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Summary. We prove weak (finite set of premises) completeness theorem
for extended propositional linear time temporal logic with irreflexive version of
until-operator. We base it on the proof of completeness for basic propositional
linear time temporal logic given in [20] which roughly follows the idea of the
Henkin-Hasenjaeger method for classical logic. We show that a temporal model
exists for every formula which negation is not derivable (Satisfiability Theorem).
The contrapositive of that theorem leads to derivability of every valid formula.
We build a tree of consistent and complete PNPs which is used to construct the
model.
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1. Preliminaries

For simplicity, we use the following convention: A, B, p, q denote elements
of the LTLB-WFF, M denotes a LTL Model, j, k, n denote elements of N, i
denotes a natural number, X denotes a subset of the LTLB-WFF, F denotes a
finite subset of the LTLB-WFF, f denotes a finite sequence of elements of the
LTLB-WFF, and P , Q, R denote positive-negative pairs.

Let X be a finite set. We see that the enumeration of X is a one-to-one finite
sequence of elements of X.

Let E be a set and let F be a finite subset of E. We see that the enumeration
of F is a one-to-one finite sequence of elements of E.

Let D be a set. One can verify that there exists a set of finite sequences of
D which is non empty and finite.

We now state the proposition

(1) Let X be a set and G be a non empty finite set of finite sequences of X.
Then there exists a finite sequence A such that A ∈ G and for every finite
sequence B such that B ∈ G holds lenB ≤ lenA.

Let T be a decorated tree, let us consider n, and let t be a node of T . Then
t�n is a node of T .

We now state the proposition

(2) p is a finite sequence of elements of N.

Let us consider A. We introduce A is s-until as a synonym of A is conjunctive.
Let us consider A. Let us assume that A is s-until. The right argument of A

yields an element of the LTLB-WFF and is defined by:

(Def. 1) There exists p such that p U the right argument of A = A.

Let us consider A. We say that A is satisfiable if and only if:

(Def. 2) There exist M , n such that SATM (〈〈n, A〉〉) = 1.

We now state four propositions:

(3) ∅the LTLB-WFF |= A iff ¬A is not satisfiable.

(4) If >t &&A is satisfiable, then A is satisfiable.

(5) Let i be an element of N. Then SATM (〈〈i, pU q〉〉) = 1 if and only if there
exists j such that j > i and SATM (〈〈j, q〉〉) = 1 and for every k such that
i < k < j holds SATM (〈〈k, p〉〉) = 1.

(6) SATM (〈〈n, (conjunction f)len conjunction f 〉〉) = 1 iff for every i such that
i ∈ dom f holds SATM (〈〈n, fi〉〉) = 1.

One can prove the following three propositions:

(7) Ŵ = >t &&¬A, where W = 〈〈ε(the LTLB-WFF), 〈A〉〉〉.
(8) For every complete positive-negative pair P such that UN(A,B) ∈ rngP

holds A, B, A U B ∈ rngP.

(9) rngP ⊆
⋃
σ(rngP ).
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2. Set of PNP-formulas. Completions of Formulas and PNPs

In the sequel P is an element of (the LTLB-WFF)∗1−1×(the LTLB-WFF)∗1−1.

Let F be a subset of (the LTLB-WFF)∗1−1×(the LTLB-WFF)∗1−1. The func-
tor F̂ yields a subset of the LTLB-WFF and is defined by:

(Def. 3) F̂ = {P̂ : P ∈ F}.
Let F be a non empty subset of (the LTLB-WFF)∗1−1×(the LTLB-WFF)∗1−1.

Note that F̂ is non empty.
Let F be a finite subset of (the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1.

Observe that F̂ is finite.
We now state the proposition

(10) For all subsets F , G of (the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1

holds F̂ ∪G = F̂ ∪ Ĝ.
One can prove the following proposition

(11) Ŵ = {>t &&>t}, where W = {〈〈ε(the LTLB-WFF), ε(the LTLB-WFF)〉〉}.
In the sequel Q denotes a positive-negative pair.
Let F be a finite subset of the LTLB-WFF. The functor compF yielding

a non empty finite subset of (the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 is
defined as follows:

(Def. 4) compF = {Q : rngQ = τ(F ) ∧ rng(Q1) misses rng(Q2)}.
Let F be a finite subset of the LTLB-WFF. Note that every element of

compF is complete.
One can prove the following proposition

(12) comp(∅the LTLB-WFF) = {〈〈ε(the LTLB-WFF), ε(the LTLB-WFF)〉〉}.
Let us consider P , Q. We say that Q is completion of P if and only if:

(Def. 5) rng(P1) ⊆ rng(Q1) and rng(P2) ⊆ rng(Q2) and τ(rngP ) = rngQ.

We now state the proposition

(13) If Q is completion of P , then Q is complete.

In the sequel Q is a consistent positive-negative pair.
Let us consider P . The functor compP yields a finite subset of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 and is defined by:

(Def. 6) compP = {Q : Q is completion of P}.
Let P be a consistent positive-negative pair. One can check that compP is

non empty. Observe that every element of compP is consistent.
In the sequel P denotes an element of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1.

Let X be a subset of (the LTLB-WFF)∗1−1×(the LTLB-WFF)∗1−1. The func-
tor compX yields a subset of (the LTLB-WFF)∗1−1× (the LTLB-WFF)∗1−1 and
is defined by:



230 mariusz giero

(Def. 7) compX =
⋃
{compP : P ∈ X}.

Let X be a finite subset of (the LTLB-WFF)∗1−1×(the LTLB-WFF)∗1−1. One
can check that compX is finite.

We now state four propositions:

(14) For every non empty subset X of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 such that Q ∈ X holds
compQ ⊆ compX.

(15) For every non empty finite subset F of the LTLB-WFF there exists p
such that p ∈ τ(F ) and τ(τ(F ) \ {p}) = τ(F ) \ {p}.

(16) Let F be a finite subset of the LTLB-WFF and f be a finite sequence
of elements of the LTLB-WFF. If rng f = ̂compF , then ∅the LTLB-WFF `
¬((conjunction negation f)len conjunction negation f ).

(17) Let P be a consistent positive-negative pair and f be a finite sequence
of elements of the LTLB-WFF. If rng f = ̂compP , then ∅the LTLB-WFF `
P̂ ⇒ ¬((conjunction negation f)len conjunction negation f ).

3. Set of Possible Next-State PNPs

In the sequel A, B denote elements of the LTLB-WFF.
Let us consider X. The functor UN(X) yields a subset of the LTLB-WFF

and is defined as follows:

(Def. 8) UN(X) = {UN(A,B) : A U B ∈ X}.
Let X be a finite subset of the LTLB-WFF. One can check that UN(X) is

finite.
Let us consider P . The functor UN(P ) yielding a non empty finite subset of

(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 is defined by:

(Def. 9) UN(P ) = {Q;Q ranges over positive-negative pairs: rng(Q1) =
UN(rng(P1)) ∧ rng(Q2) = UN(rng(P2))}.

One can prove the following proposition

(18) For every element Q of UN(P ) holds ∅the LTLB-WFF ` P̂ ⇒ X Q̂.
Let P be a consistent positive-negative pair. Note that every element of

UN(P ) is consistent. In the sequel Q denotes an element of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1.

Let us consider P . The next completion of P yielding a finite subset of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 is defined by:

(Def. 10) The next completion of P = {Q : Q ∈ comp UN(P )}.
Let P be a consistent positive-negative pair. One can verify that the next

completion of P is non empty.



Weak completeness theorem for . . . 231

Let P be a consistent positive-negative pair. One can check that every ele-
ment of the next completion of P is consistent.

Next we state two propositions:

(19) If Q ∈ the next completion of P and R ∈ UN(P ), then Q is completion
of R.

(20) If Q ∈ the next completion of P , then Q is complete.

Let P be a consistent positive-negative pair. One can verify that every ele-
ment of the next completion of P is complete.

Next we state several propositions:

(21) If AU B ∈ rng(P2) and Q ∈ the next completion of P , then UN(A,B) ∈
rng(Q2).

(22) If AU B ∈ rng(P1) and Q ∈ the next completion of P , then UN(A,B) ∈
rng(Q1).

(23) If R ∈ the next completion of Q and rngQ ⊆
⋃
σ(rngP ), then rngR ⊆⋃

σ(rngP ).

(24) Let P be a consistent complete positive-negative pair and Q be an ele-
ment of the next completion of P . If A U B ∈ rng(P2), then B ∈ rng(Q2)
but A ∈ rng(Q2) or A U B ∈ rng(Q2).

(25) Let P be a consistent complete positive-negative pair and Q be an ele-
ment of the next completion of P . If A U B ∈ rng(P1), then B ∈ rng(Q1)
or A, A U B ∈ rng(Q1).

4. A PNP-Tree and its Properties

Let us consider P . A finite-branching tree decorated with elements of
(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 is said to be a tree of positive-
negative pairs of P if it satisfies the conditions (Def. 11).

(Def. 11)(i) It(∅) = P, and
(ii) for every element t of dom it and for every element w of

(the LTLB-WFF)∗1−1 × (the LTLB-WFF)∗1−1 such that w = it(t) holds
succ(it, t) = the enumeration of the next completion of w.

In the sequel T is a tree of positive-negative pairs of P and t is a node of T .
Let us consider P , T , t. Then T �t is a tree of positive-negative pairs of T (t).
Next we state two propositions:

(26) For every natural number n such that ta 〈n〉 ∈ domT holds T (ta 〈n〉) ∈
the next completion of T (t).

(27) If Q ∈ rng T, then rngQ ⊆
⋃
σ(rngP ).

Let us consider P , T . One can check that rng T is non empty and finite.
Let P be a consistent positive-negative pair and let T be a tree of positive-

negative pairs of P . One can check that every element of rng T is consistent.
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Let P be a consistent complete positive-negative pair and let T be a tree
of positive-negative pairs of P . One can verify that every element of rng T is
complete.

Let P be a consistent complete positive-negative pair, let T be a tree of
positive-negative pairs of P , and let t be a node of T . Observe that T (t) is
consistent and complete as a positive-negative pair.

Let P be a consistent positive-negative pair, let T be a tree of positive-
negative pairs of P , and let t be an element of domT. Observe that succ t is non
empty.

Let us consider P , T . The range of T except the root node yields a finite
subset of (the LTLB-WFF)∗1−1× (the LTLB-WFF)∗1−1 and is defined as follows:

(Def. 12) The range of T except the root node = {T (t); t ranges over nodes of T :
t 6= ∅}.

Let P be a consistent positive-negative pair and let T be a tree of positive-
negative pairs of P . One can verify that the range of T except the root node is
non empty.

One can prove the following proposition

(28) If R ∈ rng T and Q ∈ UN(R), then compQ ⊆ the range of T except the
root node.

One can prove the following proposition

(29) Let P be a consistent complete positive-negative pair, T be
a tree of positive-negative pairs of P , and f be a finite se-
quence of elements of the LTLB-WFF. If rng f = Ĵ , then
∅the LTLB-WFF ` ¬((conjunction negation f)len conjunction negation f ) ⇒
X ¬((conjunction negation f)len conjunction negation f ), where J = the range
of T except the root node.

5. A Path in PNP-Tree and its Properties. Existence of Temporal
Model for a Consistent PNP. Weak Completeness Theorem

Let P be a consistent positive-negative pair and let T be a tree of positive-
negative pairs of P . A sequence of domT is called a path of T if:

(Def. 13) It(0) = ∅ and for every natural number k holds it(k + 1) ∈ succ it(k).

Let P be a consistent complete positive-negative pair, let T be a tree of
positive-negative pairs of P , let t be a path of T , and let us consider i. Then
t(i) is a node of T .

Next we state three propositions:

(30) Let P be a consistent complete positive-negative pair, T be a tree of
positive-negative pairs of P , and t be a path of T . Suppose A U B ∈
rng(T (t(i))2). Let given j. If j > i, then B ∈ rng(T (t(j))2) or there exists
k such that i < k < j and A ∈ rng(T (t(k))2).
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(31) Let P be a consistent complete positive-negative pair and T be a tree
of positive-negative pairs of P . Suppose A U B ∈ rng(P1) and for every
element Q of the range of T except the root node holds B /∈ rng(Q1). Let
Q be an element of the range of T except the root node. Then B ∈ rng(Q2)
and A U B ∈ rng(Q1).

(32) Let P be a consistent complete positive-negative pair and T be a tree
of positive-negative pairs of P . Suppose A U B ∈ rng(P1). Then there
exists an element R of the range of T except the root node such that
B ∈ rng(R1).

Let P be a consistent positive-negative pair, let T be a tree of positive-
negative pairs of P , and let t be a path of T . We say that t is complete if and
only if the condition (Def. 14) is satisfied.

(Def. 14) Let given i. Suppose A U B ∈ rng(T (t(i))1). Then there exists j such
that j > i and B ∈ rng(T (t(j))1) and for every k such that i < k < j

holds A ∈ rng(T (t(k))1).

Let P be a consistent complete positive-negative pair and let T be a tree
of positive-negative pairs of P . Note that there exists a path of T which is
complete.

Let P be a consistent positive-negative pair. Observe that P̂ is satisfiable.
One can prove the following proposition

(33)3 If F |= A, then F ` A.
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