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Summary. Harary [10, p. 7] claims that Veblen [20, p. 2] first suggested
to formalize simple graphs using simplicial complexes. We have developed basic
terminology for simple graphs as at most 1-dimensional complexes.

We formalize this new setting and then reprove Mycielski’s [12] construction
resulting in a triangle-free graph with arbitrarily large chromatic number. A
different formalization of similar material is in [15].

MML identifier: SCMYCIEL, version: 7.12.02 4.181.1147

The papers [5], [1], [4], [16], [14], [6], [9], [18], [7], [15], [2], [11], [3], [17], [13],
[19], and [8] provide the terminology and notation for this paper.

1. Preliminaries

One can prove the following propositions:

(1) For all sets x, X holds 〈〈x, X〉〉 /∈ X.
(2) For all sets x, X holds 〈〈x, X〉〉 6= X.

(3) For all sets x, X holds 〈〈x, X〉〉 6= x.

(4) For all sets x1, y1, x2, y2, X such that x1, x2 ∈ X and {x1, 〈〈y1, X〉〉} =
{x2, 〈〈y2, X〉〉} holds x1 = x2 and y1 = y2.

(5) For all sets X, v such that 3 ⊆ X there exist sets v1, v2 such that v1,
v2 ∈ X and v1 6= v and v2 6= v and v1 6= v2.

(6) For every set x holds S{x} = {{x}}.
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Let us observe that there exists a finite sequence which is finite-yielding.
The following proposition is true

(7) Let X be a non empty finite set and P be a partition of X. If P < X ,

then there exist sets p, x, y such that p ∈ P and x, y ∈ p and x 6= y.

Let us note that
⋃
{∅} is empty.

Next we state three propositions:

(8) For every set x holds
⋃
{∅, {x}} = {x}.

(9) For every set X and for every subset s of X such that s is 1-element
there exists a set x such that x ∈ X and s = {x}.

(10) For every set X holds

{{X, 〈〈x, X〉〉};x ranges over elements of X: x ∈ X} = X .

Let G be a set. The functor PairsOf G yielding a subset of G is defined as
follows:

(Def. 1) For every set e holds e ∈ PairsOf G iff e ∈ G and e = 2.

The following propositions are true:

(11) For every set X and for every set e such that e ∈ PairsOf X there exist
sets x, y such that x 6= y and x, y ∈

⋃
X and e = {x, y}.

(12) For all sets X, x, y such that x 6= y and {x, y} ∈ X holds {x, y} ∈
PairsOf X.

(13) For all sets X, x, y such that {x, y} ∈ PairsOf X holds x 6= y and x,
y ∈
⋃
X.

(14) For all sets G, H such that G ⊆ H holds PairsOf G ⊆ PairsOf H.

(15) For every finite set X holds

{{x, 〈〈y,
⋃
X〉〉};x ranges over elements of

⋃
X,y ranges over elements of⋃

X : {x, y} ∈ PairsOf X} = 2 · PairsOf X .

(16) For every finite set X holds

{〈〈x, y〉〉;x ranges over elements of
⋃
X,y ranges over elements of⋃

X : {x, y} ∈ PairsOf X} = 2 · PairsOf X .

Let X be a finite set. Note that PairsOf X is finite.
Let X be a set. We say that X is void if and only if:

(Def. 2) X = {∅}.
One can verify that there exists a set which is void.
Let us observe that every set which is void is also finite.
Let G be a void set. Observe that

⋃
G is empty.

Next we state two propositions:

(17) For every set X such that X is void holds PairsOf X = ∅.
(18) For every set X such that

⋃
X = ∅ holds X = ∅ or X = {∅}.

Let X be a set. We say that X is pair free if and only if:
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(Def. 3) PairsOf X is empty.

We now state the proposition

(19) For all sets X, x such that
⋃
X = 1 holds X is pair free.

Let us observe that there exists a set which is finite-membered and non
empty.

Let X be a finite-membered set and let Y be a set. Observe that X ∩ Y is
finite-membered and X \ Y is finite-membered.

2. Simple Graphs as Simplicial Complexes

Let n be a natural number and let X be a set. We say that X is at most
n-dimensional if and only if:

(Def. 4) For every set x such that x ∈ X holds x ⊆ n+ 1.

Let n be a natural number. Observe that every set which is at most n-
dimensional is also finite-membered.

Let n be a natural number. Observe that there exists a set which is at most
n-dimensional, subset-closed, and non empty.

Next we state two propositions:

(20) For every subset-closed non empty set G holds ∅ ∈ G.
(21) Let n be a natural number, X be an at most n-dimensional set, and x

be an element of X. If x ∈ X, then x ≤ n+ 1.

Let n be a natural number and let X, Y be at most n-dimensional sets. Note
that X ∪ Y is at most n-dimensional.

Let n be a natural number, let X be an at most n-dimensional set, and let
Y be a set. Note that X ∩ Y is at most n-dimensional and X \ Y is at most
n-dimensional.

Let n be a natural number and let X be an at most n-dimensional set.
Observe that every at most n-dimensional set is at most n-dimensional.

Let s be a set. We say that s is simple graph-like if and only if:

(Def. 5) s is at most 1-dimensional, subset-closed, and non empty.

Let us note that every set which is simple graph-like is also at most 1-
dimensional, subset-closed, and non empty and every set which is at most 1-
dimensional, subset-closed, and non empty is also simple graph-like.

The following proposition is true

(22) {∅} is simple graph-like.

One can verify that {∅} is simple graph-like.
One can verify that there exists a set which is simple graph-like.
A simple graph is a simple graph-like set.
One can verify that there exists a simple graph which is void and there exists

a simple graph which is finite.
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Let G be a set. We introduce VerticesG as a synonym of
⋃
G. We introduce

EdgesG as a synonym of PairsOf G.
Let X be a set. We introduce X is edgesless as a synonym of X is pair free.
We now state three propositions:

(23) For every simple graph G such that VerticesG is finite holds G is finite.

(24) For every simple graph G and for every set x holds x ∈ VerticesG iff
{x} ∈ G.

(25) For every set x holds {∅, {x}} is a simple graph.

Let X be a finite finite-membered set. The functor orderX yielding a natural
number is defined by:

(Def. 6) orderX =
⋃
X .

Let X be a finite set. The functor sizeX yielding a natural number is defined
by:

(Def. 7) sizeX = PairsOf X .

Next we state the proposition

(26) For every finite simple graph G holds orderG ≤ G.

Let G be a simple graph. A vertex of G is an element of VerticesG. An edge
of G is an element of EdgesG.

The following propositions are true:

(27) For every simple graph G holds G = {∅} ∪ S(VerticesG) ∪ EdgesG.

(28) For every simple graph G such that VerticesG = ∅ holds G is void.

(29) Let G be a simple graph and x be a set. If x ∈ G and x 6= ∅, then there
exists a set y such that x = {y} and y ∈ VerticesG or x ∈ EdgesG.

(30) For every simple graph G and for every set x such that VerticesG = {x}
holds G = {∅, {x}}.

(31) For every set X there exists a simple graph G such that G is edgesless
and VerticesG = X.

Let G be a simple graph and let v be an element of VerticesG. The functor
Adjacent(v) yielding a subset of VerticesG is defined by:

(Def. 8) For every element x of VerticesG holds x ∈ Adjacent(v) iff {v, x} ∈
EdgesG.

Let X be a set. A simple graph is called a simple graph of X if:

(Def. 9) Vertices it = X.

Let X be a set. The functor CompleteSGraphX yields a simple graph of X
and is defined by:

(Def. 10) CompleteSGraphX = {V ;V ranges over finite subsets of X: V ≤ 2}.
One can prove the following proposition
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(32) For every simple graph G such that for all sets x, y such that x, y ∈
VerticesG holds {x, y} ∈ G holds G = CompleteSGraph VerticesG.

Let X be a finite set. One can check that CompleteSGraphX is finite.
The following propositions are true:

(33) For every set X and for every set x such that x ∈ X holds {x} ∈
CompleteSGraphX.

(34) For every set X and for all sets x, y such that x, y ∈ X holds {x, y} ∈
CompleteSGraphX.

(35) CompleteSGraph ∅ = {∅}.
(36) For every set x holds CompleteSGraph{x} = {∅, {x}}.
(37) For all sets x, y holds CompleteSGraph{x, y} = {∅, {x}, {y}, {x, y}}.
(38) For all sets X, Y such that X ⊆ Y holds CompleteSGraphX ⊆

CompleteSGraphY.

(39) For every simple graph G and for every set x such that x ∈ VerticesG
holds CompleteSGraph{x} ⊆ G.

Let G be a simple graph. One can check that there exists a subset of G which
is simple graph-like.

Let G be a simple graph. A subgraph of G is a simple graph-like subset of
G.

Let G be a simple graph. The functor ComplementG yields a simple graph
and is defined as follows:

(Def. 11) ComplementG = CompleteSGraph VerticesG \ EdgesG.

Let us observe that the functor ComplementG is involutive.
Next we state two propositions:

(40) For every simple graph G holds VerticesG = Vertices ComplementG.

(41) Let G be a simple graph and x, y be sets. If x 6= y and x, y ∈ VerticesG,
then {x, y} ∈ EdgesG iff {x, y} 6∈ Edges ComplementG.

3. Induced Subgraphs

Let G be a simple graph and let L be a set. The subgraph induced by G

yielding a subset of G is defined by:

(Def. 12) The subgraph induced by G = G ∩ 2L.

Let G be a simple graph and let L be a set. Observe that the subgraph
induced by G is simple graph-like.

Next we state two propositions:

(42) For every simple graph G holds G = the subgraph induced by G.

(43) For every simple graph G and for every set L holds the subgraph induced
by G = the subgraph induced by G.
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Let G be a finite simple graph and let L be a set. Observe that the subgraph
induced by G is finite.

Let G be a simple graph and let L be a finite set. One can check that the
subgraph induced by G is finite.

One can prove the following three propositions:

(44) For all simple graphs G, H such that G ⊆ H holds G ⊆ the subgraph
induced by H.

(45) For every simple graphG and for every set L holds Vertices (the subgraph
induced by G) = VerticesG ∩ L.

(46) For every simple graph G and for every set x such that x ∈ VerticesG
holds the subgraph induced by G = {∅, {x}}.

4. Clique, Clique Number, Clique Cover

Let G be a simple graph. We say that G is a clique if and only if:

(Def. 13) G = CompleteSGraph VerticesG.

The following propositions are true:

(47) Let G be a simple graph. Suppose that for all sets x, y such that x 6= y

and x, y ∈ VerticesG holds {x, y} ∈ EdgesG. Then G is a clique.

(48) {∅} is a clique.

Observe that there exists a simple graph which is a clique. Let G be a simple
graph. Note that there exists a subgraph of G which is a clique.

Let G be a simple graph. A clique of G is a clique subgraph of G.
Next we state the proposition

(49) For every set X holds CompleteSGraphX is a clique.

Let X be a set. One can check that CompleteSGraphX is a clique.
Next we state two propositions:

(50) For every simple graph G and for every set x such that x ∈ VerticesG
holds {∅, {x}} is a clique of G.

(51) Let G be a simple graph and x, y be sets. If x, y ∈ VerticesG and
{x, y} ∈ G, then {∅, {x}, {y}, {x, y}} is a clique of G.

Let G be a simple graph. Observe that there exists a clique of G which is
finite.

We now state two propositions:

(52) For every simple graph G and for every set x such that x ∈
⋃
G there

exists a finite clique C of G such that VerticesC = {x}.
(53) For every a clique simple graph C and for all sets u, v such that u,

v ∈ VerticesC holds {u, v} ∈ C.
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Let G be a simple graph. We say that G has finite clique number if and only
if:

(Def. 14) There exists a finite clique C of G such that for every finite clique D of
G holds orderD ≤ orderC.

Let us note that there exists a simple graph which has finite clique number.
Let us observe that every simple graph which is finite also has finite clique

number.
Let G be a simple graph with finite clique number. The functor ω(G) yielding

a natural number is defined as follows:

(Def. 15) There exists a finite clique C of G such that orderC = ω(G) and for
every finite clique T of G holds orderT ≤ ω(G).

We now state several propositions:

(54) For every simple graph G with finite clique number such that ω(G) = 0
holds VerticesG = ∅.

(55) For every void simple graph G holds ω(G) = 0.

(56) LetG be a simple graph and x, y be sets. If {x, y} ∈ G, then the subgraph
induced by G is a clique of G.

(57) For every simple graph G with finite clique number such that EdgesG 6=
∅ holds ω(G) ≥ 2.

(58) For all simple graphs G, H with finite clique number such that G ⊆ H

holds ω(G) ≤ ω(H).

(59) For every finite set X holds ω(CompleteSGraphX) = X .

Let G be a simple graph and let P be a partition of VerticesG. We say that
P is clique-wise if and only if:

(Def. 16) For every set x such that x ∈ P holds the subgraph induced by G is a
clique of G.

Let G be a simple graph. Observe that there exists a partition of VerticesG
which is clique-wise.

Let G be a simple graph. A clique-partition of G is a clique-wise partition
of VerticesG.

Let G be a void simple graph. Note that every partition of VerticesG which
is empty is also clique-wise.

Let G be a simple graph. We say that G has finite clique cover if and only
if:

(Def. 17) There exists a clique-partition of G which is finite.

One can verify that every simple graph which is finite also has finite clique
cover.

Let G be a simple graph with finite clique cover. Note that there exists a
clique-partition of G which is finite.
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Let G be a simple graph with finite clique cover and let S be a subset of
VerticesG. One can verify that the subgraph induced by G has finite clique
cover.

Let G be a simple graph with finite clique cover. The functor κ(G) yielding
a natural number is defined by:

(Def. 18) There exists a finite clique-partition C of G such that C = κ(G) and for
every finite clique-partition C of G holds κ(G) ≤ C .

5. Stable Set, Coloring

Let G be a simple graph and let S be a subset of VerticesG. We say that S
is stable if and only if:

(Def. 19) For all sets x, y such that x 6= y and x, y ∈ S holds {x, y} 6∈ G.
We now state two propositions:

(60) For every simple graph G holds ∅VerticesG is stable.

(61) For every simple graph G and for every subset S of VerticesG and for
every set v such that S = {v} holds S is stable.

Let G be a simple graph. Observe that every subset of VerticesG which is
trivial is also stable.

Let G be a simple graph. Note that there exists a subset of VerticesG which
is stable.

Let G be a simple graph. A stable set of G is a stable subset of VerticesG.
The following two propositions are true:

(62) For every simple graph G and for all sets x, y such that x, y ∈ VerticesG
and {x, y} 6∈ G holds {x, y} is a stable set of G.

(63) For every simple graph G with finite clique number such that ω(G) = 1
holds VerticesG is a stable set of G.

Let G be a simple graph. Note that there exists a stable set of G which is
finite.

One can prove the following proposition

(64) For every simple graph G and for every stable set A of G holds every
subset of A is a stable set of G.

Let G be a simple graph and let P be a partition of VerticesG. We say that
P is stable-wise if and only if:

(Def. 20) For every set x such that x ∈ P holds x is a stable set of G.

The following proposition is true

(65) For every simple graph G holds SmallestPartition(VerticesG) is stable-
wise.
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Let G be a simple graph. Note that there exists a partition of VerticesG
which is stable-wise. A coloring of G is a stable-wise partition of VerticesG. We
say that G is finitely colorable if and only if:

(Def. 21) There exists a coloring of G which is finite.

One can verify that there exists a simple graph which is finitely colorable.
Let us note that every simple graph which is finite is also finitely colorable.
Let G be a finitely colorable simple graph. Note that there exists a coloring

of G which is finite.
We now state two propositions:

(66) Let G be a simple graph, S be a clique of G, and L be a set. If L ⊆
VerticesS, then the subgraph induced by G is a clique of G.

(67) Let G be a simple graph, C be a coloring of G, and S be a subset of
VerticesG. Then C�S is a coloring of the subgraph induced by G.

Let G be a finitely colorable simple graph and let S be a set. One can check
that the subgraph induced by G is finitely colorable. The functor χ(G) yielding
a natural number is defined as follows:

(Def. 22) There exists a finite coloring C of G such that C = χ(G) and for every
finite coloring C of G holds χ(G) ≤ C .

One can prove the following three propositions:

(68) For all finitely colorable simple graphs G, H such that G ⊆ H holds
χ(G) ≤ χ(H).

(69) For every finite set X holds χ(CompleteSGraphX) = X .

(70) Let G be a finitely colorable simple graph, C be a finite coloring of G,
and c be a set. Suppose c ∈ C and C = χ(G). Then there exists an element
v of VerticesG such that v ∈ c and for every element d of C such that
d 6= c there exists an element w of VerticesG such that w ∈ Adjacent(v)
and w ∈ d.

Let G be a simple graph. We say that G has finite stability number if and
only if:

(Def. 23) There exists a finite stable set A of G such that for every finite stable
set B of G holds B ≤ A.

One can check that every simple graph which is finite also has finite stability
number.

Let G be a simple graph with finite stability number. Observe that every
stable set of G is finite.

Let us note that there exists a simple graph which is non void and has finite
stability number.

Let G be a simple graph with finite stability number. The functor α(G)
yielding a natural number is defined as follows:
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(Def. 24) There exists a finite stable set A of G such that A = α(G) and for every
finite stable set T of G holds T ≤ α(G).

Let G be a non void simple graph with finite stability number. One can
check that α(G) is positive.

Next we state the proposition

(71) For every simple graph G with finite stability number such that α(G) = 1
holds G is a clique.

Let us observe that every simple graph which has finite clique number and
finite stability number is also finite.

We now state four propositions:

(72) For every simple graph G and for every clique C of G holds VerticesC
is a stable set of ComplementG.

(73) For every simple graph G and for every clique C of ComplementG holds
VerticesC is a stable set of G.

(74) For every simple graph G and for every stable set C of G holds the
subgraph induced by ComplementG is a clique of ComplementG.

(75) For every simple graph G and for every stable set C of ComplementG
holds the subgraph induced by G is a clique of G.

Let G be a simple graph with finite clique number. One can check that
ComplementG has finite stability number.

LetG be a simple graph with finite stability number. Note that ComplementG
has finite clique number.

We now state several propositions:

(76) For every simple graph G with finite clique number holds ω(G) =
α(ComplementG).

(77) For every simple graph G with finite stability number holds α(G) =
ω(ComplementG).

(78) For every simple graph G holds every clique-partition of ComplementG
is a coloring of G.

(79) For every simple graph G holds every clique-partition of G is a coloring
of ComplementG.

(80) For every simple graph G holds every coloring of G is a clique-partition
of ComplementG.

(81) For every simple graph G holds every coloring of ComplementG is a
clique-partition of G.

LetG be a finitely colorable simple graph. One can check that ComplementG
has finite clique cover.

Let G be a simple graph with finite clique cover.
One can check that ComplementG is finitely colorable.
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One can prove the following propositions:

(82) For every finitely colorable simple graph G holds χ(G) =
κ(ComplementG).

(83) For every simple graph G with finite clique cover holds κ(G) =
χ(ComplementG).

6. Mycielskian of a Graph

Let G be a simple graph. The functor MycielskianG yielding a simple graph
is defined by the condition (Def. 25).

(Def. 25) MycielskianG = {∅} ∪ {{x} : x ranges over elements of
⋃
G ∪
⋃
G ×

{
⋃
G}∪{

⋃
G}}∪EdgesG∪{{x, 〈〈y,

⋃
G〉〉};x ranges over elements of

⋃
G, y

ranges over elements of
⋃
G : {x, y} ∈ EdgesG} ∪ {{

⋃
G, 〈〈x,

⋃
G〉〉};x

ranges over elements of
⋃
G : x ∈ VerticesG}.

We now state several propositions:

(84) For every simple graph G holds G ⊆ MycielskianG.

(85) Let G be a simple graph and v be a set. Then v ∈ Vertices MycielskianG
if and only if one of the following conditions is satisfied:

(i) v ∈
⋃
G, or

(ii) there exists a set x such that x ∈
⋃
G and v = 〈〈x,

⋃
G〉〉, or

(iii) v =
⋃
G.

(86) For every simple graph G holds Vertices MycielskianG =
⋃
G ∪
⋃
G ×

{
⋃
G} ∪ {

⋃
G}.

(87) For every simple graph G holds
⋃
G ∈
⋃

MycielskianG.

(88) For every void simple graph G holds MycielskianG = {∅, {
⋃
G}}.

Let G be a finite simple graph. Note that MycielskianG is finite.
The following propositions are true:

(89) For every finite simple graph G holds order MycielskianG = 2 ·orderG+
1.

(90) Let G be a simple graph and e be a set. Then e ∈ Edges MycielskianG
if and only if one of the following conditions is satisfied:

(i) e ∈ EdgesG, or
(ii) there exist elements x, y of

⋃
G such that e = {x, 〈〈y,

⋃
G〉〉} and {x, y} ∈

EdgesG, or
(iii) there exists an element y of

⋃
G such that e = {

⋃
G, 〈〈y,

⋃
G〉〉} and

y ∈
⋃
G.

(91) Let G be a simple graph. Then Edges MycielskianG = EdgesG∪{{x, 〈〈y,⋃
G〉〉};x ranges over elements of

⋃
G, y ranges over elements of

⋃
G :

{x, y} ∈ EdgesG} ∪ {{
⋃
G, 〈〈y,

⋃
G〉〉}; y ranges over elements of

⋃
G :

y ∈
⋃
G}.
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(92) For every finite simple graph G holds size MycielskianG = 3 · sizeG +
orderG.

(93) Let G be a simple graph and s, t be sets. Suppose {s, t} ∈
Edges MycielskianG. Then

(i) {s, t} ∈ EdgesG, or
(ii) s ∈

⋃
G or s =

⋃
G but there exists a set y such that y ∈

⋃
G and

t = 〈〈y,
⋃
G〉〉, or

(iii) t ∈
⋃
G or t =

⋃
G but there exists a set y such that y ∈

⋃
G and

s = 〈〈y,
⋃
G〉〉.

(94) For every simple graph G and for every set u such that {
⋃
G, u} ∈

Edges MycielskianG there exists a set x such that x ∈
⋃
G and u = 〈〈x,⋃

G〉〉.
(95) For every simple graph G and for every set u such that u ∈ VerticesG

holds {〈〈u,
⋃
G〉〉} ∈ MycielskianG.

(96) For every simple graph G and for every set u such that u ∈ VerticesG
holds {〈〈u,

⋃
G〉〉,
⋃
G} ∈ MycielskianG.

(97) For every simple graph G and for all sets x, y holds {〈〈x,
⋃
G〉〉, 〈〈y,⋃

G〉〉} /∈ Edges MycielskianG.

(98) For every simple graph G and for all sets x, y such that x 6= y holds {〈〈x,⋃
G〉〉, 〈〈y,

⋃
G〉〉} /∈ MycielskianG.

(99) For every simple graph G and for all sets x, y such that {〈〈x,
⋃
G〉〉, y} ∈

Edges MycielskianG holds x 6= y but x ∈
⋃
G but y ∈

⋃
G or y =

⋃
G.

(100) For every simple graph G and for all sets x, y such that {〈〈x,
⋃
G〉〉, y} ∈

MycielskianG holds x 6= y.

(101) For every simple graph G and for all sets x, y such that y ∈
⋃
G and

{〈〈x,
⋃
G〉〉, y} ∈ MycielskianG holds {x, y} ∈ G.

(102) For every simple graph G and for all sets x, y such that {x, y} ∈ EdgesG
holds {〈〈x,

⋃
G〉〉, y} ∈ MycielskianG.

(103) For every simple graph G and for all sets x, y such that x, y ∈ VerticesG
and {x, y} ∈ MycielskianG holds {x, y} ∈ G.

(104) For every simple graph G holds G = the subgraph induced by
MycielskianG.

(105) Let G be a simple graph and C be a finite clique of MycielskianG. If
3 ≤ orderC, then for every vertex v of C holds v 6=

⋃
G.

(106) For every simple graph G with finite clique number such that ω(G) = 0
and for every finite clique D of MycielskianG holds orderD ≤ 1.

(107) For every simple graph G and for every set x such that VerticesG = {x}
holds MycielskianG = {∅, {x}, {〈〈x,

⋃
G〉〉}, {

⋃
G}, {〈〈x,

⋃
G〉〉,
⋃
G}}.

(108) For every simple graph G with finite clique number such that ω(G) = 1
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and for every finite clique D of MycielskianG holds orderD ≤ 2.

(109) For every simple graph G with finite clique number such that 2 ≤ ω(G)
and for every finite clique D of MycielskianG holds orderD ≤ ω(G).

Let G be a simple graph with finite clique number. Note that MycielskianG
has finite clique number.

We now state two propositions:

(110) For every simple graph G with finite clique number such that 2 ≤ ω(G)
holds ω(MycielskianG) = ω(G).

(111) For every finitely colorable simple graph G there exists a coloring E of
MycielskianG such that E = 1 + χ(G).

Let G be a finitely colorable simple graph. Observe that MycielskianG is
finitely colorable.

We now state the proposition

(112) For every finitely colorable simple graph G holds χ(MycielskianG) =
1 + χ(G).

Let G be a simple graph. The Mycielskian sequence of G yields a many
sorted set indexed by N and is defined by the condition (Def. 26).

(Def. 26) There exists a function m1 such that
(i) the Mycielskian sequence of G = m1,

(ii) m1(0) = G, and
(iii) for every natural number k and for every simple graph G such that

G = m1(k) holds m1(k + 1) = MycielskianG.

We now state two propositions:

(113) For every simple graph G holds (the Mycielskian sequence of G)(0) = G.

(114) Let G be a simple graph and n be a natural number. Then (the Myciel-
skian sequence of G)(n) is a simple graph.

Let G be a simple graph and let n be a natural number. Observe that (the
Mycielskian sequence of G)(n) is simple graph-like.

The following proposition is true

(115) Let G, H be simple graphs and n be a natural number. Then (the My-
cielskian sequence of G)(n + 1) = Mycielskian (the Mycielskian sequence
of G)(n).

Let G be a simple graph with finite clique number and let n be a natural
number. One can check that (the Mycielskian sequence of G)(n) has finite clique
number.

Let G be a finitely colorable simple graph and let n be a natural number.
One can check that (the Mycielskian sequence of G)(n) is finitely colorable.

Let G be a finite simple graph and let n be a natural number. Observe that
(the Mycielskian sequence of G)(n) is finite.

One can prove the following propositions:
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(116) Let G be a finite simple graph and n be a natural number. Then
order (the Mycielskian sequence of G)(n) = (2n · orderG+ 2n)− 1.

(117) Let G be a finite simple graph and n be a natural number. Then size (the
Mycielskian sequence of G)(n) = 3n · sizeG + (3n − 2n) · orderG + ((n +
1) block 3).

(118) Let n be a natural number. Then ω((the Mycielskian sequence
of CompleteSGraph 2)(n)) = 2 and χ((the Mycielskian sequence of
CompleteSGraph 2)(n)) = n+ 2.

(119) For every natural number n there exists a finite simple graph G such
that ω(G) = 2 and χ(G) > n.

(120) For every natural number n there exists a finite simple graph G such
that α(G) = 2 and κ(G) > n.
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