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Summary. In this article, we shall extend the formalization of [10] to di-
scuss higher-order partial differentiation of real valued functions. The linearity of
this operator is also proved (refer to [10], [12] and [13] for partial differentiation).
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The terminology and notation used here have been introduced in the following
articles: [3], [8], [2], [4], [5], [15], [21], [17], [16], [20], [1], [6], [10], [12], [13], [18],
[11], [9], [23], [7], [19], [14], and [22].

1. Preliminaries

We use the following convention: m, n denote non empty elements of N, i, j
denote elements of N, and Z denotes a set.

One can prove the following propositions:

(1) Let S, T be real normed spaces, f be a point of the real norm space of
bounded linear operators from S into T , and r be a real number. Suppose
0 ≤ r and for every point x of S such that ‖x‖ ≤ 1 holds ‖f(x)‖ ≤ r · ‖x‖.
Then ‖f‖ ≤ r.

(2) Let S be a real normed space and f be a partial function from S to
R. Then f is continuous on Z if and only if the following conditions are
satisfied:
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(i) Z ⊆ dom f, and
(ii) for every sequence s1 of S such that rng s1 ⊆ Z and s1 is convergent

and lim s1 ∈ Z holds f∗s1 is convergent and flim s1 = lim(f∗s1).

(3) For every partial function f from Ri to R holds dom〈f〉 = dom f.

(4) For every partial function f from Ri to R such that Z ⊆ dom f holds
dom(〈f〉�Z) = Z.

(5) For every partial function f from Ri to R holds 〈f�Z〉 = 〈f〉�Z.
(6) Let f be a partial function from Ri to R and x be an element of Ri. If

x ∈ dom f, then 〈f〉(x) = 〈f(x)〉 and 〈f〉x = 〈fx〉.
(7) For all partial functions f , g from Ri to R holds 〈f + g〉 = 〈f〉+ 〈g〉 and
〈f − g〉 = 〈f〉 − 〈g〉.

(8) For every partial function f from Ri to R and for every real number r
holds 〈r · f〉 = r · 〈f〉.

(9) Let f be a partial function from Ri to R and g be a partial function
from Ri to R1. If 〈f〉 = g, then |f | = |g|.

(10) For every subset X of Rm and for every subset Y of 〈Em, ‖ · ‖〉 such that
X = Y holds X is open iff Y is open.

(11) For every element q of R such that 1 ≤ i ≤ j holds
|(reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

j

〉))(q)| = |q|.

(12) For every element x of Rj holds x = (reproj(i, x))((proj(i, j))(x)).

2. Continuity and Differentiability

The following two propositions are true:

(13) Let X be a subset of Rm and f be a partial function from Rm to Rn. If
f is differentiable on X, then X is open.

(14) Let X be a subset of Rm and f be a partial function from Rm to Rn.
SupposeX is open. Then f is differentiable onX if and only if the following
conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for every element x of Rm such that x ∈ X holds f is differentiable in

x.

Let m, n be non empty elements of N, let Z be a set, and let f be a partial
function from Rm to Rn. Let us assume that Z ⊆ dom f. The functor f ′�Z yields
a partial function from Rm to (Rn)R

m
and is defined by:

(Def. 1) dom(f ′�Z) = Z and for every element x of Rm such that x ∈ Z holds
(f ′�Z)x = f ′(x).

We now state a number of propositions:
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(15) Let X be a subset of Rm and f , g be partial functions from Rm to Rn.
Suppose f is differentiable on X and g is differentiable on X. Then f + g

is differentiable on X and for every element x of Rm such that x ∈ X

holds ((f + g)′�X)x = f ′(x) + g′(x).

(16) Let X be a subset of Rm and f , g be partial functions from Rm to Rn.
Suppose f is differentiable on X and g is differentiable on X. Then f − g
is differentiable on X and for every element x of Rm such that x ∈ X

holds ((f − g)′�X)x = f ′(x)− g′(x).

(17) Let X be a subset of Rm, f be a partial function from Rm to Rn,
and r be a real number. Suppose f is differentiable on X. Then r · f is
differentiable on X and for every element x of Rm such that x ∈ X holds
((r · f)′�X)x = r · f ′(x).

(18) Let f be a point of the real norm space of bounded linear operators from
〈E1, ‖ · ‖〉 into 〈Ej , ‖ · ‖〉. Then there exists a point p of 〈Ej , ‖ · ‖〉 such that

(i) p = f(〈1〉),
(ii) for every real number r and for every point x of 〈E1, ‖ · ‖〉 such that

x = 〈r〉 holds f(x) = r · p, and
(iii) for every point x of 〈E1, ‖ · ‖〉 holds ‖f(x)‖ = ‖p‖ · ‖x‖.

(19) Let f be a point of the real norm space of bounded linear operators from
〈E1, ‖ · ‖〉 into 〈Ej , ‖ · ‖〉. Then there exists a point p of 〈Ej , ‖ · ‖〉 such that
p = f(〈1〉) and ‖p‖ = ‖f‖.

(20) Let f be a point of the real norm space of bounded linear operators from
〈E1, ‖ · ‖〉 into 〈Ej , ‖ · ‖〉 and x be a point of 〈E1, ‖ · ‖〉. Then ‖f(x)‖ =
‖f‖ · ‖x‖.

(21) Let f be a partial function from Rm to Rn, g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of Rm, and Y be a subset of
〈Em, ‖ · ‖〉. Suppose 1 ≤ i ≤ m and X is open and g = f and X = Y and
f is partially differentiable on X w.r.t. i. Let x be an element of Rm and
y be a point of 〈Em, ‖ · ‖〉. If x ∈ X and x = y, then partdiff(f, x, i) =
(partdiff(g, y, i))(〈1〉).

(22) Let f be a partial function from Rm to Rn, g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of Rm, and Y be a subset of
〈Em, ‖ · ‖〉. Suppose 1 ≤ i ≤ m and X is open and g = f and X = Y and
f is partially differentiable on X w.r.t. i. Let x0, x1 be elements of Rm
and y0, y1 be points of 〈Em, ‖ · ‖〉. If x0 = y0 and x1 = y1 and x0, x1 ∈ X,
then |(f�iX)x1 − (f�iX)x0 | = ‖(g�iY )y1 − (g�iY )y0‖.

(23) Let f be a partial function from Rm to Rn, g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of Rm, and Y be a subset of
〈Em, ‖ · ‖〉. Suppose 1 ≤ i ≤ m and X is open and g = f and X = Y. Then
the following statements are equivalent

(i) f is partially differentiable on X w.r.t. i and f�iX is continuous on X,
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(ii) g is partially differentiable on Y w.r.t. i and g�iY is continuous on Y .

(24) Let f be a partial function from Rm to Rn, g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of Rm, and Y be a subset of
〈Em, ‖ · ‖〉. Suppose X = Y and X is open and f = g. Then for every i

such that 1 ≤ i ≤ m holds f is partially differentiable on X w.r.t. i and
f�iX is continuous on X if and only if g is differentiable on Y and g′�Y is
continuous on Y .

(25) Let f be a partial function from Rm to Rn, g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of Rm, and Y be a subset of
〈Em, ‖ · ‖〉. Suppose X is open and X ⊆ dom f and g = f and X = Y.

Then g is differentiable on Y and g′�Y is continuous on Y if and only if the
following conditions are satisfied:

(i) f is differentiable on X, and
(ii) for every element x0 of Rm and for every real number r such that

x0 ∈ X and 0 < r there exists a real number s such that 0 < s and for
every element x1 of Rm such that x1 ∈ X and |x1 − x0| < s and for every
element v of Rm holds |f ′(x1)(v)− f ′(x0)(v)| ≤ r · |v|.

(26) Let X be a subset of Rm and f be a partial function from Rm to Rn.
Suppose X is open and X ⊆ dom f. Then the following statements are
equivalent

(i) for every element i of N such that 1 ≤ i ≤ m holds f is partially
differentiable on X w.r.t. i and f�iX is continuous on X,

(ii) f is differentiable on X and for every element x0 of Rm and for every
real number r such that x0 ∈ X and 0 < r there exists a real number s
such that 0 < s and for every element x1 of Rm such that x1 ∈ X and
|x1−x0| < s and for every element v of Rm holds |f ′(x1)(v)−f ′(x0)(v)| ≤
r · |v|.

(27) Let f be a partial function from Rm to Rn and g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉. If f = g and f is differentiable on Z, then
f ′�Z = g′�Z .

(28) Let f be a partial function from Rm to Rn, g be a partial function from
〈Em, ‖·‖〉 to 〈En, ‖·‖〉, X be a subset ofRm, and Y be a subset of 〈Em, ‖·‖〉.
Suppose X = Y and X is open and f = g. Then for every element i of N
such that 1 ≤ i ≤ m holds f is partially differentiable on X w.r.t. i and
f�iX is continuous on X if and only if f is differentiable on X and g′�Y is
continuous on Y .

(29) Let f , g be partial functions from Rm to Rn and x be an element of
Rm. Suppose f is continuous in x and g is continuous in x. Then f + g is
continuous in x and f − g is continuous in x.

(30) Let f be a partial function from Rm to Rn, x be an element of Rm, and
r be a real number. If f is continuous in x, then r · f is continuous in x.
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(31) Let f be a partial function from Rm to Rn and x be an element of Rm.
If f is continuous in x, then −f is continuous in x.

(32) Let f be a partial function from Rm to Rn and x be an element of Rm.
If f is continuous in x, then |f | is continuous in x.

(33) Let Z be a set and f , g be partial functions from Rm to Rn. Suppose f
is continuous on Z and g is continuous on Z. Then f + g is continuous on
Z and f − g is continuous on Z.

(34) Let r be a real number and f , g be partial functions from Rm to Rn. If
f is continuous on Z, then r · f is continuous on Z.

(35) For all partial functions f , g from Rm to Rn such that f is continuous
on Z holds −f is continuous on Z.

(36) Let f be a partial function from Ri to R and x0 be an element of Ri.
Then f is continuous in x0 if and only if the following conditions are
satisfied:

(i) x0 ∈ dom f, and
(ii) for every real number r such that 0 < r there exists a real number s

such that 0 < s and for every element x of Ri such that x ∈ dom f and
|x− x0| < s holds |fx − fx0 | < r.

(37) Let f be a partial function from Rm to R and x0 be an element of Rm.
Then f is continuous in x0 if and only if 〈f〉 is continuous in x0.

(38) Let f , g be partial functions from Rm to R and x0 be an element of Rm.
Suppose f is continuous in x0 and g is continuous in x0. Then f + g is
continuous in x0 and f − g is continuous in x0.

(39) Let f be a partial function from Rm to R, x0 be an element of Rm, and
r be a real number. If f is continuous in x0, then r · f is continuous in x0.

(40) Let f be a partial function from Rm to R and x0 be an element of Rm.
If f is continuous in x0, then |f | is continuous in x0.

(41) Let f , g be partial functions from Ri to R and x be an element of Ri. If
f is continuous in x and g is continuous in x, then f · g is continuous in x.

Let m be a non empty element of N, let Z be a set, and let f be a partial
function from Rm to R. We say that f is continuous on Z if and only if:

(Def. 2) For every element x0 of Rm such that x0 ∈ Z holds f�Z is continuous
in x0.

We now state a number of propositions:

(42) Let f be a partial function from Rm to R and g be a partial function
from 〈Em, ‖ ·‖〉 to R. Suppose f = g. Then Z ⊆ dom f and f is continuous
on Z if and only if g is continuous on Z.

(43) Let f be a partial function fromRm to R and g be a partial function from
〈Em, ‖ ·‖〉 to R. Suppose f = g and Z ⊆ dom f. Then f is continuous on Z
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if and only if for every sequence s of 〈Em, ‖ · ‖〉 such that rng s ⊆ Z and s
is convergent and lim s ∈ Z holds g∗s is convergent and glim s = lim(g∗s).

(44) Let f be a partial function from Rm to R and g be a partial function
from Rm to R1. Suppose 〈f〉 = g. Then Z ⊆ dom f and f is continuous
on Z if and only if g is continuous on Z.

(45) Let f be a partial function from Rm to R. Suppose Z ⊆ dom f. Then f

is continuous on Z if and only if for every element x0 of Rm and for every
real number r such that x0 ∈ Z and 0 < r there exists a real number s
such that 0 < s and for every element x1 of Rm such that x1 ∈ Z and
|x1 − x0| < s holds |fx1 − fx0 | < r.

(46) Let f , g be partial functions from Rm to R. Suppose f is continuous on
Z and g is continuous on Z and Z ⊆ dom f and Z ⊆ dom g. Then f + g

is continuous on Z and f − g is continuous on Z.

(47) Let f be a partial function from Rm to R and r be a real number. If
Z ⊆ dom f and f is continuous on Z, then r · f is continuous on Z.

(48) Let f , g be partial functions from Rm to R. Suppose f is continuous on
Z and g is continuous on Z and Z ⊆ dom f and Z ⊆ dom g. Then f · g is
continuous on Z.

(49) Let f be a partial function from Rm to R and g be a partial function
from 〈Em, ‖ ·‖〉 to R. Suppose f = g. Then Z ⊆ dom f and f is continuous
on Z if and only if g is continuous on Z.

(50) For all partial functions f , g from Rm to Rn such that f is continuous
on Z holds |f | is continuous on Z.

(51) Let f , g be partial functions from Rm to R and x be an element of Rm.
Suppose f is differentiable in x and g is differentiable in x. Then f + g is
differentiable in x and (f+g)′(x) = f ′(x)+g′(x) and f−g is differentiable
in x and (f − g)′(x) = f ′(x)− g′(x).

(52) Let f be a partial function from Rm to R, r be a real number, and
x be an element of Rm. Suppose f is differentiable in x. Then r · f is
differentiable in x and (r · f)′(x) = r · f ′(x).

Let Z be a set, let m be a non empty element of N, and let f be a partial
function from Rm to R. We say that f is differentiable on Z if and only if:

(Def. 3) For every element x of Rm such that x ∈ Z holds f�Z is differentiable
in x.

Next we state three propositions:

(53) Let f be a partial function from Rm to R and g be a partial function
from Rm to R1. Suppose 〈f〉 = g. Then Z ⊆ dom f and f is differentiable
on Z if and only if g is differentiable on Z.

(54) Let X be a subset of Rm and f be a partial function from Rm to R.
Suppose X ⊆ dom f and X is open. Then f is differentiable on X if and
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only if for every element x of Rm such that x ∈ X holds f is differentiable
in x.

(55) Let X be a subset of Rm and f be a partial function from Rm to R. If
X ⊆ dom f and f is differentiable on X, then X is open.

Let m be a non empty element of N, let Z be a set, and let f be a partial
function from Rm to R. Let us assume that Z ⊆ dom f. The functor f ′�Z yields
a partial function from Rm to RRm and is defined by:

(Def. 4) dom(f ′�Z) = Z and for every element x of Rm such that x ∈ Z holds
(f ′�Z)x = f ′(x).

One can prove the following four propositions:

(56) Let X be a subset of Rm, f be a partial function from Rm to R, and g

be a partial function from Rm to R1. Suppose 〈f〉 = g and X ⊆ dom f

and f is differentiable on X. Then g is differentiable on X and for every
element x of Rm such that x ∈ X holds (f ′�X)x = proj(1, 1) · (g′�X)x.

(57) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose X ⊆ dom f and X ⊆ dom g and f is differentiable on X and
g is differentiable on X. Then f + g is differentiable on X and for every
element x of Rm such that x ∈ X holds ((f + g)′�X)x = (f ′�X)x + (g′�X)x.

(58) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose X ⊆ dom f and X ⊆ dom g and f is differentiable on X and
g is differentiable on X. Then f − g is differentiable on X and for every
element x of Rm such that x ∈ X holds ((f − g)′�X)x = (f ′�X)x − (g′�X)x.

(59) Let X be a subset of Rm, f be a partial function from Rm to R, and r

be a real number. Suppose X ⊆ dom f and f is differentiable on X. Then
r · f is differentiable on X and for every element x of Rm such that x ∈ X
holds ((r · f)′�X)x = r · (f ′�X)x.

Let m be a non empty element of N, let Z be a set, let i be an element of
N, and let f be a partial function from Rm to R. We say that f is partially
differentiable on Z w.r.t. i if and only if:

(Def. 5) Z ⊆ dom f and for every element x of Rm such that x ∈ Z holds f�Z is
partially differentiable in x w.r.t. i.

Let m be a non empty element of N, let Z be a set, let i be an element of N,
and let f be a partial function from Rm to R. Let us assume that f is partially
differentiable on Z w.r.t. i. The functor f�iZ yields a partial function from Rm
to R and is defined as follows:

(Def. 6) dom(f�iZ) = Z and for every element x of Rm such that x ∈ Z holds
(f�iZ)x = partdiff(f, x, i).

Next we state several propositions:

(60) Let X be a subset of Rm and f be a partial function from Rm to R.
Suppose X is open and 1 ≤ i ≤ m. Then f is partially differentiable on X
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w.r.t. i if and only if X ⊆ dom f and for every element x of Rm such that
x ∈ X holds f is partially differentiable in x w.r.t. i.

(61) Let X be a subset of Rm, f be a partial function from Rm to R, and g

be a partial function from Rm to R1. Suppose 〈f〉 = g and X is open and
1 ≤ i ≤ m. Then f is partially differentiable on X w.r.t. i if and only if g
is partially differentiable on X w.r.t. i.

(62) Let X be a subset of Rm, f be a partial function from Rm to R, and
g be a partial function from Rm to R1. Suppose 〈f〉 = g and X is open
and 1 ≤ i ≤ m and f is partially differentiable on X w.r.t. i. Then f�iX
is continuous on X if and only if g�iX is continuous on X.

(63) Let X be a subset of Rm and f be a partial function from Rm to R.
Suppose X is open and X ⊆ dom f. Then the following statements are
equivalent

(i) for every element i of N such that 1 ≤ i ≤ m holds f is partially
differentiable on X w.r.t. i and f�iX is continuous on X,

(ii) f is differentiable on X and for every element x0 of Rm and for every
real number r such that x0 ∈ X and 0 < r there exists a real number s
such that 0 < s and for every element x1 of Rm such that x1 ∈ X and
|x1−x0| < s and for every element v of Rm holds |f ′(x1)(v)−f ′(x0)(v)| ≤
r · |v|.

(64) Let f , g be partial functions from Rm to R and x be an element of
Rm. Suppose f is partially differentiable in x w.r.t. i and g is partially
differentiable in x w.r.t. i. Then f · g is partially differentiable in x w.r.t.
i and partdiff(f · g, x, i) = partdiff(f, x, i) · g(x) + f(x) · partdiff(g, x, i).

(65) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose that

(i) X is open,
(ii) 1 ≤ i,
(iii) i ≤ m,
(iv) f is partially differentiable on X w.r.t. i, and
(v) g is partially differentiable on X w.r.t. i.

Then
(vi) f + g is partially differentiable on X w.r.t. i,
(vii) (f + g)�iX = (f�iX) + (g�iX), and

(viii) for every element x of Rm such that x ∈ X holds ((f + g)�iX)x =
partdiff(f, x, i) + partdiff(g, x, i).

(66) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose that

(i) X is open,
(ii) 1 ≤ i,
(iii) i ≤ m,
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(iv) f is partially differentiable on X w.r.t. i, and
(v) g is partially differentiable on X w.r.t. i.

Then
(vi) f − g is partially differentiable on X w.r.t. i,

(vii) (f − g)�iX = (f�iX)− (g�iX), and
(viii) for every element x of Rm such that x ∈ X holds ((f − g)�iX)x =

partdiff(f, x, i)− partdiff(g, x, i).

(67) Let X be a subset of Rm, r be a real number, and f be a partial function
from Rm to R. Suppose X is open and 1 ≤ i ≤ m and f is partially
differentiable on X w.r.t. i. Then

(i) r · f is partially differentiable on X w.r.t. i,
(ii) r · f�iX = r · (f�iX), and
(iii) for every element x of Rm such that x ∈ X holds (r · f�iX)x = r ·

partdiff(f, x, i).

(68) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose that

(i) X is open,
(ii) 1 ≤ i,
(iii) i ≤ m,
(iv) f is partially differentiable on X w.r.t. i, and
(v) g is partially differentiable on X w.r.t. i.

Then
(vi) f · g is partially differentiable on X w.r.t. i,

(vii) f · g�iX = (f�iX) · g + f · (g�iX), and
(viii) for every element x of Rm such that x ∈ X holds (f · g�iX)x =

partdiff(f, x, i) · g(x) + f(x) · partdiff(g, x, i).

3. Higher-Order Partial Differentiation

Let m be a non empty element of N, let Z be a set, let I be a finite sequence
of elements of N, and let f be a partial function from Rm to R. The functor
PartDiffSeq(f, Z, I) yielding a sequence of partial functions from Rm into R is
defined by:

(Def. 7) (PartDiffSeq(f, Z, I))(0) = f and for every natural number i holds
(PartDiffSeq(f, Z, I))(i+ 1) = (PartDiffSeq(f, Z, I))(i)�Ii+1Z.

Let m be a non empty element of N, let Z be a set, let I be a finite sequence
of elements of N, and let f be a partial function from Rm to R. We say that f
is partially differentiable on Z w.r.t. I if and only if:

(Def. 8) For every element i of N such that i ≤ len I − 1 holds
(PartDiffSeq(f, Z, I))(i) is partially differentiable on Z w.r.t. Ii+1.
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Let m be a non empty element of N, let Z be a set, let I be a finite sequence
of elements of N, and let f be a partial function from Rm to R. The functor
f�IZ yielding a partial function from Rm to R is defined by:

(Def. 9) f�IZ = (PartDiffSeq(f, Z, I))(len I).

The following propositions are true:

(69) Let X be a subset of Rm, I be a non empty finite sequence of elements
of N, and f , g be partial functions from Rm to R. Suppose that

(i) X is open,
(ii) rng I ⊆ Segm,
(iii) f is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Let given i. Suppose i ≤ len I − 1. Then (PartDiffSeq(f + g,X, I))(i) is
partially differentiable on X w.r.t. Ii+1 and (PartDiffSeq(f+g,X, I))(i) =
(PartDiffSeq(f,X, I))(i) + (PartDiffSeq(g,X, I))(i).

(70) Let X be a subset of Rm, I be a non empty finite sequence of elements
of N, and f , g be partial functions from Rm to R. Suppose that

(i) X is open,
(ii) rng I ⊆ Segm,
(iii) f is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Then f + g is partially differentiable on X w.r.t. I and (f + g)�IX =
(f�IX) + (g�IX).

(71) Let X be a subset of Rm, I be a non empty finite sequence of elements
of N, and f , g be partial functions from Rm to R. Suppose that

(i) X is open,
(ii) rng I ⊆ Segm,

(iii) f is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Let given i. Suppose i ≤ len I − 1. Then (PartDiffSeq(f − g,X, I))(i) is
partially differentiable on X w.r.t. Ii+1 and (PartDiffSeq(f−g,X, I))(i) =
(PartDiffSeq(f,X, I))(i)− (PartDiffSeq(g,X, I))(i).

(72) Let X be a subset of Rm, I be a non empty finite sequence of elements
of N, and f , g be partial functions from Rm to R. Suppose that

(i) X is open,
(ii) rng I ⊆ Segm,

(iii) f is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Then f − g is partially differentiable on X w.r.t. I and (f − g)�IX =
(f�IX)− (g�IX).

(73) Let X be a subset of Rm, r be a real number, I be a non empty finite
sequence of elements of N, and f be a partial function from Rm to R.
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Suppose X is open and rng I ⊆ Segm and f is partially differentiable on X
w.r.t. I. Let given i. Suppose i ≤ len I−1. Then (PartDiffSeq(r·f,X, I))(i)
is partially differentiable on X w.r.t. Ii+1 and (PartDiffSeq(r·f,X, I))(i) =
r · (PartDiffSeq(f,X, I))(i).

(74) Let X be a subset of Rm, r be a real number, I be a non empty finite
sequence of elements of N, and f be a partial function from Rm to R.
Suppose X is open and rng I ⊆ Segm and f is partially differentiable
on X w.r.t. I. Then r · f is partially differentiable on X w.r.t. I and
r · f�IX = r · (f�IX).

Let m be a non empty element of N, let f be a partial function fromRm to R,
let k be an element of N, and let Z be a set. We say that f is partial differentiable
up to order k and Z if and only if the condition (Def. 10) is satisfied.

(Def. 10) Let I be a non empty finite sequence of elements of N. If len I ≤ k and
rng I ⊆ Segm, then f is partially differentiable on Z w.r.t. I.

The following proposition is true

(75) Let f be a partial function from Rm to R and I, G be non empty finite
sequences of elements of N. Then f is partially differentiable on Z w.r.t.
G a I if and only if f is partially differentiable on Z w.r.t. G and f�GZ is
partially differentiable on Z w.r.t. I.

One can prove the following propositions:

(76) Let f be a partial function from Rm to R. Then f is partially diffe-
rentiable on Z w.r.t. 〈i〉 if and only if f is partially differentiable on Z

w.r.t. i.

(77) For every partial function f from Rm to R holds f�〈i〉Z = f�iZ.

(78) Let f be a partial function from Rm to R and I be a non empty finite
sequence of elements of N. Suppose f is partial differentiable up to order
i + j and Z and rng I ⊆ Segm and len I = j. Then f�IZ is partial
differentiable up to order i and Z.

(79) Let f be a partial function from Rm to R. Suppose f is partial differen-
tiable up to order i and Z and j ≤ i. Then f is partial differentiable up
to order j and Z.

(80) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose that

(i) X is open,
(ii) f is partial differentiable up to order i and X, and
(iii) g is partial differentiable up to order i and X.

Then f+g is partial differentiable up to order i and X and f−g is partial
differentiable up to order i and X.

(81) Let X be a subset of Rm, f be a partial function from Rm to R, and r

be a real number. Suppose X is open and f is partial differentiable up to



124 noboru endou et al.

order i and X. Then r · f is partial differentiable up to order i and X.

(82) Let X be a subset of Rm. Suppose X is open. Let i be an element
of N and f , g be partial functions from Rm to R. Suppose f is partial
differentiable up to order i and X and g is partial differentiable up to
order i and X. Then f · g is partial differentiable up to order i and X.
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