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Summary. We interoduce a new characterization of algebras of normal
forms of term rewriting systems [35] as algerbras of term free in itself (any func-
tion from free generators into the algebra generates endomorphism of the alge-
bra). Introduced algebras are free in classes of algebras satisfying some sets of
equalities. Their universes are subsets of all terms and the denotations of opera-
tion symbols are partially identical with the operations of construction of terms.
These algebras are compiler algebras requiring some equalities of terms, e.g.,
associativity of addition.
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1. PRELIMINARIES

In this paper ¥ is a non empty non void many sorted signature and X is a
non-empty many sorted set indexed by 3.
We now state the proposition

(1) For every set I and for all many sorted sets f1, fo indexed by I such
that f1 C f holds U fi € U fo.
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In the sequel x, y denote sets and ¢ denotes a natural number.
Let I be a set, let X be a non-empty many sorted set indexed by I, and let
A be a component of X. We see that the element of A is an element of |J X.
Let I be a set, let X be a many sorted set indexed by I, and let ¢ be an
element of I. Then X (i) is a component of X.
Let I be a set, let X, Y be many sorted sets indexed by I, let f be a many
sorted function from X into Y, and let  be a set. Then f(x) is a function from
X(x) into Y (z).
In this article we present several logical schemes. The scheme Sch1 deals with
a set A, a non-empty many sorted set B indexed by A, and a binary functor F
yielding a set, and states that:
There exists a many sorted function f indexed by A such that for
every z if © € A, then dom f(z) = B(z) and for every element y
of B(x) holds f(z)(y) = F(z,y)

for all values of the parameters.

The scheme Sch2 deals with a non empty set A, non-empty many sorted
sets B, C indexed by A, and a binary functor F yielding a set, and states that:
There exists a many sorted function f from B into C such that
for every element i of A and for every element a of B(i) holds

£(i)(a) = F(i,a)
provided the following condition is satisfied:
e For every element i of A and for every element a of B(i) holds
F(i,a) € C(i).

Let X be a non empty set, let O be a set, let f be a function from O into
X, and let g be a many sorted set indexed by X. Then ¢ - f is a many sorted
set indexed by O.

Let us consider 3, X, let F' be a many sorted set indexed by ¥ -Terms(X), let
o be an operation symbol of ¥, and let p be an argument sequence of Sym(o, X).
One can check that F - p is finite sequence-like.

The following proposition is true

(2) Subtrees(the root tree of ) = {the root tree of z}.

Let f be a decorated tree yielding function. Observe that rng f is constituted
of decorated trees.

The following three propositions are true:

(3) For every non empty decorated tree yielding finite sequence p holds
Subtrees(x-tree(p)) = {z-tree(p)} U Subtrees(rng p).
(4) Subtrees(z-tree(0)) = {z-tree(0)}.
(5) a-tree()) = the root tree of x.
Let us observe that there exists a finite sequence which is finite-yielding,

decorated tree yielding, and non empty and there exists a finite sequence which
is finite-yielding, tree yielding, and non empty.
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Let f be a finite-yielding function. One can check that dom, f(k) is finite-
yielding.

Let p be a finite-yielding tree yielding finite sequence. Observe that /p\ is
finite.

Let 7 be a finite decorated tree. Observe that Subtrees(7) is finite-membered.

Let p be a finite-yielding decorated tree yielding finite sequence and let us
consider x. Note that z-tree(p) is finite.

One can prove the following propositions:

(6) For all finite decorated trees 71, 72 such that 71 € Subtrees(mz) holds
height dom 77 < height dom 7.
(7) Let p be a decorated tree yielding finite sequence. Suppose p is finite-
yielding. Let 7 be a decorated tree. If x € Subtrees(7) and 7 € rng p, then
x # y-tree(p).
Let us consider ¥ and let X be a many sorted set indexed by 3. Note that
every Y. -Terms(X)-valued function is finite-yielding.
Next we state several propositions:

(8) For every non empty constituted of decorated trees set X and for every
decorated tree 7 such that 7 € X holds Subtrees(r) C Subtrees(X).

(9) For every non empty constituted of decorated trees set X holds X C
Subtrees(X).

(10) For every term 7 of ¥ over X and for every x such that = € Subtrees(r)
holds z is a term of ¥ over X.

(11) For every decorated tree yielding finite sequence p holds rngp C
Subtrees(z-tree(p)).

(12) For all decorated trees 71, 7o such that 73 € Subtrees(m2) holds
Subtrees(71) C Subtrees(7z).

(13) Let X be a many sorted set indexed by X, o be an operation symbol
of 3, and p be a finite sequence. If p € Args(o, Frees;(X)), then (Den(o,
Freex(X)))(p) = (o, the carrier of ¥)-tree(p).

Let I be a set, let A, B be non-empty many sorted sets indexed by I, and
let f be a many sorted function from A into B. Observe that rng, f(k) is non-
empty.

Let us consider X. One can check that every element of Tx(N) is relation-like
and function-like.

Let I be a set, let A be a many sorted set indexed by I, and let f be a finite
sequence of elements of I. Observe that A - f is dom f-defined.

Let I be a set, let A be a many sorted set indexed by I, and let f be a finite
sequence of elements of I. One can verify that A - f is total as a dom f-defined
binary relation.

The following propositions are true:
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(14) Let I be a non empty set, J be a set, and A, B be many sorted sets
indexed by I. Suppose A C B. Let f be a function from J into I. Then
A- f C B- f qua many sorted set indexed by J.

(15) Let I be a set and A, B be many sorted sets indexed by I. Suppose
A C B. Let f be a finite sequence of elements of I. Then A- f C B- f qua
many sorted set indexed by dom f.

(16) For every set I and for all many sorted sets A, B indexed by I such that
AC Bholds [TACIIB.

(17) Let R be a weakly-normalizing binary relation with unique normal form
property. If = is a normal form w.r.t. R, then nfg(x) = x.

(18) For every weakly-normalizing binary relation R with unique normal form
property holds nfg(nfr(z)) = nfg(x).

Let us consider 3, X, let A be a subset of Free(X), and let us consider z.
One can verify that every element of A(z) is relation-like and function-like.

Let I be a set and let A be a many sorted set indexed by I. We say that A
is countable if and only if:

(Def. 1) For every x such that x € I holds A(z) is countable.

Let I be a set and let X be a countable set. Note that I —— X is countable
as a many sorted set indexed by I. Note that there exists a many sorted set
indexed by I which is non-empty and countable.

Let X be a countable many sorted set indexed by I, and let x be a set. Note
that X (x) is countable.

Let A be a countable set. Observe that there exists a function from A into
N which is one-to-one.

Let I be a set and let Xy be a countable many sorted set indexed by I. One
can check that there exists a many sorted function from X into I —— N which
is “1-17.

We now state a number of propositions:

(19) Let X be a set, X be a many sorted set indexed by 3, Y be a non-empty
many sorted set indexed by ¥, and w be a many sorted function from X
into Y. Then rng, w(k) is a many sorted subset of Y.

(20) Let ¥ be a set and X be a countable many sorted set indexed by X.
Then there exists a many sorted subset Y of ¥ —— N and there exists
a many sorted function w from X into ¥ —— N such that w is “1-1”
and Y = rng, w(k) and for every z such that z € ¥ holds w(x) is an
enumeration of X (z) and Y (z) = X (z).

(21) Let I be a set, A be a many sorted set indexed by I, and B be a non-
empty many sorted set indexed by I. Then A is transformable to B.

(22) Let I be a set, A, B, C be non-empty many sorted sets indexed by I,
and f be a many sorted function from A into B. Suppose B is a many
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sorted subset of C. Then f is a many sorted function from A into C.

(23) Let I be a set and A, B be many sorted sets indexed by I. Suppose A
is transformable to B. Let f be a many sorted function from A into B.
Suppose f is onto. Then there exists a many sorted function g from B into
A such that fog=1idpg.

(24) Let 2y, 2y be algebras over X. Suppose the algebra of 2; = the algebra
of 5. Let B; be a subset of 2 and Bs be a subset of 2. Suppose B; = Bs.
Let o be an operation symbol of Y. If B is closed on o, then Bs is closed
on o.

(25) Let 2, 2y be algebras over ¥. Suppose the algebra of 2; = the algebra
of 5. Let B be a subset of 2 and Bs be a subset of 2. Suppose B; = Bs.
Let o be an operation symbol of X. If By is closed on o, then op, = op,.

(26) Let 2y, A2 be algebras over ¥. Suppose the algebra of 2; = the algebra
of 2l5. Let B; be a subset of 21 and By be a subset of 2. If By = By and
B is operations closed, then Opers(22, Bo) = Opers(2;, By).

(27) Let 2y, Ay be algebras over ¥. Suppose the algebra of 2; = the algebra
of As. Let By be a subset of 21 and By be a subset of 2». If B; = By and
By is operations closed, then B is operations closed.

(28) Let 21, Ao, B be algebras over 3. Suppose the algebra of 2; = the
algebra of 2As. Let B; be a subalgebra of 2;. Suppose the algebra of
B = the algebra of B;. Then B is a subalgebra of 2s.

(29) For all algebras 2, 2, over X such that 20y is empty holds every many
sorted function from 2(; into 2As is a homomorphism of 21 into 2As.

(30) Let 2y, Ao, B be algebras over ¥ and Bo be a non-empty algebra over
3. Suppose the algebra of 2; = the algebra of 25 and the algebra of
B, = the algebra of 5. Let h; be a many sorted function from 2{; into
B, and hse be a many sorted function from (s into Bo. Suppose hy = ho
and hi is a homomorphism of 2, into 21. Then ho is a homomorphism of
s into Bo.

2. TRIVIAL ALGEBRAS

Let I be a set and let X be a many sorted set indexed by I. Let us observe
that X is trivial-yielding if and only if:
(Def. 2) For every x such that x € I holds X (x) is trivial.
Let I be a set. Note that there exists a many sorted set indexed by I which
is non-empty and trivial-yielding.
Let I be a set, let 3 be a trivial-yielding many sorted set indexed by I, and
let us consider z. One can check that ¥(x) is trivial.
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Let us consider X and let 2 be an algebra over . We say that 2 is trivial
if and only if:

(Def. 3) The sorts of 2 are trivial-yielding.

Let us consider ¥. One can verify that there exists a strict algebra over X
which is trivial, disjoint valued, and non-empty.

Let us consider X and let 2 be a trivial algebra over ¥. One can verify that
the sorts of 2 is trivial-yielding.

Next we state four propositions:

(31) Let A be a trivial non-empty algebra over X, s be a sort symbol of ¥,
and e be an element of (the equations of ¥)(s). Then A = e.

(32) For every trivial non-empty algebra 2 over ¥ and for every set T' of
equations of ¥ holds 2 = T.

(33) Let 2 be a non-empty algebra over ¥ and T be a non-empty trivial
algebra over X. Then every many sorted function from 2 into T is a
homomorphism of 2 into T'.

(34) Let ¥ be a non-empty trivial algebra over ¥ and 2 be a non-empty
subalgebra of ¥. Then the algebra of 21 = the algebra of ¥.

3. IMAGE

Let us consider 3, let 2 be a non-empty algebra over X, and let € be an
algebra over . We say that € is 2-image if and only if the condition (Def. 4) is
satisfied.

(Def. 4) There exists a non-empty algebra % over X and there exists a many
sorted function h from 2 into B such that A is a homomorphism of 2 into
% and the algebra of € = Im h.

Let us consider ¥ and let 2 be a non-empty algebra over X. Observe that
every algebra over ¥ which is -image is also non-empty and there exists a
non-empty strict algebra over 3 which is 2-image.

Let us consider 3, let 2 be a non-empty algebra over X, and let € be a
non-empty algebra over . Let us observe that € is 2-image if and only if:

(Def. 5) There exists a many sorted function from 2 into € which is an epimor-
phism of 2 onto €.
Let us consider ¥ and let 2 be a non-empty algebra over X. An image of 2
is an 2A-image non-empty algebra over .
Let us consider ¥ and let 2 be a non-empty algebra over X. Observe that
there exists an image of 2 which is disjoint valued and trivial.
One can prove the following propositions:
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(35) Let 2 be a non-empty algebra over X, B be an 2-image algebra over 3,
s be a sort symbol of 3, and e be an element of (the equations of ¥)(s).
If A = e, then B = e.

(36) Let 2 be a non-empty algebra over X, B be an 2(-image algebra over 3,
and T be a set of equations of . If A =T, then B =T

4. TERM ALGEBRAS

Let us consider 3, X and let 2 be an algebra over ¥. We say that 2 is
including ¥-terms over X if and only if:

(Def. 6) The sorts of 2 are a many sorted subset of the sorts of Freex (X).

Let us consider ¥, X. Note that Freey(X) is including >-terms over X.

Let us consider X, X. One can check that Freey;(X) is non-empty and disjoint
valued.

Let us consider ¥, X. One can check that there exists a strict algebra over X
which is including 3-terms over X and non-empty and there exists an algebra
over Y which is including ¥-terms over X and non-empty.

Let us consider 3, X and let 2 be an including 3-terms over X algebra over
3. We say that 2 has all variables if and only if:

(Def. 7) FreeGenerator(X) is a many sorted subset of the sorts of 2.
We say that 2 inherits operations if and only if the condition (Def. 8) is satisfied.
(Def. 8) Let o be an operation symbol of ¥ and p be a finite sequence. Sup-
pose p € Args(o,Freex (X)) and (Den(o, Freex;(X)))(p) € (the sorts of
20)(the result sort of 0). Then p € Args(o,2) and (Den(o,2))(p) = (Den(o,
Frees(X)))(p)-
We say that 2 is free in itself if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let f be a many sorted function from FreeGenerator(X) into the sorts
of A and G be a many sorted subset of the sorts of 2. Suppose G =
FreeGenerator(X). Then there exists a many sorted function h from A
into 2 such that h is a homomorphism of 2 into 2 and f =h [ G.

We now state two propositions:

(37) Let A, B be non-empty algebras over ¥. Suppose the algebra of 20 = the
algebra of B. Suppose 2 is including X-terms over X . Then %5 is including
>-terms over X.

(38) Let 2L, B be including X-terms over X non-empty algebras over ¥ such
that the algebra of 2 = the algebra of 9. Then

(i) if A has all variables, then 9B has all variables,
(ii)  if A inherits operations, then B inherits operations, and
(iii)  if A is free in itself, then B is free in itself.

245
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Let J be a non empty non void many sorted signature and let T be a non-
empty algebra over J. Observe that there exists a generator set of ¥ which is
non-empty.

Let us consider ¥, X . Observe that Freey;(X) is free in itself, has all variables,
and inherits operations.

Let us consider ¥, X. Note that every including ¥-terms over X algebra
over ¥ which has all variables is also non-empty and there exists an including
Y-terms over X strict algebra over ¥ which is free in itself, has all variables,
and inherits operations.

In the sequel 2y denotes an including Y-terms over X non-empty algebra
over X, 2; denotes an including ¥-terms over X algebra over X with all variables,
2o denotes an including »-terms over X algebra over ¥ with all variables and
inheriting operations, and 21 denotes a free in itself including X-terms over X
algebra over Y with all variables and inheriting operations.

Next we state three propositions:

(39) Every element of 2 is an element of Freey,(X) and for every sort symbol
s of ¥ holds every element of 2 from s is an element of Freey,(X) from s.

(40) Let s be a sort symbol of ¥ and z be an element of X (s). Then the root
tree of (x, s) is an element of 2; from s.

(41) For every operation symbol o of ¥ holds Args(o, 1) C Args(o, Frees(X)).

Let X be a set. Observe that there exists a many sorted set indexed by X
which is disjoint valued and non-empty.

Let ¥ be a set and let T be a disjoint valued non-empty many sorted set
indexed by 3. One can check that every many sorted subset of T is disjoint
valued.

Let us consider ¥, X. Observe that there exists an algebra over ¥ which is
including Y-terms over X and strict.

Let us consider X, X, ;. The canonical homomorphism of 2; yields a many
sorted function from Freeyx;(X) into 2; and is defined by the conditions (Def. 10).

(Def. 10)(i) The canonical homomorphism of 2(; is a homomorphism of Freey,(X)
into 2, and
(ii) for every generator set G of Freey;(X) such that G = FreeGenerator(X)
holds idg = (the canonical homomorphism of ;) [ G.

Let us consider X, X, 2. One can check that every element of 2 is function-
like and relation-like. Let s be a sort symbol of ¥. One can verify that every
element of %y from s is function-like and relation-like.

Let us consider X, X, 2y. One can verify that every element of 2 is deco-
rated tree-like. Let s be a sort symbol of . Note that every element of 2 from
s is decorated tree-like.

Let us consider ¥, X. Note that every algebra over ¥ which is including
Y-terms over X is also disjoint valued.
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The following propositions are true:
(42) Every element of 2 is a term of ¥ over X.

(43) Let 7 be an element of Ay and s be a sort symbol of . If 7 € (the sorts
of Freex;(X))(s), then 7 € (the sorts of g)(s).

(44) For every element 7 of 2y and for every element p of dom 7 holds 7[p is
an element of As.

(45) FreeGenerator(X) is a generator set of As.

(46) Let T be a free in itself non-empty including ¥-terms over X algebra
over ¥, 2 be an image of T, and G be a generator set of T. Suppose
G = FreeGenerator(X). Let f be a many sorted function from G into the
sorts of 2. Then there exists a many sorted function h from T' into 2 such
that h is a homomorphism of T into 2 and f =h | G.

(47)(1)  The canonical homomorphism of 2, is an epimorphism of Freex(X)
onto Ao, and
(ii)  for every sort symbol s of ¥ and for every element 7 of s from s holds
(the canonical homomorphism of 23)(s)(7) = 7.
(48) (The canonical homomorphism of 20s) o (the canonical homomorphism
of 23) = the canonical homomorphism of 2s.

(49) A is Freey (X )-image.

5. SATISFIABILITY

The following four propositions are true:

(50) Let 2 be a non-empty algebra over X, s be a sort symbol of ¥, and 7 be
an element of Ty(N) from s. Then 2 = 7=7.

(51) Let A be a non-empty algebra over 3, s be a sort symbol of ¥, and 7y,
79 be elements of Ty(N) from s. If A = 71=79, then A = mo=71.
(52) Let 2 be a non-empty algebra over 3, s be a sort symbol of ¥, and 7y,
T2, T3 be elements of Ty (N) from s. If A = 7= 7 and 2A |= To=73, then
A = 1=T3.
(53) Let A be a non-empty algebra over 3, o be an operation symbol of 3,
and a1, ag be finite sequences. Suppose that
(i) a1 € Args(o, Tx(N)),
(ii) a9 € Args(o, Tx(N)), and
(iii)  for every natural number i such that ¢ € dom Arity(o) and for every
sort symbol s of 3 such that s = Arity(o)(¢) and for all elements 71, T2 of
Tx(N) from s such that 71 = a1(i) and 75 = a2(i) holds A | 71=75.
Let 11, 72 be elements of Tx(N) from the result sort of o. Suppose 7 = (o,
the carrier of ¥)-tree(a;) and 72 = (o, the carrier of X)-tree(az). Then
A= 1=70.



248 GRZEGORZ BANCEREK

Let us consider X, let T' be a set of equations of 3, and let 2 be an algebra
over Y. We say that 2 satisfies T if and only if:

(Def. 11) A E=T.

Let us consider ¥ and let T' be a set of equations of 3. Observe that there
exists an algebra over ¥ which is non-empty and trivial and satisfies 71" .

Let us consider X, let T" be a set of equations of 3, and let 2 be a non-empty
algebra over X satisfying 7' . One can verify that every non-empty algebra over
> which is 2-image also satisfies T .

Let us consider X, let 2 be an algebra over X, let T" be a set of equations of
>, and let G be a generator set of 2. We say that G is T-free if and only if the
condition (Def. 12) is satisfied.

(Def. 12) Let B be a non-empty algebra over ¥ satisfying 7" and f be a many
sorted function from G into the sorts of B. Then there exists a many
sorted function h from 2{ into B such that h is a homomorphism of 2 into
Band h | G = f.

Let us consider X, let T' be a set of equations of 3, and let 2 be an algebra
over Y. We say that 2 is T-free if and only if:

(Def. 13) There exists a generator set of 2 which is T-free.

Let us consider ¥ and let 24 be an algebra over Y. The functor
Equations(3, ) yields a set of equations of ¥ and is defined as follows:

(Def. 14) For every sort symbol s of ¥ holds (Equations(X,2))(s) = {e; e ranges
over elements of (the equations of ¥)(s): 2 = e}.

We now state the proposition
(54) For every algebra 2 over X holds 2 = Equations(X, ).

Let us consider X and let 2 be a non-empty algebra over 3. One can verify
that every 2-image algebra over X satisfies Equations(3,2) .

6. TERM CORRESPONDENCE

Now we present two schemes. The scheme TermDefEx deals with a non emp-
ty non void many sorted signature 4, a non-empty many sorted set B indexed
by A, a binary functor F yielding a set, and a binary functor G yielding a set,
and states that:

There exists a many sorted set F' indexed by .A-Terms(B) such
that
(i)  for every sort symbol s of A and for every element x of
B(s) holds F'(the root tree of (z, s)) = F(x,s), and
(ii)  for every operation symbol o of A and for every argument
sequence p of Sym(o, B) holds F'(Sym(o, B)-tree(p)) = G(o, F' - p)
for all values of the parameters.
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The scheme TermDefUniq deals with a non empty non void many sorted
signature A, a non-empty many sorted set B indexed by A, a binary functor
F yielding a set, a binary functor G yielding a set, and many sorted sets C, D
indexed by A-Terms(B), and states that:

C=D
provided the following conditions are satisfied:

e For every sort symbol s of A and for every element x of B(s) holds
C(the root tree of (x, s)) = F(x,s),

e For every operation symbol o of A and for every argument sequ-
ence p of Sym(o, B) holds C(Sym(o, B)-tree(p)) = G(o,C - p),

e For every sort symbol s of A and for every element x of B(s) holds
D(the root tree of (x, s)) = F(z,s), and

e For every operation symbol o of A and for every argument sequ-
ence p of Sym(o, B) holds D(Sym(o, B)-tree(p)) = G(o0, D - p).

Let us consider ¥, X, let w be a many sorted function from X into (the
carrier of ¥) — N, and let 7 be a function. Let us assume that 7 is an element
of Freey(X). The functor #], yields an element of Tx(N) and is defined by the
condition (Def. 15).

(Def. 15) There exists a many sorted set F' indexed by ¥ -Terms(X) such that
() #5=F(r),
(ii)  for every sort symbol s of ¥ and for every element = of X(s) holds
F(the root tree of {(z, s)) = the root tree of (w(s)(x), s), and
(iii)  for every operation symbol o of ¥ and for every argument sequence p
of Sym(o, X) holds F(Sym(o, X)-tree(p)) = Sym(o, (the carrier of ¥) —
N)-tree(F - p).
We now state the proposition

(55) Let w be a many sorted function from X into (the carrier of ¥) — N
and F' be a many sorted set indexed by X -Terms(X). Suppose that
(i)  for every sort symbol s of ¥ and for every element z of X(s) holds
F(the root tree of (z, s)) = the root tree of (w(s)(zx), s), and

(ii)  for every operation symbol o of ¥ and for every argument sequence p
of Sym(o, X) holds F(Sym(o, X)-tree(p)) = Sym(o, (the carrier of ¥) —
N)-tree(F - p).
Let 7 be an element of Freex,(X). Then F(7) = #,.

Let us consider ¥, X, let G be a non-empty subset of Freex(X), and let s
be a sort symbol of ¥. Observe that every element of G(s) is relation-like and
function-like.

Next we state several propositions:

(56) Let w be a many sorted function from X into (the carrier of ¥) — N.

Then there exists a many sorted function h from Frees(X) into Tx(N)
such that
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(i)  h is a homomorphism of Freex(X) into Ty (N), and
(ii)  for every sort symbol s of ¥ and for every element 7 of Freey(X) from
s holds #I, = h(s)(7).
(57) Let w be a many sorted function from X into (the carrier of ¥)
N, s be a sort symbol of ¥, and z be an element of X(s). Then

the root tree of {z,5) _ the root tree of (w(s)(x), s).

H#w

(58) Let w be a many sorted function from X into (the carrier of ¥) — N,
o be an operation symbol of ¥, p be an argument sequence of Sym(o, X),
and ¢ be a finite sequence. Suppose dom ¢ = dom p and for every natural
number ¢ and for every element 7 of Frees(X) such that i € domp and
7 = p(i) holds ¢(i) = #7,- Then #?Uym(o’X)_tree(p) = Sym(o, (the carrier of
Y) — N)-tree(q).

(59) For every many sorted subset Y of X holds Freex(Y) is a subalgebra of
Freex (X).

(60) Let w be a many sorted function from X into (the carrier of ¥) — N
and 7 be a term of ¥ over X. Then #], is an element of Freey;(rng, w(k))
from the sort of 7 and #7, is an element of Tx;(N) from the sort of 7.

(61) Let w be a many sorted function from X into (the carrier of X) — N

and F' be a many sorted set indexed by X -Terms(X). Suppose that

(i)  for every sort symbol s of ¥ and for every element = of X(s) holds
F(the root tree of (z, s)) = the root tree of (w(s)(zx), s), and

(ii)  for every operation symbol o of ¥ and for every argument sequence p
of Sym(o, X) holds F(Sym(o, X)-tree(p)) = Sym(o, (the carrier of ¥) —
N)-tree(F - p).
Let o be an operation symbol of ¥ and p be an argument sequen-
ce of Sym(o,X). Then F - p € Args(o,Freex(rng, w(k))) and F -p €
Args(o, Freex((the carrier of ¥) — N)).

(62) Let w be a many sorted function from (the carrier of ¥) — N into X.

Then there exists a many sorted function h from Tx(N) into 2 such that
(i)  h is a homomorphism of Tx(N) into A, and
(ii)  for every sort symbol s of ¥ and for every natural number ¢ holds
h(s)(the root tree of (i, s)) = the root tree of (w(s)(i), s).

(63) Let w be a many sorted function from X into (the carrier of ¥) —— N.
Then there exists a many sorted function h from FreeGenerator(X) into
the sorts of Tx(N) such that for every sort symbol s of ¥ and for every
element ¢ of X(s) holds h(s)(the root tree of (i, s)) = the root tree of

(w(s)(7), s)-
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In the sequel Xy is a non-empty countable many sorted set indexed by ¥ and
g is a free in itself including X-terms over X algebra over X with all variables
and inheriting operations.

The following propositions are true:

(64) Let h be a many sorted function from Tx(N) into 2. Suppose h is a
homomorphism of Tx(N) into 2. Let w be a many sorted function from
Xy into (the carrier of ) —— N. Suppose w is “1-1”. Then there exists
a non-empty many sorted subset Y of (the carrier of ) — N and there
exists a subset B of Tx(N) and there exists a many sorted function w;
from Freex(Y) into 2p and there exists a many sorted function g from 2
into 2 such that Y = rng, w(x) and B = the sorts of Freex(Y') and
FreeGenerator(rng, w(x)) € B and w; is a homomorphism of Frees(Y')
into 2y and ¢ is a homomorphism of 2y into %Ay and A [ B = g o wy and
for every sort symbol s of ¥ and for every natural number i such that
i € Y (s) there exists an element = of Xy(s) such that w(s)(z) = i and
w1 (s)(the root tree of (i, s)) = the root tree of (x, s).

(65) Let h be a many sorted function from Frees;(Xy) into 2. Suppose h is
a homomorphism of Freex(Xp) into 2g. Then there exists a many sorted
function g from 2 into 2y such that ¢ is a homomorphism of 2y into g
and h = g o the canonical homomorphism of 2.

(66) Let o be an operation symbol of ¥, x be an element of Args(o,%y), and
xo be an element of Args(o,Freex(Xy)). If g = z, then (the canonical
homomorphism of 2y)#xzy = .

(67) Let o be an operation symbol of ¥ and x be an element of Args(o, ).
Then (Den(o,2p))(z) = (the canonical homomorphism of ) (the result
sort of 0)((Den(o, Freex(Xo)))(z)).

(68) Let h be a many sorted function from Freey,(X() into 2y. Suppose h is a
homomorphism of Frees;(Xy) into 2p. Let o be an operation symbol of X
and = be an element of Args(o, ). Then h(the result sort of 0)((Den(o,
2p))(z)) = h(the result sort of 0)((Den(o, Freex(Xy)))(z)).

(69) Let h be a many sorted function from Frees(Xy) into 2o. Suppose h
is a homomorphism of Freey(Xp) into y. Let o be an operation sym-
bol of ¥ and x be an element of Args(o,Freex(Xp)). Then h(the re-
sult sort of 0)((Den(o, Freex(Xy)))(z)) = h(the result sort of 0)((Den(o,
Freex;(Xo)))((the canonical homomorphism of 2y)#x)).

(70) Let Xo, Yy be non-empty countable many sorted sets indexed by X, 2
be an including Y-terms over Xy algebra over ¥ with all variables and
inheriting operations, and h be a many sorted function from Frees(Yp)
into 2. Suppose h is a homomorphism of Freex(Yp) into 2. Then there

251
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exists a many sorted function g from Freey(Y)) into Freey(Xy) such that
(i) g is a homomorphism of Freex;(Yp) into Frees (X)),
(ii)  h = (the canonical homomorphism of 2) o g, and
(ili) for every generator set G of Freex(Yy) such that G = FreeGenerator(Y))
holds g G =h | G.
(71) Let w be a many sorted function from Xy into (the carrier of ¥) — N,
s be a sort symbol of ¥, 7 be an element of Freey(Xy) from s, and

71, T2 be elements of Tyx(N) from s. Suppose 71 = #I and 70 =

ghe canonical homomorphism of 2[0)(5)(7'). Then 2, ’: =Ty,

(72) Let w be a many sorted function from Xy into (the carrier of ) — N, o
be an operation symbol of 3, p be an element of Args(o, Freex(Xy)), and
g be an element of Args(o,%p). Suppose (the canonical homomorphism
of Ag)#p = q. Let 71, 12 be terms of 3 over Xy. Suppose 71 = (Den(o,
Freex:(Xo)))(p) and 72 = (Den(o,%))(g). Let 73, 74 be elements of T'x(N)
from the result sort of o. If 73 = #I1 and 74 = #72, then 2y = 73=74.

(73) Let w be a many sorted function from Xy into (the carrier of ) — N.
Suppose w is “1-17. Then there exists a many sorted function g from
Tx(N) into Freex(Xp) such that

(i) ¢ is a homomorphism of Tx(N) into Freex(Xy), and
(ii)  for every sort symbol s of ¥ and for every element 7 of Freex(Xy) from

s holds g(s)(#1,) = T.

(74) Let B be a non-empty algebra over ¥ and h be a many sorted function
from Freex(Xp) into B. Suppose h is a homomorphism of Freex(Xj) into
B. Let w be a many sorted function from Xj into (the carrier of ¥) — N.
Suppose w is “1-1”7. Let s be a sort symbol of ¥, 71, 70 be elements of
Frees(Xp) from s, and 73, 74 be elements of Tx(N) from s. If 73 = #I!
and 74 = #72, then if B |= 3=y, then h(s)(m1) = h(s)(12).

(75) For every generator set G of 2y such that G = FreeGenerator(Xy) holds
G is Equations(X, p)-free.

(76) Ap is Equations(3, Ap)-free.

8. ALGEBRAS OF NORMAL FORMS

Let I be a set, let X, Y be many sorted sets indexed by I, let R be a many
sorted relation between X and Y, and let x be a set. Then R(z) is a relation
between X (x) and Y (z).

Let I be a set, let X be a many sorted set indexed by I, and let R be a many
sorted relation indexed by X. We say that R is terminating if and only if:

(Def. 16) For every set x such that € I holds R(z) is strongly-normalizing.

We say that R has unique normal form property if and only if:
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(Def. 17) For every set x such that x € I holds R(z) has unique normal form
property.
Let us mention that every empty set is strongly-normalizing and has unique
normal form property.
One can prove the following proposition
(77) Let I be a set and A be a many sorted set indexed by I. Then there
exists a many sorted relation R indexed by A such that R = I —— ) and
R is terminating.

Let I be a set and let X be a many sorted set indexed by I. One can
verify that every many sorted relation indexed by X which is empty yielding is
also terminating and has unique normal form property and there exists a many
sorted relation indexed by X which is empty yielding.

Let I be a set, let X be a many sorted set indexed by I, let R be a terminating
many sorted relation indexed by X, and let i be a set. Note that R(i) is strongly-
normalizing as a binary relation.

Let R be a many sorted relation indexed by X with unique normal form
property, and let ¢ be a set. Note that R(7) has unique normal form property as
a binary relation.

Let us consider ¥, X and let R be a many sorted relation indexed by
Frees(X). We say that R has NF-variables if and only if:

(Def. 18) For every sort symbol s of 3 holds every element of FreeGenerator(X)(s)
is a normal form w.r.t. R(s).

We now state the proposition
(78) x is a normal form w.r.t. (.

Let us consider Y, X. Note that every many sorted relation indexed by
Freey,(X) which is empty yielding is also invariant and stable and has NF-
variables.

Let us consider %, X. Observe that there exists an invariant stable many
sorted relation indexed by Freex;(X) which is terminating and has NF-variables
and unique normal form property.

Now we present two schemes. The scheme A deals with sets A, B, a binary
relation C, and a unary predicate P, and states that:

P[B]
provided the parameters satisfy the following conditions:
o PlA]
e C reduces A to B, and
e For all sets y, z such that C reduces A to y and (y, z) € C and
Ply] holds P|z].

The scheme B deals with sets A, B, a binary relation C, and a unary predicate

P, and states that:
P[A]
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provided the parameters meet the following requirements:
e PlB],
e ( reduces A to B, and
e For all sets y, z such that (y, z) € C and P[z] holds P[y].

Let X be a non empty set, let R be a strongly-normalizing binary relation
on X with unique normal form property, and let  be an element of X. Then
nfr(x) is an element of X.

Let I be a non empty set, let X be a non-empty many sorted set indexed by
I, and let R be a terminating many sorted relation indexed by X with unique
normal form property. The functor NForms(R) yields a non-empty many sorted
subset of X and is defined as follows:

(Def. 19)  For every element i of I holds (NForms(R))(i) = {nfgg(z) :  ranges
over elements of X (i)}.

The scheme MSFLambda deals with a non empty set A, a unary functor F
yielding a non empty set, and a binary functor G yielding a set, and states that:
There exists a many sorted function f indexed by A such that for

every element o of A holds
dom f(0) = F(o) and for every element x of F(o) holds
f(o)(z) = G(o,x)
for all values of the parameters.

Let us consider ¥, X and let R be a terminating invariant stable many sorted
relation indexed by Freex(X) with unique normal form property. The algebra
of normal forms of R yields a non-empty strict algebra over . and is defined by
the conditions (Def. 20).

(Def. 20)(i)  The sorts of the algebra of normal forms of R = NForms(R), and
(ii)  for every operation symbol o of ¥ and for every element a of Args(o, the
algebra of normal forms of R) holds (Den(o, the algebra of normal forms

of R))(CL) = nfR(the result sort of o) ((Den(ov Freey, (X)))(a))
We now state several propositions:

(79) Let R be a terminating invariant stable many sorted relation indexed by
Freey,(X) with unique normal form property and a be a sort symbol of .
If x € (NForms(R))(a), then nfp(,(7) = =.

(80) Let R be a terminating invariant stable many sorted relation indexed
by Freex(X) with unique normal form property and g be a many sorted
function from Freex(X) into Freey(X). Suppose g is a homomorphism of
Frees;(X) into Frees(X). Let s be a sort symbol of ¥ and a be an element
of Frees;(X) from s. Then nf ) (g9(s)(nfr(s)(a))) = nf (s (9(s)(a)).

(81) For every finite sequence p holds p|g = p and for every natural number
i such that ¢ > lenp holds p|; = 0.

(82) For all finite sequences p, g holds p~ (z) “q¢+- (lenp+1,y) =p~(y) " q.



(83)
(84)

(85)
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For every finite sequence p and for every natural number ¢ such that
i+ 1 <lenp holds p[(i +1) = (pli) ~ (p(i + 1)).

For every finite sequence p and for every natural number ¢ such that
i+ 1 <lenp holds p; = (p(i + 1)) ~ (pli+1)-

Let R be a terminating invariant stable many sorted relation indexed
by Freex(X) with unique normal form property and g be a many sorted
function from Freey(X) into Freex(X). Suppose g is a homomorphism of
Freey (X) into Freex(X). Let h be a many sorted function from the algebra
of normal forms of R into the algebra of normal forms of R. Suppose that
for every sort symbol s of ¥ and for every element x of the algebra of
normal forms of R from s holds h(s)(z) = nfg()(g(s)(z)). Let s be a sort
symbol of 3 and o be an operation symbol of ¥. Suppose s = the result
sort of o. Let = be an element of Args(o,the algebra of normal forms
of R) and y be an element of Args(o,Freey,(X)). Suppose x = y. Then
nf z(,)((Den(o, the algebra of normal forms of R))(h#x)) = nf (s ((Den(o,

Frees(X)))(g#y))-

Let us consider 3, X and let R be a terminating invariant stable many sorted

relation indexed by Freey (X) with unique normal form property. One can verify

that the algebra of normal forms of R is including »-terms over X.

Let us consider 3, X and let R be a terminating invariant stable many

sorted relation indexed by Freey(X) with NF-variables and unique normal form
property. Note that the algebra of normal forms of R is free in itself, has all

variables, and inherits operations.
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