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Introduction to Rational Functions
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Summary. In this article we formalize rational functions as pairs of po-
lynomials and define some basic notions including the degree and evaluation of
rational functions [8]. The main goal of the article is to provide properties of
rational functions necessary to prove a theorem on the stability of networks.

MML identifier: RATFUNC1, version: 7.12.02 4.181.1147

The notation and terminology used in this paper are introduced in the following
articles: [14], [3], [4], [5], [18], [20], [16], [17], [1], [15], [2], [6], [12], [10], [11], [22],
[19], [21], [9], [13], [23], and [7].

1. Preliminaries

One can prove the following three propositions:

(1) Let L be an add-associative right zeroed right complementable right
distributive non empty double loop structure, a be an element of L, and
p, q be finite sequences of elements of L. Suppose len p = len q and for every
element i of N such that i ∈ dom p holds qi = a · pi. Then

∑
q = a ·

∑
p.

(2) Let L be an add-associative right zeroed right complementable right
distributive non empty double loop structure, f be a finite sequence of
elements of L, and i, j be elements of N. If i ∈ dom f and j = i− 1, then
Ins(f�i, j, fi) = f.

(3) Let L be an add-associative right zeroed right complementable associa-
tive unital right distributive commutative non empty double loop struc-
ture, f be a finite sequence of elements of L, and i be an element of N. If
i ∈ dom f, then

∏
f = fi ·

∏
(f�i).
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Let L be an add-associative right zeroed right complementable well unital
associative left distributive commutative almost left invertible integral domain-
like non trivial double loop structure and let x, y be non zero elements of L.
Note that x

y is non zero.
Let us note that every add-associative right zeroed right complementable

right distributive non empty double loop structure which is integral domain-like
is also almost left cancelable and every add-associative right zeroed right com-
plementable left distributive non empty double loop structure which is integral
domain-like is also almost right cancelable.

Let x, y be integers. Note that max(x, y) is integer and min(x, y) is integer.
One can prove the following proposition

(4) For all integers x, y, z holds max(x+ y, x+ z) = x+ max(y, z).

2. More on Polynomials

Let L be a non empty zero structure and let p be a polynomial of L. We say
that p is zero if and only if:

(Def. 1) p = 0. L.

We say that p is constant if and only if:

(Def. 2) deg p ≤ 0.

Let L be a non trivial zero structure. One can verify that there exists a
polynomial of L which is non zero.

Let L be a non empty zero structure. One can verify that 0. L is zero and
constant.

Let L be a non degenerated multiplicative loop with zero structure. Note
that 1. L is non zero.

Let L be a non empty multiplicative loop with zero structure. Note that 1. L
is constant.

Let L be a non empty zero structure. One can verify that every polynomial
of L which is zero is also constant. Note that every polynomial of L which is
non constant is also non zero.

Let L be a non trivial zero structure. One can verify that there exists a
polynomial of L which is non constant.

Let L be a well unital non degenerated non empty double loop structure, let
z be an element of L, and let k be an element of N. Observe that rpoly(k, z) is
non zero.

Let L be an add-associative right zeroed right complementable distributive
non degenerated double loop structure. One can check that Polynom-RingL is
non degenerated.
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Let L be an integral domain-like add-associative right zeroed right comple-
mentable distributive non trivial double loop structure. Observe that Polynom-RingL
is integral domain-like.

Next we state two propositions:

(5) Let L be an add-associative right zeroed right complementable right di-
stributive associative non empty double loop structure, p, q be polynomials
of L, and a be an element of L. Then (a · p) ∗ q = a · (p ∗ q).

(6) Let L be an add-associative right zeroed right complementable right
distributive commutative associative non empty double loop structure, p,
q be polynomials of L, and a be an element of L. Then p∗(a ·q) = a ·(p∗q).

Let L be an add-associative right zeroed right complementable well unital
commutative associative distributive almost left invertible non trivial double
loop structure, let p be a non zero polynomial of L, and let a be a non zero
element of L. Note that a · p is non zero.

Let L be an integral domain-like add-associative right zeroed right comple-
mentable distributive non trivial double loop structure and let p1, p2 be non
zero polynomials of L. Observe that p1 ∗ p2 is non zero.

One can prove the following proposition

(7) Let L be an add-associative right zeroed right complementable distributi-
ve Abelian integral domain-like non trivial double loop structure, p1, p2 be
polynomials of L, and p3 be a non zero polynomial of L. If p1∗p3 = p2∗p3,
then p1 = p2.

Let L be a non trivial zero structure and let p be a non zero polynomial of
L. One can check that degree(p) is natural.

Next we state several propositions:

(8) Let L be an add-associative right zeroed right complementable unital
right distributive non empty double loop structure and p be a polynomial
of L. If deg p = 0, then for every element x of L holds eval(p, x) 6= 0L.

(9) Let L be an Abelian add-associative right zeroed right complementable
well unital associative commutative distributive almost left invertible non
degenerated double loop structure, p be a polynomial of L, and x be an
element of L. Then eval(p, x) = 0L if and only if rpoly(1, x) | p.

(10) Let L be an Abelian add-associative right zeroed right complementa-
ble well unital associative commutative distributive almost left invertible
integral domain-like non degenerated double loop structure, p, q be po-
lynomials of L, and x be an element of L. If rpoly(1, x) | p ∗ q, then
rpoly(1, x) | p or rpoly(1, x) | q.

(11) Let L be an Abelian add-associative right zeroed right complementable
well unital associative commutative distributive almost left invertible non
degenerated double loop structure and f be a finite sequence of elements
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of Polynom-RingL. Suppose that for every natural number i such that
i ∈ dom f there exists an element z of L such that f(i) = rpoly(1, z). Let
p be a polynomial of L. If p =

∏
f, then p 6= 0. L.

(12) Let L be an Abelian add-associative right zeroed right complementable
well unital associative commutative distributive almost left invertible in-
tegral domain-like non degenerated double loop structure and f be a finite
sequence of elements of Polynom-RingL. Suppose that for every natural
number i such that i ∈ dom f there exists an element z of L such that
f(i) = rpoly(1, z). Let p be a polynomial of L. Suppose p =

∏
f. Let x be

an element of L. Then eval(p, x) = 0L if and only if there exists a natural
number i such that i ∈ dom f and f(i) = rpoly(1, x).

3. Common Roots of Polynomials

Let L be a unital non empty double loop structure, let p1, p2 be polynomials
of L, and let x be an element of L. We say that x is a common root of p1 and
p2 if and only if:

(Def. 3) x is a root of p1 and x is a root of p2.

Let L be a unital non empty double loop structure and let p1, p2 be poly-
nomials of L. We say that p1 and p2 have a common root if and only if:

(Def. 4) There exists an element of L which is a common root of p1 and p2.

Let L be a unital non empty double loop structure and let p1, p2 be poly-
nomials of L. We introduce p1 and p2 have common roots as a synonym of p1
and p2 have a common root. We introduce p1 and p2 have no common roots as
an antonym of p1 and p2 have a common root.

Next we state several propositions:

(13) Let L be an Abelian add-associative right zeroed right complementable
unital distributive non empty double loop structure, p be a polynomial of
L, and x be an element of L. If x is a root of p, then x is a root of −p.

(14) Let L be an Abelian add-associative right zeroed right complementable
unital left distributive non empty double loop structure, p1, p2 be polyno-
mials of L, and x be an element of L. If x is a common root of p1 and p2,
then x is a root of p1 + p2.

(15) Let L be an Abelian add-associative right zeroed right complementable
unital distributive non empty double loop structure, p1, p2 be polynomials
of L, and x be an element of L. If x is a common root of p1 and p2, then
x is a root of −(p1 + p2).

(16) Let L be an Abelian add-associative right zeroed right complementable
unital distributive non empty double loop structure, p, q be polynomials
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of L, and x be an element of L. If x is a common root of p and q, then x

is a root of p+ q.

(17) Let L be an Abelian add-associative right zeroed right complementable
well unital associative commutative distributive almost left invertible non
trivial double loop structure and p1, p2 be polynomials of L. If p1 | p2 and
p1 has roots, then p1 and p2 have common roots.

Let L be a unital non empty double loop structure and let p, q be polynomials
of L. The common roots of p and q yields a subset of L and is defined by:

(Def. 5) The common roots of p and q = {x ∈ L: x is a common root of p and q}.

4. Normalized Polynomials

Let L be a non empty zero structure and let p be a polynomial of L. The
leading coefficient of p yields an element of L and is defined by:

(Def. 6) The leading coefficient of p = p(len p−′ 1).

We introduce LC p as a synonym of the leading coefficient of p.
Let L be a non trivial double loop structure and let p be a non zero polyno-

mial of L. One can check that LC p is non zero.
One can prove the following proposition

(18) Let L be an add-associative right zeroed right complementable well uni-
tal commutative associative distributive almost left invertible non empty
double loop structure, p be a polynomial of L, and a be an element of L.
Then LC(a · p) = a · LC p.

Let L be a non empty double loop structure and let p be a polynomial of L.
We say that p is normalized if and only if:

(Def. 7) LC p = 1L.

Let L be an add-associative right zeroed right complementable well unital
commutative associative distributive almost left invertible non trivial double
loop structure and let p be a non zero polynomial of L. One can check that
1L
LC p · p is normalized.

Let L be a field and let p be a non zero polynomial of L. One can verify that
NormPolynomial p is normalized.

5. Rational Functions

Let L be a non trivial multiplicative loop with zero structure. Rational func-
tion of L is defined by:

(Def. 8) There exists a polynomial p1 of L and there exists a non zero polynomial
p2 of L such that it = 〈〈p1, p2〉〉.
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Let L be a non trivial multiplicative loop with zero structure, let p1 be a
polynomial of L, and let p2 be a non zero polynomial of L. Then 〈〈p1, p2〉〉 is a
rational function of L.

Let L be a non trivial multiplicative loop with zero structure and let z be
a rational function of L. Then z1 is a polynomial of L. Then z2 is a non zero
polynomial of L.

Let L be a non trivial multiplicative loop with zero structure and let z be a
rational function of L. We say that z is zero if and only if:

(Def. 9) z1 = 0. L.

Let L be a non trivial multiplicative loop with zero structure. One can check
that there exists a rational function of L which is non zero.

Next we state the proposition

(19) Let L be a non trivial multiplicative loop with zero structure and z be
a rational function of L. Then z = 〈〈z1, z2〉〉.

Let L be an add-associative right zeroed right complementable distributive
unital non trivial double loop structure and let z be a rational function of L.
We say that z is irreducible if and only if:

(Def. 10) z1 and z2 have no common roots.

Let L be an add-associative right zeroed right complementable distributive
unital non trivial double loop structure and let z be a rational function of L.
We introduce z is reducible as an antonym of z is irreducible.

Let L be an add-associative right zeroed right complementable distributive
unital non trivial double loop structure and let z be a rational function of L.
We say that z is normalized if and only if:

(Def. 11) z is irreducible and z2 is normalized.

Let L be an add-associative right zeroed right complementable distributive
unital non trivial double loop structure. Observe that every rational function of
L which is normalized is also irreducible.

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of
L. Note that LC(z2) is non zero.

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of
L. The norm rational function of z yields a rational function of L and is defined
by:

(Def. 12) The norm rational function of z = 〈〈 1LLC(z2) · z1,
1L
LC(z2)

· z2〉〉.
Let L be an Abelian add-associative right zeroed right complementable

well unital associative distributive commutative almost left invertible integral



Introduction to rational functions 187

domain-like non trivial double loop structure and let z be a rational function of
L. We introduce NormRatF z as a synonym of the norm rational function of z.

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a non zero rational
function of L. Observe that the norm rational function of z is non zero.

Let L be a non degenerated multiplicative loop with zero structure. The
functor 0. L yields a rational function of L and is defined by:

(Def. 13) 0. L = 〈〈0. L, 1. L〉〉.
The functor 1. L yields a rational function of L and is defined as follows:

(Def. 14) 1. L = 〈〈1. L, 1. L〉〉.
Let L be an add-associative right zeroed right complementable distributive

associative well unital non degenerated double loop structure. One can check
that 0. L is normalized.

Let L be a non degenerated multiplicative loop with zero structure. Note
that 1. L is non zero.

Let L be an add-associative right zeroed right complementable distributive
associative well unital non degenerated double loop structure. One can verify
that 1. L is irreducible.

Let L be an add-associative right zeroed right complementable distributive
associative well unital non degenerated double loop structure. Observe that
there exists a rational function of L which is irreducible and non zero.

Let L be an add-associative right zeroed right complementable distributive
Abelian associative well unital non degenerated double loop structure and let
x be an element of L. One can check that 〈〈 rpoly(1, x), rpoly(1, x)〉〉 is reducible
and non zero as a rational function of L.

Let L be an add-associative right zeroed right complementable distributive
Abelian associative well unital non degenerated double loop structure. Observe
that there exists a rational function of L which is reducible and non zero.

Let L be an add-associative right zeroed right complementable distributive
associative well unital non degenerated double loop structure. One can verify
that there exists a rational function of L which is normalized.

Let L be a non degenerated multiplicative loop with zero structure. One can
verify that 0. L is zero.

Let L be an add-associative right zeroed right complementable distributive
associative well unital non degenerated double loop structure. One can check
that 1. L is normalized.

Let L be an integral domain-like add-associative right zeroed right comple-
mentable distributive non trivial double loop structure and let p, q be rational
functions of L. The functor p+ q yields a rational function of L and is defined
by:
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(Def. 15) p+ q = 〈〈p1 ∗ q2 + p2 ∗ q1, p2 ∗ q2〉〉.
Let L be an integral domain-like add-associative right zeroed right comple-

mentable distributive non trivial double loop structure and let p, q be rational
functions of L. The functor p ∗ q yielding a rational function of L is defined by:

(Def. 16) p ∗ q = 〈〈p1 ∗ q1, p2 ∗ q2〉〉.
One can prove the following proposition

(20) Let L be an add-associative right zeroed right complementable well uni-
tal commutative associative distributive almost left invertible non trivial
double loop structure, p be a rational function of L, and a be a non zero
element of L. Then 〈〈a·p1, a·p2〉〉 is irreducible if and only if p is irreducible.

6. Normalized Rational Functions

We now state the proposition

(21) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative integral domain-like non
trivial double loop structure and z be a rational function of L. Then there
exists a rational function z1 of L and there exists a non zero polynomial
z2 of L such that

(i) z = 〈〈z2 ∗ (z1)1, z2 ∗ (z1)2〉〉,
(ii) z1 is irreducible, and
(iii) there exists a finite sequence f of elements of Polynom-RingL such

that z2 =
∏
f and for every element i of N such that i ∈ dom f there

exists an element x of L such that x is a common root of z1 and z2 and
f(i) = rpoly(1, x).

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of
L. The functor NF z yielding a rational function of L is defined by:

(Def. 17)(i) There exists a rational function z1 of L and there exists a non zero
polynomial z2 of L such that z = 〈〈z2∗(z1)1, z2∗(z1)2〉〉 and z1 is irreducible
and NF z = the norm rational function of z1 and there exists a finite
sequence f of elements of Polynom-RingL such that z2 =

∏
f and for

every element i of N such that i ∈ dom f there exists an element x of L
such that x is a common root of z1 and z2 and f(i) = rpoly(1, x) if z is
non zero,

(ii) NF z = 0. L, otherwise.

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
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domain-like non trivial double loop structure and let z be a rational function of
L. Observe that NF z is normalized and irreducible.

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a non zero rational
function of L. One can verify that NF z is non zero.

One can prove the following propositions:

(22) Let L be an Abelian add-associative right zeroed right complementa-
ble well unital associative distributive commutative almost left invertible
integral domain-like non trivial double loop structure, z be a non zero
rational function of L, z1 be a rational function of L, and z2 be a non zero
polynomial of L. Suppose that

(i) z = 〈〈z2 ∗ (z1)1, z2 ∗ (z1)2〉〉,
(ii) z1 is irreducible, and
(iii) there exists a finite sequence f of elements of Polynom-RingL such

that z2 =
∏
f and for every element i of N such that i ∈ dom f there

exists an element x of L such that x is a common root of z1 and z2 and
f(i) = rpoly(1, x).
Then NF z = the norm rational function of z1.

(23) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible in-
tegral domain-like non trivial double loop structure. Then NF 0. L = 0. L.

(24) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible in-
tegral domain-like non trivial double loop structure. Then NF 1. L = 1. L.

(25) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible inte-
gral domain-like non trivial double loop structure and z be an irreducible
non zero rational function of L. Then NF z = the norm rational function
of z.

(26) Let L be an Abelian add-associative right zeroed right complementa-
ble well unital associative distributive commutative almost left inverti-
ble integral domain-like non trivial double loop structure, z be a ratio-
nal function of L, and x be an element of L. Then NF 〈〈 rpoly(1, x) ∗ z1,
rpoly(1, x) ∗ z2〉〉 = NF z.

(27) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible in-
tegral domain-like non trivial double loop structure and z be a rational
function of L. Then NF NF z = NF z.

(28) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible in-
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tegral domain-like non degenerated double loop structure and z be a non
zero rational function of L. Then z is irreducible if and only if there exists
an element a of L such that a 6= 0L and 〈〈a · z1, a · z2〉〉 = NF z.

7. Degree of Rational Functions

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of
L. The functor degree(z) yielding an integer is defined as follows:

(Def. 18) degree(z) = max(degree((NF z)1),degree((NF z)2)).

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of
L. We introduce deg z as a synonym of degree(z).

Next we state two propositions:

(29) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible in-
tegral domain-like non trivial double loop structure and z be a rational
function of L. Then degree(z) ≤ max(degree(z1),degree(z2)).

(30) Let L be an Abelian add-associative right zeroed right complementa-
ble well unital associative distributive commutative almost left inverti-
ble integral domain-like non trivial double loop structure and z be a
non zero rational function of L. Then z is irreducible if and only if
degree(z) = max(degree(z1), degree(z2)).

8. Evaluation of Rational Functions

Let L be a field, let z be a rational function of L, and let x be an element
of L. The functor eval(z, x) yielding an element of L is defined by:

(Def. 19) eval(z, x) = eval(z1,x)
eval(z2,x)

.

The following propositions are true:

(31) For every field L and for every element x of L holds eval(0. L, x) = 0L.

(32) For every field L and for every element x of L holds eval(1. L, x) = 1L.

(33) Let L be a field, p, q be rational functions of L, and x be an element of L.
If eval(p2, x) 6= 0L and eval(q2, x) 6= 0L, then eval(p+ q, x) = eval(p, x) +
eval(q, x).

(34) Let L be a field, p, q be rational functions of L, and x be an element of
L. If eval(p2, x) 6= 0L and eval(q2, x) 6= 0L, then eval(p ∗ q, x) = eval(p, x) ·
eval(q, x).
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(35) Let L be a field, p be a rational function of L, and x be an element of L. If
eval(p2, x) 6= 0L, then eval(the norm rational function of p, x) = eval(p, x).

(36) Let L be a field, p be a rational function of L, and x be an element of L. If
eval(p2, x) 6= 0L, then x is a common root of p1 and p2 or eval(NF p, x) =
eval(p, x).
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