬ 〉〉 such that R = h(a) for every s
such that g(a) = s there exist sets x, y such that x = f(s, J)(I)(i1) and
y = f(s, J)(I)(i2) and x, y ∈ domR and h(a + 1) = Swap(R, x, y). Defi-
ne Q[natural number] ≡ h($1) is a permutation of D. Define P[natural
number] ≡ g($1)(the array sort of Σ)(M) is an ascending permutation
of D. There exists a natural number i such that P[i]. Consider B being
a natural number such that P[B] and for every natural number i such
that P[i] holds B ¬ i. Reconsider c = h� succ B as an array of Zω. Set
TV = Statesb 6→falseC

(the generators of G). Define H(natural number) =
f(g($1− 1), J). Consider r being a finite sequence such that len r = B + 1
and for every natural number i such that i ∈ dom r holds r(i) = H(i).
rng r ⊆ ST . Reconsider R = g(B)(the array sort of Σ)(M) as an ascen-
ding permutation of D. Now let Γ denotes the program

y:=A(@M)(@i1);
(@M)(@i1):=A(@M)(@i2);
(@M)(@i2):=A@y;
J

For every natural number i such that 1 ¬ i < len r holds r(i) ∈ TV and
r(i+ 1) = f(r(i),Γ). �
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