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Semantics of MML Query1
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Summary. In the paper the semantics of MML Query queries is given.
The formalization is done according to [4].

MML identifier: MMLQUERY, version: 7.12.02 4.181.1147

The notation and terminology used here have been introduced in the following
papers: [1], [5], [11], [8], [10], [6], [2], [3], [15], [13], [14], [9], [12], and [7].

1. Elementary Queries

Let X be a set. A list of X is a subset of X. An operation of X is a binary
relation on X.

Let x, y, R be sets. The predicate x, y ∈ R is defined by:

(Def. 1) 〈〈x, y〉〉 ∈ R.
Let x, y, R be sets. We introduce x, y 6∈ R as an antonym of x, y ∈ R.
For simplicity, we use the following convention: X, Y , z, s denote sets, L, L1,

L2, A denote lists of X, x denotes an element of X, O, O2, O3 denote operations
of X, and m denotes a natural number.

The following proposition is true

(1) For all binary relations R1, R2 holds R1 ⊆ R2 iff for every z holds
R1
◦z ⊆ R2◦z.

Let us consider X, O, x. We introduce x O as a synonym of O◦x.
Let us consider X, O, x. Then x O is a list of X.
One can prove the following proposition
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(2) x, y ∈ O iff y ∈ x O.
Let us consider X, O, L. We introduce L|O as a synonym of O◦L.
Let us consider X, O, L. Then L|O is a list of X and it can be characterized

by the condition:

(Def. 2) L|O =
⋃
{x O : x ∈ L}.

The functor L&O yielding a list of X is defined as follows:

(Def. 3) L&O =
⋂
{x O : x ∈ L}.

The functor L whereO yielding a list of X is defined as follows:

(Def. 4) L whereO = {x :
∨
y (x, y ∈ O ∧ x ∈ L)}.

Let O2 be an operation of X. The functor L whereO = O2 yielding a list of X
is defined as follows:

(Def. 5) L whereO = O2 = {x : x O = x O2 ∧ x ∈ L}.
The functor L whereO ≤ O2 yielding a list of X is defined by:

(Def. 6) L whereO ≤ O2 = {x : x O ⊆ x O2 ∧ x ∈ L}.
The functor L whereO ≥ O2 yields a list of X and is defined by:

(Def. 7) L whereO ≥ O2 = {x : x O2 ⊆ x O ∧ x ∈ L}.
The functor L whereO < O2 yielding a list of X is defined as follows:

(Def. 8) L whereO < O2 = {x : x O ∈ x O2 ∧ x ∈ L}.
The functor L whereO > O2 yields a list of X and is defined by:

(Def. 9) L whereO > O2 = {x : x O2 ∈ x O ∧ x ∈ L}.
Let us consider X, L, O, n. The functor L whereO = n yielding a list of X

is defined as follows:

(Def. 10) L whereO = n = {x : x O = n ∧ x ∈ L}.
The functor L whereO ≤ n yielding a list of X is defined by:

(Def. 11) L whereO ≤ n = {x : x O ⊆ n ∧ x ∈ L}.
The functor L whereO ≥ n yielding a list of X is defined as follows:

(Def. 12) L whereO ≥ n = {x : n ⊆ x O ∧ x ∈ L}.
The functor L whereO < n yields a list of X and is defined as follows:

(Def. 13) L whereO < n = {x : x O ∈ n ∧ x ∈ L}.
The functor L whereO > n yields a list of X and is defined by:

(Def. 14) L whereO > n = {x : n ∈ x O ∧ x ∈ L}.
One can prove the following propositions:

(3) x ∈ L whereO iff x ∈ L and x O 6= ∅.
(4) L whereO ⊆ L.
(5) If L ⊆ domO, then L whereO = L.

(6) If n 6= 0 and L1 ⊆ L2, then L1 whereO ≥ n ⊆ L2 whereO.
(7) L whereO ≥ 1 = L whereO.
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(8) If L1 ⊆ L2, then L1 whereO > n ⊆ L2 whereO.
(9) L whereO > 0 = L whereO.

(10) If n 6= 0 and L1 ⊆ L2, then L1 whereO = n ⊆ L2 whereO.
(11) L whereO ≥ n+ 1 = L whereO > n.

(12) L whereO ≤ n = L whereO < n+ 1.

(13) If n ≤ m and L1 ⊆ L2 and O1 ⊆ O2, then L1 whereO1 ≥ m ⊆
L2 whereO2 ≥ n.

(14) If n ≤ m and L1 ⊆ L2 and O1 ⊆ O2, then L1 whereO1 > m ⊆
L2 whereO2 > n.

(15) If n ≤ m and L1 ⊆ L2 and O1 ⊆ O2, then L1 whereO2 ≤ n ⊆
L2 whereO1 ≤ m.

(16) If n ≤ m and L1 ⊆ L2 and O1 ⊆ O2, then L1 whereO2 < n ⊆
L2 whereO1 < m.

(17) If O1 ⊆ O2 and L1 ⊆ L2 and O ⊆ O3, then L1 whereO ≥ O2 ⊆
L2 whereO3 ≥ O1.

(18) If O1 ⊆ O2 and L1 ⊆ L2 and O ⊆ O3, then L1 whereO > O2 ⊆
L2 whereO3 > O1.

(19) If O1 ⊆ O2 and L1 ⊆ L2 and O ⊆ O3, then L1 whereO3 ≤ O1 ⊆
L2 whereO ≤ O2.

(20) If O1 ⊆ O2 and L1 ⊆ L2 and O ⊆ O3, then L1 whereO3 < O1 ⊆
L2 whereO < O2.

(21) L whereO > O1 ⊆ L whereO.
(22) If O1 ⊆ O2 and L1 ⊆ L2, then L1 whereO1 ⊆ L2 whereO2.
(23) a ∈ L|O iff there exists b such that a ∈ b O and b ∈ L.

Let us consider X, A, B. We introduce A andB as a synonym of A ∩ B.
We introduce A orB as a synonym of A ∪ B. We introduce A butnotB as a
synonym of A \B.

Let us consider X, A, B. Then A andB is a list of X. Then A orB is a list
of X. Then A butnotB is a list of X.

We now state several propositions:

(24) If L1 6= ∅ and L2 6= ∅, then (L1 orL2)&O = (L1&O) and(L2&O).

(25) If L1 ⊆ L2 and O1 ⊆ O2, then L1|O1 ⊆ L2|O2.
(26) If O1 ⊆ O2, then L&O1 ⊆ L&O2.

(27) L&(O1 andO2) = (L&O1) and(L&O2).

(28) If L1 6= ∅ and L1 ⊆ L2, then L2&O ⊆ L1&O.
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2. Operations

One can prove the following two propositions:

(29) For all operations O1, O2 of X such that for every x holds x O1 = x O2
holds O1 = O2.

(30) For all operations O1, O2 of X such that for every L holds L|O1 = L|O2
holds O1 = O2.

The functor notO yielding an operation of X is defined as follows:

(Def. 15) For every L holds L| notO =
⋃
{(x O = ∅ → {x}, ∅) : x ∈ L}.

Let us consider X and let O1, O2 be operations of X. We introduce O1 andO2
as a synonym of O1 ∩O2. We introduce O1 orO2 as a synonym of O1 ∪O2. We
introduce O1 butnotO2 as a synonym of O1 \ O2. We introduce O1|O2 as a
synonym of O1 ·O2.

Let us consider X and let O1, O2 be operations of X. Then O1 andO2 is an
operation of X and it can be characterized by the condition:

(Def. 16) For every L holds L|(O1 andO2) =
⋃
{(x O1) and(x O2) : x ∈ L}.

Then O1 orO2 is an operation of X and it can be characterized by the condition:

(Def. 17) For every L holds L|(O1 orO2) =
⋃
{(x O1) or(x O2) : x ∈ L}.

Then O1 butnotO2 is an operation of X and it can be characterized by the
condition:

(Def. 18) For every L holds L|(O1 butnotO2) =
⋃
{(x O1) butnot(x O2) : x ∈ L}.

Then O1|O2 is an operation of X and it can be characterized by the condition:

(Def. 19) For every L holds L|(O1|O2) = L|O1|O2.
The functor O1&O2 yielding an operation of X is defined as follows:

(Def. 20) For every L holds L|(O1&O2) =
⋃
{(x O1)&O2 : x ∈ L}.

We now state a number of propositions:

(31) x (O1 andO2) = (x O1) and(x O2).

(32) x (O1 orO2) = (x O1) or(x O2).

(33) x (O1 butnotO2) = (x O1) butnot(x O2).

(34) x (O1|O2) = (x O1)|O2.
(35) x (O1&O2) = (x O1)&O2.

(36) z, s ∈ notO iff z = s and z ∈ X and z 6∈ domO.

(37) notO = idX\domO.

(38) dom not notO = domO.

(39) L where not notO = L whereO.

(40) L whereO = 0 = L where notO.

(41) not not notO = notO.

(42) notO1 or notO2 ⊆ not(O1 andO2).
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(43) not(O1 orO2) = notO1 and notO2.

(44) If domO1 = X and domO2 = X, then (O1 orO2)&O =
(O1&O) and(O2&O).

Let us consider X, O. We say that O is filtering if and only if:

(Def. 21) O ⊆ idX .

Next we state the proposition

(45) O is filtering iff O = iddomO.

Let us consider X, O. Note that notO is filtering.
Let us consider X. Note that there exists an operation of X which is filtering.
In the sequel F1, F2 denote filtering operations of X.
Let us consider X, F , O. One can check the following observations:

∗ F andO is filtering,

∗ O andF is filtering, and

∗ F butnotO is filtering.

Let us consider X, F1, F2. One can verify that F1 orF2 is filtering.

(46) If z ∈ x F, then z = x.

(47) L|F = L whereF.

(48) not notF = F.

(49) not(F1 andF2) = notF1 or notF2.

(50) dom(O or notO) = X.

(51) F or notF = idX .

(52) O and notO = ∅.
(53) (O1 orO2) and notO1 ⊆ O2.

3. Rough Queries

Let A be a finite sequence and let a be a set. The functor #occurrences(a,A)
yielding a natural number is defined as follows:

(Def. 22) #occurrences(a,A) = {i : i ∈ domA ∧ a ∈ A(i)} .
We now state two propositions:

(54) For every finite sequenceA and for every set a holds #occurrences(a,A) ≤
lenA.

(55) For every finite sequence A and for every set a holds A 6= ∅ and
#occurrences(a,A) = lenA iff a ∈

⋂
rngA.

The functor max#A yielding a natural number is defined as follows:

(Def. 23) For every set a holds #occurrences(a,A) ≤ max#A and for every n such
that for every set a holds #occurrences(a,A) ≤ n holds max#A ≤ n.
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(56) For every finite sequence A holds max#A ≤ lenA.

(57) For every finite sequence A and for every set a such that
#occurrences(a,A) = lenA holds max#A = lenA.

Let us consider X, let A be a finite sequence of elements of 2X , and let n be
a natural number. The functor roughn(A) yields a list of X and is defined as
follows:

(Def. 24) roughn(A) = {x : n ≤ #occurrences(x,A)} if X 6= ∅.
Let m be a natural number. The functor roughn-m(A) yields a list of X and is
defined by:

(Def. 25) roughn-m(A) = {x : n ≤ #occurrences(x,A) ∧ #occurrences(x,A) ≤
m} if X 6= ∅.

Let us consider X and let A be a finite sequence of elements of 2X . The
functor rough(A) yielding a list of X is defined by:

(Def. 26) rough(A) = roughmax#A(A).

Next we state several propositions:

(58) For every finite sequence A of elements of 2X holds roughn- lenA(A) =
roughn(A).

(59) For every finite sequence A of elements of 2X such that n ≤ m holds
roughm(A) ⊆ roughn(A).

(60) Let A be a finite sequence of elements of 2X and n1, n2, m1, m2 be
natural numbers. If n1 ≤ m1 and n2 ≤ m2, then roughm1-n2(A) ⊆
roughn1-m2(A).

(61) For every finite sequence A of elements of 2X holds roughn-m(A) ⊆
roughn(A).

(62) For every finite sequence A of elements of 2X such that A 6= ∅ holds
rough lenA(A) =

⋂
rngA.

(63) For every finite sequence A of elements of 2X holds rough 1(A) =
⋃
A.

(64) For all lists L1, L2 of X holds rough 2(〈L1, L2〉) = L1 andL2.

(65) For all lists L1, L2 of X holds rough 1(〈L1, L2〉) = L1 orL2.

4. Constructor Database

We introduce constructor databases which are extensions of 1-sorted struc-
tures and are systems
〈 a carrier, constructors, a ref-operation 〉,

where the carrier is a set, the constructors constitute a list of the carrier, and
the ref-operation is a relation between the carrier and the constructors.

Let X be a 1-sorted structure. A list of X is a list of the carrier of X. An
operation of X is an operation of the carrier of X.
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Let us consider X, let S be a subset of X, and let R be a relation between
X and S. The functor @R yields a binary relation on X and is defined by:

(Def. 27) @R = R.

Let X be a constructor database and let a be an element of X. The functor
a ref yielding a list of X is defined as follows:

(Def. 28) a ref = a @the ref-operation of X.

The functor a occur yields a list of X and is defined as follows:

(Def. 29) a occur = a (@the ref-operation of X)`.

The following proposition is true

(66) For every constructor database X and for all elements x, y of X holds
x ∈ y ref iff y ∈ x occur .

Let X be a constructor database. We say that X is ref-finite if and only if:

(Def. 30) For every element x of X holds x ref is finite.

One can verify that every constructor database which is finite is also ref-
finite.

Let us note that there exists a constructor database which is finite and non
empty.

Let X be a ref-finite constructor database and let x be an element of X.
Observe that x ref is finite.

Let X be a constructor database and let A be a finite sequence of elements
of the constructors of X. The functor atleast(A) yielding a list of X is defined
by:

(Def. 31) atleast(A) = {x ∈ X: rngA ⊆ x ref} if the carrier of X 6= ∅.
The functor atmost(A) yielding a list of X is defined as follows:

(Def. 32) atmost(A) = {x ∈ X: x ref ⊆ rngA} if the carrier of X 6= ∅.
The functor exactly(A) yields a list of X and is defined by:

(Def. 33) exactly(A) = {x ∈ X: x ref = rngA} if the carrier of X 6= ∅.
Let n be a natural number. The functor atleast minusn(A) yields a list of X
and is defined by:

(Def. 34) atleast minusn(A) = {x ∈ X: rngA \ x ref ≤ n} if the carrier of
X 6= ∅.

Let X be a ref-finite constructor database, let A be a finite sequence of
elements of the constructors of X, and let n be a natural number. The functor
atmost plusn(A) yields a list of X and is defined by:

(Def. 35) atmost plusn(A) = {x ∈ X: x ref \ rngA ≤ n} if the carrier of X 6= ∅.
Let m be a natural number. The functor exactly plusn minusm(A) yielding
a list of X is defined by:
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(Def. 36) exactly plusn minusm(A) = {x ∈ X: x ref \ rngA ≤ n ∧
rngA \ x ref ≤ m} if the carrier of X 6= ∅.

In the sequel X denotes a constructor database, x denotes an element of X,
B denotes a finite sequence of elements of the constructors of Y , and y denotes
an element of Y .

The following propositions are true:

(67) atleast minus 0(A) = atleast(A).

(68) atmost plus 0(B) = atmost(B).

(69) exactly plus 0 minus 0(B) = exactly(B).

(70) If n ≤ m, then atleast minusn(A) ⊆ atleast minusm(A).

(71) If n ≤ m, then atmost plusn(B) ⊆ atmost plusm(B).

(72) For all natural numbers n1, n2, m1, m2 such that n1 ≤ m1 and n2 ≤ m2
holds exactly plusn1 minusn2(B) ⊆ exactly plusm1 minusm2(B).

(73) atleast(A) ⊆ atleast minusn(A).

(74) atmost(B) ⊆ atmost plusn(B).

(75) exactly(B) ⊆ exactly plusn minusm(B).

(76) exactly(A) = atleast(A) and atmost(A).

(77) exactly plusn minusm(B) = atleast minusm(B) and atmost plusn(B).

(78) If A 6= ∅, then atleast(A) =
⋂
{x occur : x ∈ rngA}.

(79) For all elements c1, c2 of X such that A = 〈c1, c2〉 holds atleast(A) =
c1 occur and c2 occur .
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