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Semantics of MML Query!
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Summary. In the paper the semantics of MML Query queries is given.
The formalization is done according to [4].

MML identifier: MMLQUERY, version: 7.12.02 4.181.1147

The notation and terminology used here have been introduced in the following
papers: [1], [5], [11], [8], [10], [6], [2], [3], [15], [13], [14], [9], [12], and [7).

1. ELEMENTARY QUERIES

Let X be a set. A list of X is a subset of X. An operation of X is a binary
relation on X.

Let x, y, R be sets. The predicate x,y € R is defined by:

(Def. 1) (z, y) € R.

Let x, y, R be sets. We introduce z,y ¢ R as an antonym of x,y € R.

For simplicity, we use the following convention: X, Y, z, s denote sets, L, L1,
Lo, A denote lists of X, z denotes an element of X, O, O2, O3 denote operations
of X, and m denotes a natural number.

The following proposition is true

(1) For all binary relations R;, Rp holds Ry C Ry iff for every z holds
Rloz g RQOZ .

Let us consider X, O, x. We introduce = O as a synonym of O°z.

Let us consider X, O, z. Then = O is a list of X.

One can prove the following proposition

!This work has been supported by the Polish Ministry of Science and Higher Education pro-
ject “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519
385136).

@ 2012 University of Bialystok
CC-BY-SA License ver. 3.0 or later
147 ISSN 1426-2630(p), 1898-9934(e)


http://ftp.mizar.org/
http://fm.mizar.org/miz/mmlquery.miz

148 GRZEGORZ BANCEREK

(2) z,yeOiff yezO.
Let us consider X, O, L. We introduce L|O as a synonym of O°L.

Let us consider X, O, L. Then L|O is a list of X and it can be characterized
by the condition:

(Def. 2) LIO={z O:z € L}.

The functor L&O yielding a list of X is defined as follows:
(Def. 3) L&O =N{x O:z € L}.

The functor L where O yielding a list of X is defined as follows:
(Def. 4) LwhereO ={z:V, (v,y€ O A z€ L)}

Let O2 be an operation of X. The functor L where O = O3 yielding a list of X
is defined as follows:

(Def. 5) LwhereO=0y={z:20 =205 A z€L}.

The functor L where O < Os yielding a list of X is defined by:
(Def. 6) LwhereO<Oy={z:20 Cxz 05 A z€L}.

The functor L where O > Os yields a list of X and is defined by:
(Def. 7) LwhereOZOQ:{x:TOggﬁ A x € L}.

The functor L where O < O3 yielding a list of X is defined as follows:
(Def. 8) LwhereO<Oy={r:20¢€x0s A z€L}.

The functor L where O > Os yields a list of X and is defined by:
(Def. 9) LwhereO >0y ={x:2 05 €20 A x€lL}.

Let us consider X, L, O, n. The functor L where O = n yielding a list of X
is defined as follows:

(Def. 10) LwhereO:n:{x:ﬁ:n N z € L}.

The functor L where O < n yielding a list of X is defined by:
(Def. 11) LwhereO <n={z:20 Cn A z € L}.

The functor Lwhere O > n yielding a list of X is defined as follows:
(Def. 12) LwhereO>n={z:nCz O A z € L}.

The functor L where O < n yields a list of X and is defined as follows:
(Def. 13) Lwhere0<n:{x:ﬁ6n N z € L}.

The functor L where O > n yields a list of X and is defined by:
(Def. 14) LwhereO >n={z:ne€x O A x € L}.

One can prove the following propositions:

(3) z € LwhereO iff x € L and = O # (.

(4) LwhereO C L.

(5) If L C domO, then LwhereO = L.

(6) If n#0and Ly C Lo, then L; where O > n C Lo where O.
(7)

LwhereO > 1 = LwhereO.
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) If Ly C Ly, then Ly where O > n C LywhereO.
) LwhereO >0 = LwhereO.
10) If n# 0 and Ly C Lo, then L; where O = n C Lo where O.
) LwhereO >n+1= LwhereO > n.
) LwhereO <n = LwhereO <n+1.
)

If n < mand L1 C Ly and O1 C O, then LiwhereO; > m C
Lo where Oy > n.

(14) If n < m and Ly C Ly and O; C Og, then LjwhereO; > m C
Lo where Oy > n.

(15) If n < m and Ly C L9 and Oy C Og, then LjwhereOs; < n C
Lowhere O1 < m.

(16) If n < m and Ly C L9 and Oy C Og, then LjwhereOs < n C
Lowhere O1 < m.

(17) If Oy € O2 and Ly C Ly and O C Os, then LjwhereO > Oy C
Lowhere O3 > O5.

(18) If Oy € O2 and Ly C Ly and O C Os, then LjwhereO > Oy C
Lowhere O3 > O;.

(19) If Oy € Oy and L1 € Ly and O C Os, then LjwhereOs < O C
Lowhere O < Os.

(20) If O € Oy and L1 € Ly and O C Og, then LiwhereO3 < O1 C

Lowhere O < Os.
(21) LwhereO > O; C LwhereO.
(22) If O; C Oy and Ly C Ly, then L; where O; C Lo where O,.
(23) a € L|O iff there exists b such that a € b O and b € L.

Let us consider X, A, B. We introduce Aand B as a synonym of AN B.
We introduce Aor B as a synonym of A U B. We introduce Abutnot B as a
synonym of A\ B.

Let us consider X, A, B. Then Aand B is a list of X. Then Aor B is a list
of X. Then Abutnot B is a list of X.

We now state several propositions:

(24) 1If Ly # 0 and Lo # 0, then (Lq or Lo)&O = (L1&0) and(L2&0).
(25) If Ly C Ly and O1 C Oy, then L1|0O1 C Ly|Os.

(26) If O1 C Oy, then L&O; C L&Os.

(27) L&(0O1and O3) = (L&O1) and(L&O7).

(28) If Ly # 0 and Ly C Ly, then Lo&O C L1&O.
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2. OPERATIONS

One can prove the following two propositions:
(29) For all operations Oy, Oz of X such that for every z holds x O; = z O2

holds 01 = 02.
(30) For all operations O1, Oz of X such that for every L holds L|O1 = L|O2
holds 01 = 02.

The functor not O yielding an operation of X is defined as follows:
(Def. 15) For every L holds L|not O =J{(zx O =0 — {z},0) : z € L}.

Let us consider X and let O7, O3 be operations of X. We introduce O1 and Oy
as a synonym of O1 N Os. We introduce O1 or Os as a synonym of O1 U Oy. We
introduce O; butnot Oy as a synonym of O; \ Oz. We introduce 01|03 as a
synonym of O - Os.

Let us consider X and let O1, Oy be operations of X. Then O; and O, is an
operation of X and it can be characterized by the condition:

(Def. 16) For every L holds L|(O1and Oz) = U{(x O1) and(z O2) : x € L}.
Then O; or O, is an operation of X and it can be characterized by the condition:
(Def. 17)  For every L holds L|(O7 or Oz) = J{(z O1) ox(x Oz) : x € L}.

Then O; butnot Oy is an operation of X and it can be characterized by the
condition:

(Def. 18) For every L holds L|(O;7 butnot O2) = [J{(z O1) butnot(x O2) : v € L}.
Then 01|07 is an operation of X and it can be characterized by the condition:
(Def. 19) For every L holds L|(O1]|02) = L|01|Oa.
The functor O1&0- yielding an operation of X is defined as follows:
(Def. 20) For every L holds L|(O1&02) = U{(z O1)&O3 : x € L}.

We now state a number of propositions:

(31) =z (O1andO3) = (z O1) and(z O3).

(32) z (O10r02) = (x O1) or(z O2).

(33) z (O;1butnot O2) = (z O1) butnot(x O2).
(34) z (01|02) = (z 01)|0s.

(35) z (01&02) = (z 01)&0s.

(36) z,s€notOiff z=sand z € X and z ¢ domO.
(37) not O = idx\dgomo-

(38) domnotnot O = domO.

(39) LwherenotnotO = LwhereO.

(40) LwhereO =0 = LwherenotO.

(41) notnotnot O =mnotO.

(42) not Op ornot Oz C not(O; and O2).
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(43) not(O; or O2) = not O andnot Os.
(44) If domO; = X and domO; = X, then (O;0r0y)&0O =
(01&0) and(02&0).
Let us consider X, O. We say that O is filtering if and only if:
(Def. 21) O Cidy.

Next we state the proposition

(45) O is filtering iff O = idgomo-
Let us consider X, O. Note that not O is filtering.
Let us consider X . Note that there exists an operation of X which is filtering.

In the sequel Fi, F> denote filtering operations of X.
Let us consider X, F', O. One can check the following observations:

* FandO is filtering,

* (Oand F is filtering, and

* Fbutnot O is filtering.

Let us consider X, F}, Fy5. One can verify that F} or Fj is filtering.

(@)
—

Fornot F =idy.
O andnot O = ).
(O1 0r O2) andnot 01 C Os.

[ )
w N

(46) 1If z € x F, then z = z.

(47) L|F = LwhereF.

(48) mnotnot F = F.

(49) not(F)and Fy) = not F) ornot Fh.
(50) dom(OormnotO) = X.

(51)

(52)

(53)

3. ROUGH QUERIES

Let A be a finite sequence and let a be a set. The functor #occurrences(a, A)
yielding a natural number is defined as follows:

(Def. 22) #occurrences(a, A) = {i: 1 € dom A A a € A(i)}.

We now state two propositions:

(54) For every finite sequence A and for every set a holds #occurrences(a, A) <
len A.

(55) For every finite sequence A and for every set a holds A # () and
#occurrences(a, A) = len A iff a € N rng A.

The functor max# A yielding a natural number is defined as follows:

(Def. 23) For every set a holds #occurrences(a, A) < max# A and for every n such
that for every set a holds #occurrences(a, A) < n holds max# A < n.
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(56) For every finite sequence A holds max# A < len A.

(57) For every finite sequence A and for every set a such that
#occurrences(a, A) = len A holds max# A = len A.

Let us consider X, let A be a finite sequence of elements of 2%, and let n be
a natural number. The functor roughn(A) yields a list of X and is defined as
follows:
(Def. 24) roughn(A) = {z : n < #occurrences(z, A)} if X # ().
Let m be a natural number. The functor roughn-m(A) yields a list of X and is
defined by:
(Def. 25) roughn-m(A) = {z : n < #occurrences(z, A) A Foccurrences(z, A) <
m} if X # 0.
Let us consider X and let A be a finite sequence of elements of 2%. The
functor rough(A) yielding a list of X is defined by:
(Def. 26) rough(A) = roughmax# A(A).
Next we state several propositions:

(58) For every finite sequence A of elements of 2% holds rough n-len A(A) =
roughn(A).

(59) For every finite sequence A of elements of 2% such that n < m holds
roughm(A) C roughn(A).

(60) Let A be a finite sequence of elements of 2% and ny, n2, mi, ma be
natural numbers. If ny < m; and ne < mg, then roughmi-na(A4) C
roughni-ma(A).

(61) For every finite sequence A of elements of 2% holds roughn-m(A4) C
roughn(A).

(62) For every finite sequence A of elements of 2% such that A # () holds
roughlen A(A) = Nrng A.

(63) For every finite sequence A of elements of 2% holds rough 1(A4) = |J A.

(64) For all lists Ly, Ly of X holds rough 2({(L1, L)) = L1 and Lo.

(65) For all lists Ly, Ly of X holds rough 1((L1, L2)) = L; or Lo.

4. CONSTRUCTOR DATABASE

We introduce constructor databases which are extensions of 1-sorted struc-
tures and are systems

( a carrier, constructors, a ref-operation ),
where the carrier is a set, the constructors constitute a list of the carrier, and
the ref-operation is a relation between the carrier and the constructors.

Let X be a 1-sorted structure. A list of X is a list of the carrier of X. An
operation of X is an operation of the carrier of X.
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Let us consider X, let S be a subset of X, and let R be a relation between

X and S. The functor ®R yields a binary relation on X and is defined by:
(Def. 27) ®R =R.
Let X be a constructor database and let a be an element of X. The functor
aref yielding a list of X is defined as follows:
(Def. 28) aref = a “the ref-operation of X.
The functor a occur yields a list of X and is defined as follows:
(Def. 29) aoccur = a (“the ref-operation of X)>.
The following proposition is true
(66) For every constructor database X and for all elements z, y of X holds
x € yref iff y € zoccur.
Let X be a constructor database. We say that X is ref-finite if and only if:
(Def. 30) For every element = of X holds x ref is finite.

One can verify that every constructor database which is finite is also ref-
finite.

Let us note that there exists a constructor database which is finite and non
empty.

Let X be a ref-finite constructor database and let x be an element of X.
Observe that = ref is finite.

Let X be a constructor database and let A be a finite sequence of elements
of the constructors of X. The functor atleast(A) yielding a list of X is defined
by:

(Def. 31) atleast(A) = {x € X: rng A C xref} if the carrier of X # ().
The functor atmost(A) yielding a list of X is defined as follows:

(Def. 32) atmost(A) = {x € X: xref Crng A} if the carrier of X # 0.
The functor exactly(A) yields a list of X and is defined by:

(Def. 33) exactly(A) = {z € X: xref =rng A} if the carrier of X # 0.

Let n be a natural number. The functor atleast minusn(A) yields a list of X
and is defined by:

(Def. 34) atleast minusn(A) = {z € X: rmngA\zxref < n} if the carrier of
X #0.

Let X be a ref-finite constructor database, let A be a finite sequence of
elements of the constructors of X, and let n be a natural number. The functor
atmost plusn(A) yields a list of X and is defined by:

(Def. 35) atmost plusn(A) = {z € X: xref \rng A < n} if the carrier of X # ().

Let m be a natural number. The functor exactly plusnminus m(A) yielding
a list of X is defined by:

153
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(Def. 36) exactly plusnminusm(4) = {xr € X: zref\mgAd < n A

rng A\ zref < m} if the carrier of X # ().

In the sequel X denotes a constructor database, x denotes an element of X,

B denotes a finite sequence of elements of the constructors of Y, and y denotes

an element of Y.

The following propositions are true:
atleast minus 0(A) = atleast(A).
atmost plus 0(B) = atmost(DB).

If n < 'm, then atleast minusn(A) C atleast minusm(A).
If n < m, then atmost plusn(B) C atmost plus m(B).

)
)
9) exactly plusOminus0(B) = exactly(B).
)
)
)

For all natural numbers n1, ng, m1, mg such that n; < mqy and no < mo
holds exactly plusniminusny(B) C exactly plusm)minusmeo(B).

atleast(A) C atleast minusn(A).
atmost(B) C atmost plusn(B).
exactly(B) C exactly plus nminus m(B).

If A+, then atleast(A) ={zoccur: x € rng A}.

For all elements ¢y, co of X such that A = (c1,c2) holds atleast(A4) =
c1 occur and ¢y occur.

)
)
)
6) exactly(A) = atleast(A)andatmost(A).
)
)
)
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